Visual Analysis of Malware Behavior Using Treemaps and Thread Graphs
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ABSTRACT

We study techniques to visualize the behavior of malicious software
(malware). Our aim is to help human analysts to quickly assess and
classify the nature of a new malware sample. Our techniques are
based on a parametrized abstraction of detailed behavioral reports
automatically generated by sandbox environments. We then explore
two visualization techniques: treemaps and thread graphs. We ar-
gue that both techniques can effectively support a human analyst
(a) in detecting maliciousness of software, and (b) in classifying
malicious behavior.

Keywords: Invasive Software, Information Visualization, Behav-
ior Analysis

1 INTRODUCTION

The field of malicious software (malware), to which worms, bots
and other unpleasant artifacts belong, is one of the most active and
also one of the most threatening areas of computer security. In re-
cent years, we are observing a huge increase in the number of mal-
ware samples collected by anti-virus vendors [10]. Therefore, it
is mandatory that we develop tools and techniques to analyze new
malware samples with no (or only limited) human interaction.

Analyzing malware is a non-trivial task since attackers use code
obfuscation techniques like binary packers, encryption, or self-
modifying code to evade analysis. The approaches that have been
developed to analyze a given sample can typically be classified to
perform either static or dynamic analysis. In static analysis the code
of the sample is examined, for example by disassembling or decom-
piling the binary file. The main advantage of this approach is that
we can obtain a complete overview of what a given software does.
However, static analysis is usually cumbersome and time consum-
ing since many techniques to evade static analysis have been de-
veloped. For example, an attacker can use self-modifying code,
obfuscate the code [3], or use different techniques to prohibit static
disassembly [7]. In general, static analysis has therefore many lim-
itations [5]. Furthermore, static analysis does not allow a high de-
gree of automation during analysis.

An alternative to static analysis is dynamic analysis. In dynamic
malware analysis, the behavior of malware is analyzed, for exam-
ple, by executing it within a debugger. One of the most promising
approaches to the dynamic analysis of malware consists of sand-
box solutions of which several ones have been developed in re-
cent years [1, 6, 11]. A sandbox executes a malware sample in a
controlled environment and records all system-level behavior such
as modifications of the filesystem or the registry. As a result, the
sandbox generates an analysis report summarizing the observed be-
havior of the sample. In contrast to static analysis, sandbox-based
dynamic analysis can be automated to a high degree.
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Sandbox reports, often consisting of several hundred entries,
usually offer a level of detail that allows careful analysis but over-
whelm a human analysts who is interested only in a quick assess-
ment of a particular sample. Given the fact that many samples are
just small variants of a well-known malware family, there is a clear
need to make the behavior of malware samples more and easier ac-
cessible to a human analyst. In this paper, we explore a combination
of abstraction and visualization to do exactly this.

Contributions.  We first present a parametrized method to ab-
stract sandbox reports into increasingly simple summaries. Then
we use classical techniques to visualize the resulting reports and
make them accessible to the human reader. We argue that the com-
bination of both techniques offers unique insights into the main
features of malware such that humans are effectively supported in
detection malicious behavior when it occurs. Furthermore, we ar-
gue that the visual representation allows an analyst to rapidly clas-
sify the behavior of new malware samples if it belongs to one of
the large and well-known families of malware families currently
spreading in the wild.

We use two visualization techniques: treemapping and thread
graphs. Treemapping [8, 9] displays the distribution of the indi-
vidual operations performed by a sample. The resulting treemap
presents this information as a set of nested rectangles and provides
a quick overview of the main overall behavior of the sample, e.g.,
whether the main task of the sample lies in the area of network in-
teraction, changes to the file system, or interaction with other pro-
cesses. Since tree maps display nothing about the sequence of oper-
ations, we use thread graphs to visualize the temporal behavior of
the individual threads of a sample. A thread graph can be regarded
as a behavioral fingerprint of the sample. An analyst can then study
this behavior graph to quickly learn more about the actions of each
individual thread.

We demonstrate the practical feasibility of our approach by per-
forming several case studies. First, by analyzing four different mal-
ware classes, we show that our methods can actually be used to
find samples belonging to the same family of malware. Second, we
show how our techniques can also be used to detect malicious ac-
tivity by analyzing several malicious data files as for example PDF
files that exploit a vulnerability in Acrobat Reader.

Related Work. The work by Xia et al. [12] on visual analysis
of program flow data shares with our work the goal to visualize
the behavior of a given malware sample. While Xia et al. focus
on data propagation and taint tracking, we use a simple abstraction
technique to visually summarize the observed behavior for a human
analyst. Our thread graphs are similar to the visualization of Xia et
al., but contain more information on the actual behavior of each
thread. We are not aware of any work which has used treemapping
to visualize the behavioral information.

Different techniques to support reverse engineering of binary and
data files with visualization were introduced by Conti et al. [2].
Similar to our system, the goal is to support a human analyst, how-
ever Conti et al. use static analysis techniques. Since malware is
commonly packed using an executable packer, the distribution of
the individual bytes is very similar and structural information is
lost. When dealing with malware, the techniques of byteview and
byte presence visualization of Conti et al. cannot be easily applied.
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Roadmap. This paper is structured as follows: Section 2 pro-
vides an overview of system. Section 3 describes our approach to
visualize the behavior of a malicious sample based on parametrized
abstractions. We discuss a detailed malware visualization example
in Section 4, present the technique of visual malware clustering in
Section 5 and show how non-executable files can be visualized in
Section 6. We conclude the paper in Section 7 with a summary and
ideas for future work.

2 SYSTEM DESIGN

Figure 1 provides a schematic overview of our system. We use a
large database of malware samples collected using honeypots. To
analyze these samples, we first execute them in a controlled, instru-
mented environment (sandbox) and observe their behavior during
runtime. In the second step, we visualize the collected information
using different techniques. As an output, our technique generates
different visualizations of the sample’s behavior, which enable a
human analyst to get a quick overview of what a given malware

sample does.

-
G5
2gy
DB with

malware samples
phase 1

CUISariGid X

behavior report

behavior analysis

Figure 1: Overview of malware behavior visualization system

The advantage of dynamic analysis is it partly circumvents the
problems of code obfuscation techniques like packers or crypters.
Since the software knows how to unpack itself, we can simply
execute it, let the sample unpack/decrypt, and then we can study
its behavior. Furthermore, this approach can be automated to a
high degree. In our case, we opted for sandbox solutions to per-
form dynamic analysis. During execution, the sandbox observes
the system-level changes at runtime, e.g., changes to the filesystem
or the Windows registry, or network packets sent and received. The
resulting output of a sandbox is a behavior report which summa-
rizes the observed activity.

In our system we use behavior-based malware analysis based on
CWSandbox [11]. We execute the sample we want to analyze for
two minutes in the CWSandbox environment and let the tool record
all system-level activity. The result of the analysis phase is a re-
port in XML format containing information about the observed be-
havior for each thread: it includes for example information about
all loaded system libraries, outgoing and incoming network con-
nections, accessed or manipulated registry keys, and many more
events. With our CWSandbox installation we generate between
2,500 and 4,000 such reports on a typical day. We thus obtain a
large number of fine-granular reports detailing the actions of each
thread executed by the sample.

Note that behavior-based analysis enables us to analyze both ex-
ecutable and data files. Data files (like word processor documents)
can be “indirectly” analyzed by opening them in its associated ap-
plication and then observing the behavior of the application. For
example, we can analyze a given PDF file by opening it with Ac-
robat Reader and then analyzing the behavior of this program. We
show later that this can be used to detect data files behaving in an
anomalous way.

3 ABSTRACTION-BASED VISUALIZATION

Each sandbox report is usually rather long (i.e., typically several
thousand bytes in XML format) since CWSandbox analyzes many

API functions and logs all associated activity. For an effective vi-
sualization it is necessary to condense or abstract information in
these reports. Therefore we transform a given XML report gener-
ated by CWSandbox to a shorter and better display format: we map
each API call to a specific section that groups API calls with simi-
lar functionality together. For example, all API calls related to file
system activity belong to one section. Furthermore, we order the
arguments of each API call according to their relevance, i.e., more
significant arguments are placed first and less significant arguments
are completely omitted.

3.1 Abstraction Levels

Using this idea, there are four different and novel abstraction levels
at which sandbox reports can be generated:

e To obtain a coarse overview of what a process is doing, we
just display the individual sections of a process, e.g., the mere
fact whether a sample accessed the registry or not. This is
termed level I abstraction.

e Level 2 abstraction extends level 1 by also showing the names
of the API calls executed in each section.

e Level 3 abstraction extends level 2 by adding also information
about the most significant argument of each API call.

e Level 4 abstraction takes even more arguments into the display
format, adding further details.

We show below that especially level 2 and 3 abstraction are use-
ful when visualizing malware behavior.

3.2 Visualization

We implemented two different approaches for visualizing the be-
havior reports which both help a human analyst to quickly under-
stand which actions a given sample performs: a treemap provides a
summarized overview of the actions performed by a malware sam-
ple and their frequency, while a thread graph visualizes the behav-
ior of the individual threads of a process.

3.2.1

In the first visualization approach, we use the technique of treemap-
ping to transform the behavior report into a standardized format. A
treemap displays information as a set of nested rectangles and we
need to define a tiling algorithm to specify the construction of the
treemap: The width of each rectangle is proportional to the percent-
age of API calls from the behavior report belonging to this section,
i.e., if more API calls belong to a specific section, then the accord-
ing rectangle is wider. We also split each rectangle according to
the operation of this API call to obtain another dimension within
the treemap. Overall we observe over 120 distinct API calls out of
20 sections. Within the treemaps the individual sections are plotted
in a fix order and color. The leftmost red colored section for in-
stance is the so called com section which consists of three API
calls. Next is the d11 handling section which is plotted in
blue color tones. Since some reports do not posses API calls of
all sections, the corresponding treemaps do not show all sections
as well. To interpret the information that is encoded within the
treemaps, both the position and the color has to be considered. An
example treemap of a malware labeled as Adultbrowser is shown in
Figure 2. We can see that two sections are significantly wider than
the remaining sections, indicating that this sample performs some
specific operations rather frequently. The height of the rectangles
for a given section also visualizes the frequency of an operation
within this section.

Treemap
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Figure 2: Graphical representation of Adultbrowser malware using a
treemap

3.2.2 Thread Graph

Our second approach is the visualization of the actual chronologi-
cal behavior of a given sample. We generate a graph representing
the temporal order of executed system commands and the differ-
ent threads spawned by a binary. The z-axis represents the time
(sequence of performed actions), while the y-axis indicates the op-
eration/section of the performed action. Based on this construction,
we called this visualization a thread graph.

Since a thread may consist of thousands of operations, a thresh-
old is necessary to achieve a clear representation and to have a con-
sistent visualization. Therefore, a thread graph only shows a certain
maximum number of operations per thread. In our experiments a
threshold of 550 operations has proven to be a good tradeoff be-
tween accuracy and clarity.

Figure 3 shows the same Adultbrowser malware sample as dis-
played previously, this time using the thread graph representation.
We see that one thread is responsible for the majority of opera-
tions for this sample. This thread performs many registry operations
and initially performs many network- and system-related operations
(operations 90-140). Additionally, two more threads are spawned,
but they perform only a limited amount of operations during the
analysis phase.

These thread graphs, depending on the duration of the execution
time of the malware sample in a sandbox, represent the unique be-
havior for a certain family of malware. This means that any other
sample that generates the exact same (or at least a very closely re-
lated) graphical representation of its behavior can be considered to
be related to the previously determined type of malware. We show
examples for this relationship in the next section based on several
case studies.

4 EXAMPLE VISUALIZATION OF HOOKSHELL

We now discuss a single selected malware-sample and
its visualization in detail. =~ The file with the MDS5 hash
a9f6aal649e6a0f1bfad8a576f0193a0 was analyzed April 29,
2009 and was classified as Hookshell malware by several
anti-virus engines, e.g., Antivir, SecureWeb-Gateway and Sunbelt.
The CWSandbox report is quite small and consists of only 379
lines describing the malware’s behavior.
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Figure 3: Graphical representation of Adultbrowser malware using a
thread graph

Figure 4 shows the treemap generated from the CWSandbox re-
port. The image clearly shows that the malware executes API calls
from six different sections. From left to right these are the d11
handling section, the filesystem section, the ini
file section, the registry section, the process
section, and the system info section. The horizontal
subdivision of all sections show that at least two different opera-
tions per section were executed.

HOOKSHELL-207706_1265393

operation

Figure 4: Treemap of one Hookshell malware sample

For a detailed analysis of the malware behavior we have to con-
sider the thread graphs displayed in Figures 5 and 6. The level 1
thread graph shows that the malware executes operations from six
sections. Each thread can be identified together with the operations
it performs. From the thread graph it is possible to determine four
distinct threads running different API calls. Two threads execute
exactly the same sequence of API calls, therefore their representa-
tion color turned black !. To circumvent this overlay of two or more
threads, the graph could be split up into one graph per thread.

By taking a closer look at the single threads (level 2, displayed in
Figure 6), we can still extract detailed information about the mal-
ware’s operations. All threads initially load a set of libraries, ex-
plained by the straight black line at the beginning. The red colored

I The different colors sum up to black.
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thread investigates the filesystem, changes some file attributes and
creates a new file (operation number 29). Afterwards it reads some
registry keys and frequently queries an ini file before it finally cre-
ates a new registry key. These operations seem to be the key feature
of the malware binary, as the other threads do not perform any oper-
ations on the filesystem. The exact files and registry keys that were
read and created cannot be determined from the thread graphs, but
need to be extracted from the detailed sandbox report.
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Figure 5: Level 1 thread report of one Hookshell malware sample
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Figure 6: Level 2 thread report of one Hookshell malware sample

5 VISUAL MALWARE CLUSTERING

We now show how the visualized malware behavior reports can be
used to quickly determine if a given sample belongs to a certain
malware family. This kind of clustering is a good way for malware
analysts to determine if a new sample needs to be examined in more
depth or if it belongs to an already know class of malware.

As a test set we used a sample set of 2,000 malware sam-
ples that were pre-classified and labeled using a set of six
anti-virus softwares. Thus, every image contains the accord-
ing label in its filename. Altogether, we have 13 different la-
bels, namely Adultbrowser, Allaple, Bagle, Bancos,
Hookshell, Looper, Podnuha, Porndialer, Rotator,
Sality, Spybanker, Sramler and Swizzor.

Therefore, in the best case an analysis would divide the treemaps
into 13 distinct groups, containing only the according images. For
most of the examined malware samples this is in fact possible. We
analyzed the malware samples with CWSandbox and visualized
the observed behavior with our approach. Figure 7 shows eight

treemaps out of four differently labeled classes and substantiates the
idea of using the treemaps as input for an image-based clustering.
The images of different malware samples are visually different, but
samples of the same malware are almost identical. Nevertheless,
this does not apply for all classes. Since the results of behavior-
based analysis of malware depends on several variables which are
beyond the analyst’s control (e.g., in case the command and control
server of a bot is unreachable, the bot will show an entirely different
behavior) a perfect clustering seems unfeasible.

6 VISUALIZATION OF NON-EXECUTABLE FILES

Our visualization approach is not limited to executable files only.
Opening a data file with its associated application within a sandbox
environment allows us to generate a behavior report for almost any
data format. As this report is the basis to our visualization process
we are able to visualize the behavior of a PDF file, for example, by
running the appropriate PDF reader together with the document we
want to analyze in a sandbox. In this section we briefly explain the
idea of indirect behavior analysis and visualization with the help of
benign and malicious PDF documents.

As a data set we used 17 malicious and 200 randomly chosen be-
nign PDF files extracted from a Google search for PDF documents.
We scanned each of these files with the anti-virus engine of Avira.
All 200 PDF documents were marked as not infected. For our ex-
periments we used 17 PDF documents that Antivir recognized as
being malicious. 15 of these files show anomalous behavior in our
sandbox environment, as these files open a network connection dur-
ing the analysis phase. We use the english version of Adobe Acro-
bat Reader 8.0 for viewing the PDF files and manually confirmed
that these files are indeed malicious.

Depending on the instrumented environment and the checks mal-
ware authors may have built into their software, the malicious code
of an executable or data file may be executed or not. Related to our
example, the malware author may check whether or not a vulnera-
ble version of Adobe Acrobat Reader is installed.

As a result of the indirect behavior-based analysis we observed
that the Acrobat Reader does not show the same behavior for all
benign data files. Based on their visualized behavior the benign
PDF files can be divided into two classes. Figure 8 (a) and (b)
show examples of treemaps belonging to one of the two classes.
Both classes can be distinguished by their leftmost operation, col-
ored red in image (a) and are missing in image (b). This additional
operations are API calls of the so called com section. This dis-
tinctive feature can also be observed in the thread graphs of the PDF
files, shown in Figure 9 in the upper row.

The reason for executing calls from this section depends on the
defined objects within a PDF file and are no criteria for malicious
or suspicious behavior.

For malicious PDF files the behavior-based reports and the re-
sulting visualizations are not that homogeneous. This is due to the
fact that the behavior report also contains the operations of addi-
tional processes initiated by the analyzed malicious files. The extra
processes performing different operations belong to binaries down-
loaded by injected commands in the malicious PDF documents.
Figure 8 (c) and (d) show treemaps of two malicious PDF files.
Even though, at a first glance, the two treemaps look very similar
to the treemap (b) of the same figure, there are three obvious differ-
ences that distinguish treemaps of malicious PDF documents from
those of benign PDF files:

1. The violet/blue colored section of the malicious PDF files is
slightly expended.

2. The treemaps of the malicious PDF files have an additional,
light-green colored section to the left of the yellow colored
section.
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Figure 8: (a)-(b) treemaps of benign PDF files. (c)-(d) treemaps of malicious PDF files.

3. Only the treemaps of the malicious PDF documents have a
mentionable wide section on the right of the yellow colored
section.

As a result we are able to distinguish between benign and
malicious PDF documents just by comparing the corresponding
treemaps. In the following we will describe the API calls which
are responsible for these differences and show why it is possible to
use them as a basis for decision-making.

The violet/blue colored section in the treemaps corresponds to
the d11 handling section. This section contains the three
API calls 1oad_image load_dll and get_proc_address.
Dynamic Link Libraries (DLLs) are files that provide helpful func-
tions to a calling program. As every Microsoft Windows based
software loads a few of those libraries at every startup, this section
is shown in every treemap. The size of this section is determined
by the number of DLLs loaded. This behavior is also visible in
the thread graphs, as shown in Figure 9. With benign PDF thread
graphs there is a single red colored line indicating the loading of
DLL files. The thread graph of the malicious files shows a second
green colored line — another thread — loading significantly more li-
braries. The loading of several more libraries can be used as a basis

for decision-making, as the number of needed DLLs depends on the
application only and not on the document that is opened.

Next we take a look at the light-green colored section to the left
of the yellow section. This section corresponds to the so called
virtual memory section of a CWSandbox report which
contains all API calls needed to allocate, read and write to virtual
memory. The malicious PDF documents need this additional mem-
ory to save variables and code, generally exploit-related code. As
benign PDF files run within the Acrobat Reader, they do not need
this kind of memory allocation.

The third discriminative feature is the additional section to the
right of the yellow colored section. Although this part is hard
to spot, this additional section is the most important in distin-
guishing a benign PDF from a malicious one. It is the so called
winsock operation section that contains all network re-
lated API calls. Considering the thread graphs of Figure 9 (c) and
(d) there are two additional threads — the violet and the yellow col-
ored ones — which execute operations belonging to this section.
These are the operations to download malware to the exploited sys-
tem. A PDF document that initiates network connections to down-
load additional software can truly be identified as being malicious.
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Figure 9: Upper row (a)-(b): Level1 thread graphs of two benign pdf. Lower row (c)-(d): Level1 thread graphs of two malicious pdf.

7 CONCLUSION AND FUTURE WORK

In this paper, we presented two abstraction-based visualizations of
malware behavior. In our work on malware analysis we have found
these visualizations very helpful. We are interested in getting feed-
back of other analysts to enhance the representation. Although we
extensively use CWSandbox, our visualization approach is inde-
pendent of a particular sandbox solution.

The problem with the behavior-based approach is that we only
see one execution path of a binary and thus may miss important
functionality during the analysis process. With multipath execution
analysis [4], this limitation can be overcome to a certain extend.
Nevertheless, this drawback of dynamic analysis has to be consid-
ered. Another drawback of behavior-based analysis is the fact that
the analyzed binary can detect the presence of the analysis environ-
ment and then behave differently.

Possible extensions of our work could be some kind of zoom-
functionality, which allows an analyst to zoom in and out of a
treemap. Starting with global treemaps, like the ones we present
in this paper, the information could be enriched with every zoom
factor. Thus an analyst could investigate unusually looking parts of
the analysis report in detail.

An interesting line of future work is to study existing image clus-
tering and classification algorithms and compare the results of these
algorithms on our database with the labeling of anti virus vendors
or clusterings which are based on the full behavior reports. Further-
more, since the visual classification is much faster than a classifica-
tion based on the detailed reports visual classification could be used
as preprocessing or even prediction for a precise classification.
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