

Visualization of Shared System Call Sequence
Relationships in Large Malware Corpora

Josh Saxe
Invincea Labs

josh.saxe@invincea.com

David Mentis
Invincea Labs

david.mentis@invincea.com

Chris Greamo
Invincea Labs

chris.greamo@invincea.com

ABSTRACT

We present a novel system for automatically discovering and
interactively visualizing shared system call sequence relationships
within large malware datasets. Our system's pipeline begins with
the application of a novel heuristic algorithm for extracting
variable length, semantically meaningful system call sequences
from malware system call behavior logs. Then, based on the
occurrence of these semantic sequences, we construct a Boolean
vector representation of the malware sample corpus. Finally we
compute Jaccard indices pairwise over sample vectors to obtain a
sample similarity matrix.

Our graphical user interface links two visualizations within an
interactive display. Our first view is a map-like visualization of
similarity among the samples based on a reduced dimensional
projection of our similarity matrix. Our second view provides
insight into similarities and differences between selected malware
samples in terms of the system call sequences they share. We also
provide a set of interactive filters based on malicious behavioral
traits. The integration of these views into an interactive, linked
display allows users to comprehend the overall similarity structure
of a malware corpus, inspect how behavioral traits distribute over
the corpus, and to drill in to inspect local similarities and
differences between samples.
Categories and Subject Descriptors

D.4.6 [Security and Protection]: Invasive software (e.g.,
viruses, worms, Trojan horses)

General Terms
Security, Artificial Intelligence, Visualization

Keywords
Computer Security, Malware, Data Mining, Data Visualization

1. INTRODUCTION
In recent years researchers have applied a variety of automatic
malware similarity analysis techniques to help address the deluge
of new malware variants appearing on the Internet. While the
research in this area has produced effective methods, there is a
need to explore approaches that produce easily interpretable
visualizations of malware corpora. Here we present one such
approach, a system which visualizes shared system call sequence
relationships within large malware corpora.
We base our work on an algorithm we term semantic sequence
extraction. Semantic sequence extraction partitions a malware
system call log so that the extracted system call sequences express
meaningful functional blocks. By way of analogy, if system call
logs are seen as long run-on sentences, our algorithm finds natural
locations for punctuation marks. Once we have located these
punctuations marks, we split the log into sequences by treating the
marks as subsequence boundaries.
Our sequence partitioning algorithm is based on two intuitions:
first, that if we represent a system call log as a Markov chain in
which unique states are system calls plus the file paths, registry
keys, or network tuples they operate upon, we can find
meaningful partitions where improbable state transitions occur.
This is because, we hypothesize, such transitions will tend to
occur at the end of loops, functions and other oft-repeated control
flow structures. Second, we intuit that logical breaks in these logs
occur when a system call and its successor sharply diverge in
terms of the similarity of their file paths, registry paths, or
network tuples. We employ our partitioning approach to malware
corpora to extract variable length subsequences that represent
meaningful blocks of program behavior. Next we compare
samples in terms of the sets of subsequences present in their
behavior logs.
To visualize subsequence occurrence as well as sample
similarities, we link together a number of displays within a
prototype graphical user interface. The main panel of our
interface displays the similarity structure of the entire malware
corpus under analysis. Specifically, we employ a multi-
dimensional scaling technique to project our sample similarity
matrix onto a two-dimensional grid.
To support various malware analysis tasks, our interface supports
a number of interactions. Users can highlight one or many
samples on the grid to bring up an inspector panel on the top of
the screen which renders a detailed view of which semantic
sequences the selected malware executed. Panels on the left of
the display provide the user with a set of filters, so that they can
see how various behavioral traits distribute over the malware
corpus.
This paper introduces our system and relates it to existing work on
visualization of malware. The structure of the rest of this paper is

Work funded under the DARPA Cyber Genome program. Approved for
public release, distribution unlimited. The views expressed are those of
the author and do not reflect the official policy or position of the
Department of Defense or the U.S. Government.
(c) 2012 Association for Computing Machinery. ACM acknowledges
that this contribution was authored or co-authored by an employee,
contractor or affiliate of the United States government. As such, the
United States Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for
Government purposes only. VizSec '12, October 15 2012, Seattle, WA,
USA, Copyright 2012 ACM 978-1-4503-1413-8/12/10…$15.00.

33

as follows. Section II details the methods employed in each of
our system components, describing our malware sandbox,
semantic sequence extraction algorithm, sequence labeling
algorithm and our similarity metric. Section III discusses the
scalability of our system and the nature of the test data set we
used in developing and testing our system. Section IV describes
the methods by which we visualize our results, including a
discussion of our sample subsequence visualization, our similarity
map view, and our interactive filters. Section V describes a
number of use cases for our system in the context of malware
similarity exploration. For each use case, we give an example
based on real-world malware. Section VI discusses related work.
And Section VII discusses our plans for future work.

2. SYSTEM DESCRIPTION
Our system includes four components: a virtual machine sandbox
for extracting malware behavior logs, a semantic sequence
extraction and similarity calculation component, a labeling
component which categorizes semantic sequences in terms of their
system effect, and a visualization tool which presents analysis
results to the user.

2.1 Instrumentation Environment
To extract a record of a malware sample’s execution behavior we
have leveraged two existing tools: QEMU, which is an x86
emulator, and Procmon, which is an instrumentation tool for the
Windows operating system [2] [3]. Our procedure for extracting a
behavior log for a given malware sample through these two tools
is as follows.
A sample is loaded onto the QEMU-emulated sandbox’s virtual
hard drive. Procmon, responsible for collecting system call
information for all processes, is enabled on the virtualized guest
Windows XP operating system. The sample is then executed on
the sandbox. The sample completes its run or times out after a
global, predefined length of time, at which point the Procmon
behavior log is extracted from the sandbox and the virtual
operating system is powered down. For the tests discussed in this
paper, we let samples run for a maximum of 10 minutes.
After running samples and collecting logs from Procmon, we
prune the Procmon logs as follows. First, we identify the system

process ID of the malware sample under analysis. Then we iterate
over its system call log identifying places where the process or
any of its descendants created new threads and child processes.
Finally, we filter the behavior log so that only the malware
process and its descendant threads and processes are represented
in the log.
The system call data we inspect within the Procmon logs contains
a number of fields, four of which we use in our analysis. The first
is the thread ID, which we use to order the events into sequences
based on thread. The second field is a timestamp, indicating when
each system call was made. The third is an operation name,
denoting the system call the subject process took in relation to the
registry, the filesystem, or the network.
The fourth field contains information about the system or network
object the operation acted upon. For registry operations, this field
contains the fully qualified registry key path, for file operations,
the fully qualified file path, and for network operations, the
relevant source IP, source port, destination IP and destination port.
Procmon records only TCP and UDP traffic, and not, for example,
ICMP traffic. Thus our analysis currently only considers TCP and
UDP network interaction. It should be noted here that for the
purposes of this paper, by system call we mean the Procmon
“operation” field; Procmon populates this field with a slightly
abstracted version of the actual system calls provided by the
Windows operating system.

2.2 Semantic Sequence Extraction
Once we have collected behavior logs from a corpus of malware
samples, we employ our novel technique for partitioning each
sample system call log into sequences of system calls that
represent functional blocks (such as walking the registry key tree
to find a key entry, or looping over ReadFile and WriteFile to
copy a file from one location to another).
As mentioned in the introduction to this paper, our algorithm is
based on the combination of two separate intuitions. First, we
hypothesize that if we derive a Markov chain from the malware
sample’s system call log we can meaningfully partition the log at
the points at which improbable state transitions between system
calls occur. This, we conjecture, is because these improbable

An inspector panel houses our per-
sample sequence view

Filter panels on the left allow for
filtering based on high-level
behaviors present in the corpus

A projection of our similarity
matrix onto a 2-dimensional grid.
Color provides additional
similarity information.

Figure 1. An overview screenshot of our prototype Graphical User Interface.

34

state transitions represent the termination of program loops and
the entry into and return out of functions which are called from
multiple places within malicious source code. Our second
intuition is that meaningful partitions may be located when a
system call and its successor system call refer to highly divergent
files, network objects, or registry keys.
Our sequence extraction algorithm involves the following steps.
In an initial preprocessing step we sort the malware behavior log
by thread ID, and then by timestamp, so as to “flatten” the thread
structure of the log. Next we derive a Markov chain from the
resulting set of behavioral sequences. The nodes in this chain are
defined as unique system calls plus the system objects they act
upon, so that, for example, a call to “WriteFile” which acts upon
“C:\temp.txt” would comprise a node. Transition probabilities are
calculated by adding up the number of times there we observe a
transition between a given node and its successor node. To get
the transition probability for an edge, we divide the transition
count across that edge by the total transition count for that edge
and all of its siblings.
Having constructed a Markov chain based on the malware’s
behaviors, we make another pass over the log, computing an
additional parameter similarity score for each system call bigram.
At a high level, this score is computed by comparing the

parameter strings of each system call and the system call that
immediately follows it; the more different they are, the lower this
score. Specifically, the similarity between two sequential calls is
computed as follows. If the two calls both operate on the registry,
we tokenize their registry key parameters using the registry path
separator “\”. Then we lowercase normalize the resulting registry
path tokens, and compute the Jaccard index similarity between the
two sets of tokens; we regard this as the similarity between the
parameter strings.
If the two calls operate on files, we perform the same tokenization
operation, but for the file paths. If the calls invoke network
operations, we treat them as having a similarity of “1” if they refer
to the same foreign IP address and port, and as having a similarity
of “0” if they refer to different foreign IP addresses and ports.
Finally, if the two calls are of different classes (for example, a
registry call and a file call), we set their similarities to zero. We
do this because, at least for now, we do not have a more
sophisticated way of comparing these two different parameter
types.
Having computed both a transition probability and a parameter
similarity for each system call transition in the sample system call
log, we then iterate over the log one final time to insert partitions
and extract semantic subsequences. To decide whether or not to

Example Semantic Subsequence Extraction from Sample of Variant Type “menti-gtmr”
…
ReadFile C:/WINDOWS/WinSxS/x86_Microsoft.Windows.GdiPlus_6595b64144ccf1df_1.0.2600.5512_x-ww_dfb54e0c/GdiPlus.dll
ReadFile C:/WINDOWS/WinSxS/x86_Microsoft.Windows.GdiPlus_6595b64144ccf1df_1.0.2600.5512_x-ww_dfb54e0c/GdiPlus.dll
ReadFile C:/WINDOWS/WinSxS/x86_Microsoft.Windows.GdiPlus_6595b64144ccf1df_1.0.2600.5512_x-ww_dfb54e0c/GdiPlus.dll
ReadFile C:/WINDOWS/WinSxS/x86_Microsoft.Windows.GdiPlus_6595b64144ccf1df_1.0.2600.5512_x-ww_dfb54e0c/GdiPlus.dll
ReadFile C:/WINDOWS/WinSxS/x86_Microsoft.Windows.GdiPlus_6595b64144ccf1df_1.0.2600.5512_x-ww_dfb54e0c/GdiPlus.dll
ReadFile C:/WINDOWS/WinSxS/x86_Microsoft.Windows.GdiPlus_6595b64144ccf1df_1.0.2600.5512_x-ww_dfb54e0c/GdiPlus.dll
RegQueryKey HKLM/SOFTWARE/Microsoft/Windows-NT/CurrentVersion/Fonts
RegCreateKey HKU/S-1-5-21-436374069-813497703-1177238915-1004/Software/Microsoft/GDIPlus
RegQueryValue HKU/S-1-5-21-436374069-813497703-1177238915-1004/Software/Microsoft/GDIPlus/FontCachePath
QueryOpen C:/RUNME/ShFolder.DLL
QueryOpen C:/WINDOWS/system32/shfolder.dll
CreateFile C:/WINDOWS/system32/shfolder.dll
CreateFileMap C:/WINDOWS/system32/shfolder.dll
CreateFileMap C:/WINDOWS/system32/shfolder.dll
Load Image C:/WINDOWS/system32/shfolder.dll
…

Figure 2. Example output from our sample sequence extraction algorithm, horizontal lines represent partitions.

Figure 3. A histogram of semantic sequence lengths extracted from a sampling of malware executables.

35

insert a partition at any particular pair of system calls, we compute
a weighted average between the system call transition’s parameter
similarity score and its transition probability, and then check to
see if this score is below a threshold, which for the purpose of this
paper we have set to 0.3.
If the score is below the threshold, we interpret this as meaning
that there is a functional break in program behavior at this
location in the system call log, and we insert a partition. When
we have finished inserting partitions, we extract the system call
sections between partitions as our semantic subsequences. For the
experiments discussed in this paper, our parameter similarity
score and transition probability make equal contributions to the
weighted-average final score that we use to decide whether or not
to partition. In the future, we plan to investigate optimal
combinations of these weights as well as our threshold parameter.
Figure 3 displays a histogram of the lengths of the semantic
sequences we extracted from a corpus of 1000 malware samples
drawn a dataset we describe below in Section III. The charts
shows that these sequences tend to be short, and follow an inverse
power-law length distribution.

2.3 Sequence Labeling
To support visualization, we assign human readable, textual labels
to the set of sequences we extract from the malware corpus under
analysis. These labels are assigned based on simple regular
expressions which we match against the system call arguments.
For example, if a system call in a sequence modifies a registry key
with the substrings “registry” and “Internet,” we create a label for
that sequence that describes it as modifying Internet settings. One
sequence can have one or more labels, which we use to add
descriptive information to our graphical user interface. In future
work we plan to describe in depth our efforts to categorize
semantic subsequences of system calls.

2.4 Similarity Matrix Computation
Having extracted variable length sequences from a malware
corpus, we proceed to compute a similarity matrix. Specifically,
we construct Boolean sample vectors based on the occurrence of
these variable-length sequences in each sample. To eliminate
noise, we throw out any sequences that do not occur in at least
two samples. Finally, we compute a Jaccard index pairwise over
the sample vectors. As we discuss below, our extracted
subsequences and our sample similarities are subsequently used in
our interactive visualizations.

3. DATASET AND PERFORMANCE
Throughout our development effort we have been testing our
system against malware data. Specifically, we test our system on
malware samples collected from the MD:Pro malware data feed,
and validate our algorithms by checking whether they correspond
to Kaspersky anti-virus engine classifications of the samples.
Below we describe our dataset, ground truth, run times for our
algorithms, and the accuracy of our system when it is measured
against ground truth.

3.1 Data Collection
All of the malware samples we depict here were sourced from the
MD:Pro malware feed. MD:Pro is a paid-subscriber malware feed
service run by security consultancy Frame4. We sourced 100,415
unique malware samples from MD:Pro between February 2011
and June 2012, and, so far, have run 28,460 of these samples in
our malware analysis sandbox. Additionally, we have input each
sample into the Kaspersky anti-virus engine to generate ground-
truth labels. Kaspersky was able to classify 30,104 of these
samples with robust hierarchical classifications (such as
“trojan.win32.jorik.skor.akr”), assigned a class of “unknown” to
41,830 samples and assigned low-fidelity labels (such as “generic
win32 trojan”) to the remaining 28,481 samples.
We hand-picked a dataset from our MD:Pro malware feed to
generate the tests and examples in this paper. Because of the
inconsistency of the Kaspersky labels (some Kaspersky label
groupings, such as the “jorik” family, represent a very diffuse
range of malware, whereas others, such as “webprefix” represent
a very specific set of variants) we heuristically selected four
Kaspersky defined malware classes that we believe share a similar
range of behavioral traits. Specifically, we selected the “xtoober”,
“jorik” and “vbkrypt” families, alongside a random selection of
malware samples Kaspersky labeled as “unknown” samples.

3.2 Validation
To verify that our sequence features and Jaccard similarity
function are effective at capturing malware similarities, we have
validated that they reflect malware-analyst defined ground truth.
Namely, we filter our dataset down to include only samples that
have complete Kaspersky classifications assigned to them by the
Kaspersky anti-virus engine, compute a sample similarity matrix
for these samples, cluster our sample similarity matrix, and then
compute precision and recall statistics on our clusters based on
how well they fit Kaspersky’s classifications.
We compute precision and recall for a given clustering as the
weighted average precision and recall for each cluster that we

Figure 4. Effect of corpus size on run times on a single Intel
Xeon e5645 core running at 2.4GHz with 32 GB of RAM.

Figure 5. Change in clustering performance as similarity
threshold grows. The red line represents precision and the

blue line represents recall.

36

First the user mouses over a system call sequence in
the inspector, and identical instances of the sequence
in other samples highlight.

call sequence in
s of the sequence e seque ce

Next a sequence detail text box is rendered describing
what the sequence does and any available analyst
notes about it.

Samples that executed the sequence highlight,
revealing a cluster of samples that executed the
sequence, along with some outliers.

Figure 6. An example of semantic linking within and between our sequence and similarity map views.

generate, where the weight of each cluster is the number of
samples it contains. For more information on precision and recall
as measures of clustering accuracy see [4].
We use a graph-theoretic method to cluster the malware sample
vectors. This method proceeds as follows. First we define some
similarity threshold t and then construct a graph from our
similarity matrix such that edges reflect similarities that pass the
threshold. Then we identify, in greedy fashion, a maximal sub-
clique in the graph, remove it from the graph, and repeat, until the
graph is entirely decomposed into maximal sub-clique clusters.
This algorithm is motivated by the fact that our maximal clique
clusters all share edges representing similarities above our
threshold t. Thus each node is guaranteed to share at least t
percentage of its sequence set with the sequence set of every other
node in its cluster.
Figure 5 shows how our precision and recall scores change as we
increase the similarity threshold on our clustering algorithm. At a
similarity threshold of 0.8 we can perfectly match the pairwise
groupings of samples implied by Kaspersky’s malware
classifications, but for many clusters we fail to retrieve all of the
relevant class. On the other hand, at a threshold of 0.55, we can
retrieve most of the relevant samples in each cluster, and we can
classify most samples correctly. These results demonstrate that
our semantic subsequence features are effective at differentiating
between malware of multiple classes with high accuracy.

3.3 Algorithm Run Times
Our sequence extraction algorithm scales linearly as malware
corpus size grows, since it is a sample that runs on a per-sample
basis. We found that our algorithm took an average of 0.34
seconds to extract sequences for each sample based in a test
corpus of 917 malware samples system call traces. The samples
in our test corpus had an average number of 311.67 system calls.
Figure 4 illustrates how our similarity matrix and Principal
Components Analysis steps scale as corpus size grows. While our
algorithms scale exponentially, we can accommodate malware
corpora of thousands or tens of thousands of samples on off-the-
shelf hardware within the span of a few hours. In the future, we
plan to explore ways of scaling our system up to handle tens or
hundreds of thousands of samples.

4. VISUALIZATION
Our interface contains three panels: a sequence inspector, which
supports inspection of the actual subsequences that occurred
during a malware sample’s execution, a code sharing map, which
provides a global view of behavioral similarity over a corpus of
malware samples, and a set of filters, which allow a user to see
how trait relationships distribute over the malware corpus. These
three displays are linked, so that, for example, brushing over a
sequence in the sequence inspector highlights all of the other
occurrences of that sequence as well as all of the samples in the
code sharing map that exhibit that sequence (see Figure 6).

4.1 Sample Similarity Map
Our similarity overview visualization is rendered as a two
dimensional grid of samples. We compute the layout and coloring
of our sample similarity grid by first performing Principal
Components Analysis on our sample similarity matrix. We
project the first three principal components onto a reduced

Figure 7. Malware samples arranged in a similarity grid
layout with color representing additional spatial dimensions.

A number of clusters can be discerned as colored shapes.

37

dimensional (three-dimensional) space. Then we sort the malware
samples by the value each respective sample has by the first
principal component, and use that to order them on a space-filling
Hilbert curve. Having computed the position of each node, we
then color each node using the first three principal components to
determine the red, green and blue color values of the color. Thus
similar samples appear close together and take on similar colors.
Currently, the nodes can be either circles or squares; circles
represent “known” samples (samples that we have ground-truth
for) whereas squares represent unknown samples (samples that the
Kaspersky anti-virus engine could not label).
We chose to use a 2d-grid layout and to use the color channels to
encode additional similarity information to deal with two
problems that result from more traditional, scatterplot multi-
dimensional scaling techniques. First, grid layouts avoid the
problem of overlapping nodes. We felt that the visualization
would be more effective if users did not have to visually parse
overlapping nodes. Second, grid layouts maximize the usage of
available pixels on the screen. This additional screen real-estate
per node will allow us, in future work, to explore using node
shape to encode additional node similarity data.

4.2 Sequence Visualization
Our sequence visualization reveals similarities and differences
between malware samples. A depicted in figures 8-11, we render
a sample corpus’ subsequences as follows. We assign each
unique sequence a unique color. Then to render an individual
sample, we order its sequences by a global, unique identifier (in
this case, the database ID for the sequence), and render them as
sequential, colored blocks, with their widths scaled as the natural
logarithm of their length. This logarithmic scaling of each
sequence allows us to use screen real estate more efficiently.
Figure 6 depicts our approach to interactivity with these visual
representations: brushing a sequence in one malware sample
highlights identical sequences occurring in the same and other
samples, and also causes a detail panel to render, which offers
descriptive information about that sequence.

We chose to render our sequence visualization as a set of each
sample’s sequences ordered by unique identifier so as to support
visual comparison of the sequences that appear in the execution
trace of each sample. Figure 8 illustrates the way in which such
an ordering supports such comparisons. Unfortunately, rendering
the data in this way does not reveal cases in which sequences are
repeated, and does not reveal cases in which they appear in
different orders depending on the sample. In future work we hope
to explore ways to address this issue.

4.3 Filter Panels
On the left of the display we render the names of behavioral traits
we have extracted from the malware corpus. Currently, we
support trait types such as registry key modifications, network
communications, and file drops. By brushing an action-type the
malware samples that exhibit that action highlight. This linking
between filters and the code sharing map supports user insights
into the nature of the various regions of the map, as well as
insights into the similarities and differences between regions.
Figure 12 illustrates this feature.

5. USE CASES
5.1 Visually Discovering and Investigating
Cluster Structure in Malware
Our similarity map visualization reveals cluster structure, or lack
thereof, within malware corpora. In Figure 7 a number of
malware groupings can clearly be discerned: separate red, yellow,
green and blue groupings, for example. On the other hand, the
lower-right quadrant of the map appears muddy and diffuse,
indicating the lack of clear cluster structure among those malware
samples. Because this map is a projection of a much higher-
dimensional space onto a few dimensions, there is inevitably some
information loss. Allowing the user to highlight samples and
inspect the similarities in their sequence sets, which we support, is

A cluster of malware samples.
Surprisingly, menti and jorik.fraud
families appear similar.

Surprisingly, these jorik.fraud
samples appear quite different
from the others.

Rainbow colored but equal length
bands depict variation in sample
behavior.

Figure 8. The user brushes an IP address and port on the left, and the samples that connect out to that IP address and
port highlight on the right.

38

crucial to allowing users to fully take advantage of the map.

5.2 Exploring Behavioral Trait Relationships
in Relation to a Corpus
The filter panels on the left of the interface allow the user to
discover how various behavioral traits distribute over the malware
corpus. In Figure 12 the user brushes an IP address and TCP port
and the samples that connect out to that address and port
highlight; it is clear that the cluster of malware in the lower left of
the similarity map is characterized by the fact that it connects out
to that address and port. The ability to engage filters and discover
such relationships between cluster and feature is helpful in
allowing analysts to gain insight into the meaning of the similarity
map.

5.3 Relating Unknown Malware Samples to
Known Malware Samples
We have found our system to be useful in relating novel samples
to known malware samples. Figure 9 demonstrates observation of
a group of malware samples that are close together on the sample
similarity map. Some of these samples (indicated by their labels,
on the left) are unknown, and others are known. What our system

reveals is that the unknown samples (which the Kaspersky anti-
virus engine was unable to classify) are behaviorally quite similar
to the adjacent xtoober samples. To get more information about
the samples in the sequence inspector, the user can mouse over the
sequences that appear in the sequence inspector at the top of the
screen (demonstrated in Figure 6).

5.4 Exploring Sequence-Sharing
Relationships Between Malware Samples

Our system provides users with visual insight into which samples
and clusters of samples have executed a focal system call
sequence. Figure 6 demonstrates the actions our visualization
performs when the user selects a group of samples from the
sample similarity map, and then brushes over one of the
sequences in the sequence inspector. All of the occurrences of
that sequence in the sequence inspector highlight, demonstrating
that the sequence is shared by all of the samples currently under
inspection. Additionally, all of the samples in the corpus highlight
in the sample similarity map. In this case, the focal sequence
seems to occur mainly in a dense cluster of otherwise highly
similar samples.

Figure 12. The user brushes an IP address and port on the left, and the samples that connect out to that IP address and port
highlight on the right.

Figure 11. Comparing one sample with many. The user brushes jorik.fraud.ws-4 and it is highlighted in red. As a result, all
of the sequences that other samples have in common with jorik.fraud.ws-4 are highlighted.

Figure 9. Visually clustering unknown malware samples with known malware samples. The unknown samples appear
almost identical to the labeled samples in terms of their behavioral sequences.

Figure 10. Comparing unknown and known samples. There is clearly overlap between the two samples.

Figure 9 Visually clustering unknown malware samples with known malware samples The unknown samples appear

ure 10 Comparing unknown and known samples There is clearly overlap between the two sample

Figure 11 Comparing one sample with many The user brushes jorik fraud ws-4 and it is highlighted in red As a result all

Fi 12 Th b h IP dd d h l f d h l h h IP dd d

39

5.5 Supporting Analysis Inheritance and
Reuse
When the user brushes over a sequence, a tooltip comes up with a
label describing at least some of what the system calls in that
sequence do. There is also a field for analyst notes. Currently
this is unused, but in future work this could support analyst
annotation of sequences such that when new samples appear that
contain these sequences analysts of these new samples could see
that these sequences had already been “analyzed,” and could
benefit from this previous analysis work.

6. RELATED WORK
To the best of our knowledge, our work is the first to explore
interactive visualization of large malware corpora. In the machine
learning area, Storlie, et al. have explored using Markovian
stochastic adjacency matrices derived from malware dynamic
execution traces [8]. Our work, on the other hand, focuses on
partitioning system call sequences with Markovian methods.
In related visualization work, Conti et al. introduced visualization
techniques to support analyst comprehension of the structure of
binary files [5]. Conti’s work is premised on exposing a lower
level of abstraction than ours, which focuses on system call
sequences. Trinius et al. have explored applying treemaps and
thread graphs to comparative analysis of malware [6]. Whereas
they focus on the relative quantities of system call categories
executed by malware under dynamic analysis, we focus on shared
system calls sequence relationships. And whereas they focus on
supporting exploration of the similarities between small groups of
malware samples, we focus on an interface that provides an
overview of similarity between large numbers of malware samples
that then allows a user to drill into a selected group of samples
and compare them.
Quist et al. have created a system for interactively visualizing
malware execution traces and execution trace metadata at the
CPU instruction level [7]. Whereas this work focuses on
supporting reverse engineering work on individual samples at the
assembly language level, our work supports reverse engineering
work across many samples at the system call level.

7. FUTURE WORK
To extend the work we have done we plan to evaluate a number of
our methods and improve them where possible. Currently we are
using a Hilbert curve to lay out our sample similarity grid, but this
may not be the optimal grid layout for our data, and we plan to

explore the existing literature on multi-dimensional scaling and
grid layouts. We would also like to explore incorporating
multiple similarity metrics into our system, such that a user could,
for example, toggle between sequence similarity, call graph edit
distance similarity, and printable strings similarity. Finally, we
plan to take our system from prototype to a state that is more
robust and capable of handling an extended series of use cases.

8. ACKNOWLEDGMENTS
We would like to acknowledge the Defense Advanced Research
Projects Agency (DARPA) for providing the funding that made
this work possible.

9. REFERENCES

[1] A.-T. Institute, "AV-Test Statistics Report," 2012. [Online].

Available: http://www.av-test.org/en/statistics/malware/.

[2] "QEMU," 1 June 2012. [Online]. Available:
http://wiki.qemu.org/Main_Page. [Accessed 1 June 2012].

[3] M. Russinovich and B. Cogswell, "Microsoft TechNet,"
Microsoft, 1 6 2012. [Online]. Available:
http://technet.microsoft.com/en-
us/sysinternals/bb896645.aspx. [Accessed 1 6 2012].

[4] P. R. H. S. Christopher D. Manning, 2008. Introduction to
Information Retrieval, Cambridge University Press, 2008.

[5] G. Conti, E. Dean, M. Sinda, B. Sangster and J. Goodall,
2008. Visual Reverse Engineering of Binary and Data Files.
Visualization for Computer Security, Springer Berlin /
Heidelberg, 2008, pp. 1-17.

[6] P. H. Trinius and J. a. F. T. Gobel, 2009. Visual analysis of
malware behavior using treemaps and thread graphs. In
Proceedings of the International Workshop on Visualization
for Cyber Security (VizSec 2009).

[7] D. Quist, 2009. Visualizing compiled executables for
malware analysis. In Proceedings of the International
Workshop on Visualization for Cyber Security (VizSec 2009).

C. Storlie, S. V. Weil, D. Quist, B. Anderson, 2012.
Stochastic Identification and Clustering of Malware with
Dynamic Traces. Malware Technical Exchange Meeting
2012.

C.
Sto

[8]

40

