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ABSTRACT 

We present a novel system for automatically discovering and 
interactively visualizing shared system call sequence relationships 
within large malware datasets.  Our system's pipeline begins with 
the application of a novel heuristic algorithm for extracting 
variable length, semantically meaningful system call sequences 
from malware system call behavior logs.  Then, based on the 
occurrence of these semantic sequences, we construct a Boolean 
vector representation of the malware sample corpus.  Finally we 
compute Jaccard indices pairwise over sample vectors to obtain a 
sample similarity matrix. 

Our graphical user interface links two visualizations within an 
interactive display.  Our first view is a map-like visualization of 
similarity among the samples based on a reduced dimensional 
projection of our similarity matrix.  Our second view provides 
insight into similarities and differences between selected malware 
samples in terms of the system call sequences they share.  We also 
provide a set of interactive filters based on malicious behavioral 
traits.  The integration of these views into an interactive, linked 
display allows users to comprehend the overall similarity structure 
of a malware corpus, inspect how behavioral traits distribute over 
the corpus, and to drill in to inspect local similarities and 
differences between samples.  
Categories and Subject Descriptors 

D.4.6 [Security and Protection]:   Invasive software (e.g., 
viruses, worms, Trojan horses) 

 

General Terms 
Security, Artificial Intelligence, Visualization 
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1. INTRODUCTION 
In recent years researchers have applied a variety of automatic 
malware similarity analysis techniques to help address the deluge 
of new malware variants appearing on the Internet.  While the 
research in this area has produced effective methods, there is a 
need to explore approaches that produce easily interpretable 
visualizations of malware corpora.  Here we present one such 
approach, a system which visualizes shared system call sequence 
relationships within large malware corpora. 
We base our work on an algorithm we term semantic sequence 
extraction.  Semantic sequence extraction partitions a malware 
system call log so that the extracted system call sequences express 
meaningful functional blocks.  By way of analogy, if system call 
logs are seen as long run-on sentences, our algorithm finds natural 
locations for punctuation marks.  Once we have located these 
punctuations marks, we split the log into sequences by treating the 
marks as subsequence boundaries. 
Our sequence partitioning algorithm is based on two intuitions: 
first, that if we represent a system call log as a Markov chain in 
which unique states are system calls plus the file paths, registry 
keys, or network tuples they operate upon, we can find 
meaningful partitions where improbable state transitions occur.  
This is because, we hypothesize, such transitions will tend to 
occur at the end of loops, functions and other oft-repeated control 
flow structures.  Second, we intuit that logical breaks in these logs 
occur when a system call and its successor sharply diverge in 
terms of the similarity of their file paths, registry paths, or 
network tuples.  We employ our partitioning approach to malware 
corpora to extract variable length subsequences that represent 
meaningful blocks of program behavior.  Next we compare 
samples in terms of the sets of subsequences present in their 
behavior logs.  
To visualize subsequence occurrence as well as sample 
similarities, we link together a number of displays within a 
prototype graphical user interface.  The main panel of our 
interface displays the similarity structure of the entire malware 
corpus under analysis.  Specifically, we employ a multi-
dimensional scaling technique to project our sample similarity 
matrix onto a two-dimensional grid. 
To support various malware analysis tasks, our interface supports 
a number of interactions.  Users can highlight one or many 
samples on the grid to bring up an inspector panel on the top of 
the screen which renders a detailed view of which semantic 
sequences the selected malware executed.  Panels on the left of 
the display provide the user with a set of filters, so that they can 
see how various behavioral traits distribute over the malware 
corpus. 
This paper introduces our system and relates it to existing work on 
visualization of malware.  The structure of the rest of this paper is 
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as follows.  Section II details the methods employed in each of 
our system components, describing our malware sandbox, 
semantic sequence extraction algorithm, sequence labeling 
algorithm and our similarity metric.  Section III discusses the 
scalability of our system and the nature of the test data set we 
used in developing and testing our system. Section IV describes 
the methods by which we visualize our results, including a 
discussion of our sample subsequence visualization, our similarity 
map view, and our interactive filters.  Section V describes a 
number of use cases for our system in the context of malware 
similarity exploration.  For each use case, we give an example 
based on real-world malware.  Section VI discusses related work.  
And Section VII discusses our plans for future work. 

2. SYSTEM DESCRIPTION 
Our system includes four components: a virtual machine sandbox 
for extracting malware behavior logs, a semantic sequence 
extraction and similarity calculation component, a labeling 
component which categorizes semantic sequences in terms of their 
system effect, and a visualization tool which presents analysis 
results to the user. 

2.1 Instrumentation Environment 
To extract a record of a malware sample’s execution behavior we 
have leveraged two existing tools: QEMU, which is an x86 
emulator, and Procmon, which is an instrumentation tool for the 
Windows operating system [2] [3].  Our procedure for extracting a 
behavior log for a given malware sample through these two tools 
is as follows. 
A sample is loaded onto the QEMU-emulated sandbox’s virtual 
hard drive.  Procmon, responsible for collecting system call 
information for all processes, is enabled on the virtualized guest 
Windows XP operating system.  The sample is then executed on 
the sandbox.  The sample completes its run or times out after a 
global, predefined length of time, at which point the Procmon 
behavior log is extracted from the sandbox and the virtual 
operating system is powered down.  For the tests discussed in this 
paper, we let samples run for a maximum of 10 minutes. 
After running samples and collecting logs from Procmon, we 
prune the Procmon logs as follows.  First, we identify the system 

process ID of the malware sample under analysis.  Then we iterate 
over its system call log identifying places where the process or 
any of its descendants created new threads and child processes.  
Finally, we filter the behavior log so that only the malware 
process and its descendant threads and processes are represented 
in the log. 
The system call data we inspect within the Procmon logs contains 
a number of fields, four of which we use in our analysis.  The first 
is the thread ID, which we use to order the events into sequences 
based on thread.  The second field is a timestamp, indicating when 
each system call was made.  The third is an operation name, 
denoting the system call the subject process took in relation to the 
registry, the filesystem, or the network. 
The fourth field contains information about the system or network 
object the operation acted upon.  For registry operations, this field 
contains the fully qualified registry key path, for file operations, 
the fully qualified file path, and for network operations, the 
relevant source IP, source port, destination IP and destination port.  
Procmon records only TCP and UDP traffic, and not, for example, 
ICMP traffic.  Thus our analysis currently only considers TCP and 
UDP network interaction.  It should be noted here that for the 
purposes of this paper, by system call we mean the Procmon 
“operation” field; Procmon populates this field with a slightly 
abstracted version of the actual system calls provided by the 
Windows operating system. 
 

2.2 Semantic Sequence Extraction 
Once we have collected behavior logs from a corpus of malware 
samples, we employ our novel technique for partitioning each 
sample system call log into sequences of system calls that 
represent  functional blocks (such as walking the registry key tree 
to find a key entry, or looping over ReadFile and WriteFile to 
copy a file from one location to another). 
As mentioned in the introduction to this paper, our algorithm is 
based on the combination of two separate intuitions.  First, we 
hypothesize that if we derive a Markov chain from the malware 
sample’s system call log we can meaningfully partition the log at 
the points at which improbable state transitions between system 
calls occur.  This, we conjecture, is because these improbable 

 

An inspector panel houses our per-
sample sequence view 

Filter panels on the left allow for 
filtering based on high-level 
behaviors present in the corpus 

A projection of our similarity 
matrix onto a 2-dimensional grid.  
Color provides additional 
similarity information. 

Figure 1.  An overview screenshot of our prototype Graphical User Interface. 
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state transitions represent the termination of program loops and 
the entry into and return out of functions which are called from 
multiple places within malicious source code.  Our second 
intuition is that meaningful partitions may be located when a 
system call and its successor system call refer to highly divergent 
files, network objects, or registry keys. 
Our sequence extraction algorithm involves the following steps.  
In an initial preprocessing step we sort the malware behavior log 
by thread ID, and then by timestamp, so as to “flatten” the thread 
structure of the log.  Next we derive a Markov chain from the 
resulting set of behavioral sequences.  The nodes in this chain are 
defined as unique system calls plus the system objects they act 
upon, so that, for example, a call to “WriteFile” which acts upon 
“C:\temp.txt” would comprise a node.  Transition probabilities are 
calculated by adding up the number of times there we observe a 
transition between a given node and its successor node.  To get 
the transition probability for an edge, we divide the transition 
count across that edge by the total transition count for that edge 
and all of its siblings. 
Having constructed a Markov chain based on the malware’s 
behaviors, we make another pass over the log, computing an 
additional parameter similarity score for each system call bigram.  
At a high level, this score is computed by comparing the 

parameter strings of each system call and the system call that 
immediately follows it; the more different they are, the lower this 
score.  Specifically, the similarity between two sequential calls is 
computed as follows.  If the two calls both operate on the registry, 
we tokenize their registry key parameters using the registry path 
separator “\”.  Then we lowercase normalize the resulting registry 
path tokens, and compute the Jaccard index similarity between the 
two sets of tokens; we regard this as the similarity between the 
parameter strings.  
If the two calls operate on files, we perform the same tokenization 
operation, but for the file paths.  If the calls invoke network 
operations, we treat them as having a similarity of “1” if they refer 
to the same foreign IP address and port, and as having a similarity 
of “0” if they refer to different foreign IP addresses and ports.  
Finally, if the two calls are of different classes (for example, a 
registry call and a file call), we set their similarities to zero.  We 
do this because, at least for now, we do not have a more 
sophisticated way of comparing these two different parameter 
types. 
Having computed both a transition probability and a parameter 
similarity for each system call transition in the sample system call 
log, we then iterate over the log one final time to insert partitions 
and extract semantic subsequences.  To decide whether or not to 

Example Semantic Subsequence Extraction from Sample of Variant Type “menti-gtmr” 
… 
ReadFile       C:/WINDOWS/WinSxS/x86_Microsoft.Windows.GdiPlus_6595b64144ccf1df_1.0.2600.5512_x-ww_dfb54e0c/GdiPlus.dll          
ReadFile       C:/WINDOWS/WinSxS/x86_Microsoft.Windows.GdiPlus_6595b64144ccf1df_1.0.2600.5512_x-ww_dfb54e0c/GdiPlus.dll          
ReadFile       C:/WINDOWS/WinSxS/x86_Microsoft.Windows.GdiPlus_6595b64144ccf1df_1.0.2600.5512_x-ww_dfb54e0c/GdiPlus.dll          
ReadFile       C:/WINDOWS/WinSxS/x86_Microsoft.Windows.GdiPlus_6595b64144ccf1df_1.0.2600.5512_x-ww_dfb54e0c/GdiPlus.dll          
ReadFile       C:/WINDOWS/WinSxS/x86_Microsoft.Windows.GdiPlus_6595b64144ccf1df_1.0.2600.5512_x-ww_dfb54e0c/GdiPlus.dll          
ReadFile       C:/WINDOWS/WinSxS/x86_Microsoft.Windows.GdiPlus_6595b64144ccf1df_1.0.2600.5512_x-ww_dfb54e0c/GdiPlus.dll          
RegQueryKey    HKLM/SOFTWARE/Microsoft/Windows-NT/CurrentVersion/Fonts                                                           
RegCreateKey   HKU/S-1-5-21-436374069-813497703-1177238915-1004/Software/Microsoft/GDIPlus                                       
RegQueryValue  HKU/S-1-5-21-436374069-813497703-1177238915-1004/Software/Microsoft/GDIPlus/FontCachePath                         
QueryOpen      C:/RUNME/ShFolder.DLL                                                                                             
QueryOpen      C:/WINDOWS/system32/shfolder.dll                                                                                  
CreateFile     C:/WINDOWS/system32/shfolder.dll                                                                                  
CreateFileMap  C:/WINDOWS/system32/shfolder.dll                                                                                  
CreateFileMap  C:/WINDOWS/system32/shfolder.dll                                                                                  
Load Image     C:/WINDOWS/system32/shfolder.dll 
…

Figure 2.  Example output from our sample sequence extraction algorithm, horizontal lines represent partitions. 

Figure 3.  A histogram of semantic sequence lengths extracted from a sampling of malware executables. 
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insert a partition at any particular pair of system calls, we compute 
a weighted average between the system call transition’s parameter 
similarity score and its transition probability, and then check to 
see if this score is below a threshold, which for the purpose of this 
paper we have set to 0.3. 
If the score is below the threshold, we interpret this as meaning 
that there is a functional break in program behavior at this 
location in the system call log, and we insert a partition.  When 
we have finished inserting partitions, we extract the system call 
sections between partitions as our semantic subsequences. For the 
experiments discussed in this paper, our parameter similarity 
score and transition probability make equal contributions to the 
weighted-average final score that we use to decide whether or not 
to partition.  In the future, we plan to investigate optimal 
combinations of these weights as well as our threshold parameter. 
Figure 3 displays a histogram of the lengths of the semantic 
sequences we extracted from a corpus of 1000 malware samples 
drawn a dataset we describe below in Section III.  The charts 
shows that these sequences tend to be short, and follow an inverse 
power-law length distribution. 

2.3 Sequence Labeling 
To support visualization, we assign human readable, textual labels 
to the set of sequences we extract from the malware corpus under 
analysis.  These labels are assigned based on simple regular 
expressions which we match against the system call arguments.  
For example, if a system call in a sequence modifies a registry key 
with the substrings “registry” and “Internet,” we create a label for 
that sequence that describes it as modifying Internet settings.  One 
sequence can have one or more labels, which we use to add 
descriptive information to our graphical user interface.  In future 
work we plan to describe in depth our efforts to categorize 
semantic subsequences of system calls. 

2.4 Similarity Matrix Computation 
Having extracted variable length sequences from a malware 
corpus, we proceed to compute a similarity matrix.  Specifically, 
we construct Boolean sample vectors based on the occurrence of 
these variable-length sequences in each sample.  To eliminate 
noise, we throw out any sequences that do not occur in at least 
two samples. Finally, we compute a Jaccard index pairwise over 
the sample vectors.  As we discuss below, our extracted 
subsequences and our sample similarities are subsequently used in 
our interactive visualizations. 

3. DATASET AND PERFORMANCE 
Throughout our development effort we have been testing our 
system against malware data.  Specifically, we test our system on 
malware samples collected from the MD:Pro malware data feed, 
and validate our algorithms by checking whether they correspond 
to Kaspersky anti-virus engine classifications of the samples.  
Below we describe our dataset, ground truth, run times for our 
algorithms, and the accuracy of our system when it is measured 
against ground truth.  

3.1 Data Collection 
All of the malware samples we depict here were sourced from the 
MD:Pro malware feed.  MD:Pro is a paid-subscriber malware feed 
service run by security consultancy Frame4.  We sourced 100,415 
unique malware samples from MD:Pro between February 2011 
and June 2012, and, so far, have run 28,460 of these samples in 
our malware analysis sandbox.  Additionally, we have input each 
sample into the Kaspersky anti-virus engine to generate ground-
truth labels.  Kaspersky was able to classify 30,104 of these 
samples with robust hierarchical classifications (such as 
“trojan.win32.jorik.skor.akr”), assigned a class of “unknown” to 
41,830 samples and assigned low-fidelity labels (such as “generic 
win32 trojan”) to the remaining 28,481 samples. 
We hand-picked a dataset from our MD:Pro malware feed to 
generate the tests and examples in this paper.  Because of the 
inconsistency of the Kaspersky labels (some Kaspersky label 
groupings, such as the “jorik” family, represent a very diffuse 
range of malware, whereas others, such as “webprefix” represent 
a very specific set of variants) we heuristically selected four 
Kaspersky defined malware classes that we believe share a similar 
range of behavioral traits.  Specifically, we selected the “xtoober”, 
“jorik” and “vbkrypt” families, alongside a random selection of 
malware samples Kaspersky labeled as “unknown” samples. 

3.2 Validation 
To verify that our sequence features and Jaccard similarity 
function are effective at capturing malware similarities, we have 
validated that they reflect malware-analyst defined ground truth.  
Namely, we filter our dataset down to include only samples that 
have complete Kaspersky classifications assigned to them by the 
Kaspersky anti-virus engine, compute a sample similarity matrix 
for these samples, cluster our sample similarity matrix, and then 
compute precision and recall statistics on our clusters based on 
how well they fit Kaspersky’s classifications. 
We compute precision and recall for a given clustering as the 
weighted average precision and recall for each cluster that we 

Figure 4.  Effect of corpus size on run times on a single Intel 
Xeon e5645 core running at 2.4GHz with 32 GB of RAM. 

Figure 5.  Change in clustering performance as similarity 
threshold grows.  The red line represents precision and the 

blue line represents recall. 
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First the user mouses over a system call sequence in 
the inspector, and identical instances of the sequence 
in other samples highlight.  

call sequence in 
s of the sequence e seque ce

Next a sequence detail text box is rendered describing 
what the sequence does and any available analyst 
notes about it. 

Samples that executed the sequence highlight, 
revealing a cluster of samples that executed the 
sequence, along with some outliers. 

Figure 6.  An example of semantic linking within and between our sequence and similarity map views. 

generate, where the weight of each cluster is the number of 
samples it contains.  For more information on precision and recall 
as measures of clustering accuracy see [4]. 
We use a graph-theoretic method to cluster the malware sample 
vectors.  This method proceeds as follows.  First we define some 
similarity threshold t and then construct a graph from our 
similarity matrix such that edges reflect similarities that pass the 
threshold.  Then we identify, in greedy fashion, a maximal sub-
clique in the graph, remove it from the graph, and repeat, until the 
graph is entirely decomposed into maximal sub-clique clusters.  
This algorithm is motivated by the fact that our maximal clique 
clusters all share edges representing similarities above our 
threshold t.  Thus each node is guaranteed to share at least t 
percentage of its sequence set with the sequence set of every other 
node in its cluster. 
Figure 5 shows how our precision and recall scores change as we 
increase the similarity threshold on our clustering algorithm.  At a 
similarity threshold of 0.8 we can perfectly match the pairwise 
groupings of samples implied by Kaspersky’s malware 
classifications, but for many clusters we fail to retrieve all of the 
relevant class.  On the other hand, at a threshold of 0.55, we can 
retrieve most of the relevant samples in each cluster, and we can 
classify most samples correctly.  These results demonstrate that 
our semantic subsequence features are effective at differentiating 
between malware of multiple classes with high accuracy. 

3.3 Algorithm Run Times 
Our sequence extraction algorithm scales linearly as malware 
corpus size grows, since it is a sample that runs on a per-sample 
basis.  We found that our algorithm took an average of 0.34 
seconds to extract sequences for each sample based in a test 
corpus of 917 malware samples system call traces.  The samples 
in our test corpus had an average number of 311.67 system calls. 
Figure 4 illustrates how our similarity matrix and Principal 
Components Analysis steps scale as corpus size grows.  While our 
algorithms scale exponentially, we can accommodate malware 
corpora of thousands or tens of thousands of samples on off-the-
shelf hardware within the span of a few hours.  In the future, we 
plan to explore ways of scaling our system up to handle tens or 
hundreds of thousands of samples.  

4. VISUALIZATION 
Our interface contains three panels: a sequence inspector, which 
supports inspection of the actual subsequences that occurred 
during a malware sample’s execution, a code sharing map, which 
provides a global view of behavioral similarity over a corpus of 
malware samples, and a set of filters, which allow a user to see 
how trait relationships distribute over the malware corpus.  These 
three displays are linked, so that, for example, brushing over a 
sequence in the sequence inspector highlights all of the other 
occurrences of that sequence as well as all of the samples in the 
code sharing map that exhibit that sequence (see Figure 6). 

4.1 Sample Similarity Map 
Our similarity overview visualization is rendered as a two 
dimensional grid of samples.  We compute the layout and coloring 
of our sample similarity grid by first performing Principal 
Components Analysis on our sample similarity matrix.  We 
project the first three principal components onto a reduced 

Figure 7.  Malware samples arranged in a similarity grid 
layout with color representing additional spatial dimensions.  

A number of clusters can be discerned as colored shapes. 

37



dimensional (three-dimensional) space.  Then we sort the malware 
samples by the value each respective sample has by the first 
principal component, and use that to order them on a space-filling 
Hilbert curve.  Having computed the position of each node, we 
then color each node using the first three principal components to 
determine the red, green and blue color values of the color.  Thus 
similar samples appear close together and take on similar colors.  
Currently, the nodes can be either circles or squares; circles 
represent “known” samples (samples that we have ground-truth 
for) whereas squares represent unknown samples (samples that the 
Kaspersky anti-virus engine could not label). 
We chose to use a 2d-grid layout and to use the color channels to 
encode additional similarity information to deal with two 
problems that result from more traditional, scatterplot multi-
dimensional scaling techniques.  First, grid layouts avoid the 
problem of overlapping nodes.  We felt that the visualization 
would be more effective if users did not have to visually parse 
overlapping nodes.  Second, grid layouts maximize the usage of 
available pixels on the screen.  This additional screen real-estate 
per node will allow us, in future work, to explore using node 
shape to encode additional node similarity data. 

4.2 Sequence Visualization 
Our sequence visualization reveals similarities and differences 
between malware samples.  A depicted in figures 8-11, we render 
a sample corpus’ subsequences as follows.  We assign each 
unique sequence a unique color.  Then to render an individual 
sample, we order its sequences by a global, unique identifier (in 
this case, the database ID for the sequence), and render them as 
sequential, colored blocks, with their widths scaled as the natural 
logarithm of their length.  This logarithmic scaling of each 
sequence allows us to use screen real estate more efficiently. 
Figure 6 depicts our approach to interactivity with these visual 
representations: brushing a sequence in one malware sample 
highlights identical sequences occurring in the same and other 
samples, and also causes a detail panel to render, which offers 
descriptive information about that sequence.  

We chose to render our sequence visualization as a set of each 
sample’s sequences ordered by unique identifier so as to support 
visual comparison of the sequences that appear in the execution 
trace of each sample.  Figure 8 illustrates the way in which such 
an ordering supports such comparisons.  Unfortunately, rendering 
the data in this way does not reveal cases in which sequences are 
repeated, and does not reveal cases in which they appear in 
different orders depending on the sample.  In future work we hope 
to explore ways to address this issue.  
 

4.3 Filter Panels 
On the left of the display we render the names of behavioral traits 
we have extracted from the malware corpus.  Currently, we 
support trait types such as registry key modifications, network 
communications, and file drops.  By brushing an action-type the 
malware samples that exhibit that action highlight.  This linking 
between filters and the code sharing map supports user insights 
into the nature of the various regions of the map, as well as 
insights into the similarities and differences between regions.  
Figure 12 illustrates this feature. 
 

5. USE CASES 
5.1 Visually Discovering and Investigating 
Cluster Structure in Malware 
Our similarity map visualization reveals cluster structure, or lack 
thereof, within malware corpora.  In Figure 7 a number of 
malware groupings can clearly be discerned: separate red, yellow, 
green and blue groupings, for example.  On the other hand, the 
lower-right quadrant of the map appears muddy and diffuse, 
indicating the lack of clear cluster structure among those malware 
samples. Because this map is a projection of a much higher-
dimensional space onto a few dimensions, there is inevitably some 
information loss.  Allowing the user to highlight samples and 
inspect the similarities in their sequence sets, which we support, is 

A cluster of malware samples.  
Surprisingly, menti and jorik.fraud 
families appear similar. 

Surprisingly, these jorik.fraud 
samples appear quite different 
from the others. 

Rainbow colored but equal length 
bands depict variation in sample 
behavior. 

Figure 8. The user brushes an IP address and port on the left, and the samples that connect out to that IP address and 
port highlight on the right. 
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crucial to allowing users to fully take advantage of the map. 

5.2 Exploring Behavioral Trait Relationships 
in Relation to a Corpus 
The filter panels on the left of the interface allow the user to 
discover how various behavioral traits distribute over the malware 
corpus.  In Figure 12 the user brushes an IP address and TCP port 
and the samples that connect out to that address and port 
highlight; it is clear that the cluster of malware in the lower left of 
the similarity map is characterized by the fact that it connects out 
to that address and port.  The ability to engage filters and discover 
such relationships between cluster and feature is helpful in 
allowing analysts to gain insight into the meaning of the similarity 
map. 

5.3 Relating Unknown Malware Samples to 
Known Malware Samples 
We have found our system to be useful in relating novel samples 
to known malware samples.  Figure 9 demonstrates observation of 
a group of malware samples that are close together on the sample 
similarity map.  Some of these samples (indicated by their labels, 
on the left) are unknown, and others are known.  What our system 

reveals is that the unknown samples (which the Kaspersky anti-
virus engine was unable to classify) are behaviorally quite similar 
to the adjacent xtoober samples.  To get more information about 
the samples in the sequence inspector, the user can mouse over the 
sequences that appear in the sequence inspector at the top of the 
screen (demonstrated in Figure 6). 

5.4 Exploring Sequence-Sharing 
Relationships Between Malware Samples 
 
Our system provides users with visual insight into which samples 
and clusters of samples have executed a focal system call 
sequence.  Figure 6 demonstrates the actions our visualization 
performs when the user selects a group of samples from the 
sample similarity map, and then brushes over one of the 
sequences in the sequence inspector.  All of the occurrences of 
that sequence in the sequence inspector highlight, demonstrating 
that the sequence is shared by all of the samples currently under 
inspection. Additionally, all of the samples in the corpus highlight 
in the sample similarity map.  In this case, the focal sequence 
seems to occur mainly in a dense cluster of otherwise highly 
similar samples. 

Figure 12. The user brushes an IP address and port on the left, and the samples that connect out to that IP address and port 
highlight on the right. 

Figure 11. Comparing one sample with many.  The user brushes jorik.fraud.ws-4 and it is highlighted in red.  As a result, all 
of the sequences that other samples have in common with jorik.fraud.ws-4 are highlighted. 

Figure 9. Visually clustering unknown malware samples with known malware samples.  The unknown samples appear 
almost identical to the labeled samples in terms of their behavioral sequences.

Figure 10.  Comparing unknown and known samples.  There is clearly overlap between the two samples. 

Figure 9 Visually clustering unknown malware samples with known malware samples The unknown samples appear

ure 10 Comparing unknown and known samples There is clearly overlap between the two sample

Figure 11 Comparing one sample with many The user brushes jorik fraud ws-4 and it is highlighted in red As a result all

Fi 12 Th b h IP dd d h l f d h l h h IP dd d
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5.5 Supporting Analysis Inheritance and 
Reuse 
When the user brushes over a sequence, a tooltip comes up with a 
label describing at least some of what the system calls in that 
sequence do.  There is also a field for analyst notes.  Currently 
this is unused, but in future work this could support analyst 
annotation of sequences such that when new samples appear that 
contain these sequences analysts of these new samples could see 
that these sequences had already been “analyzed,” and could 
benefit from this previous analysis work. 

6. RELATED WORK 
To the best of our knowledge, our work is the first to explore 
interactive visualization of large malware corpora.  In the machine 
learning area, Storlie, et al. have explored using Markovian 
stochastic adjacency matrices derived from malware dynamic 
execution traces [8].  Our work, on the other hand, focuses on 
partitioning system call sequences with Markovian methods. 
In related visualization work, Conti et al. introduced visualization 
techniques to support analyst comprehension of the structure of 
binary files [5].  Conti’s work is premised on exposing a lower 
level of abstraction than ours, which focuses on system call 
sequences.  Trinius et al. have explored applying treemaps and 
thread graphs to comparative analysis of malware [6].  Whereas 
they focus on the relative quantities of system call categories 
executed by malware under dynamic analysis, we focus on shared 
system calls sequence relationships.  And whereas they focus on 
supporting exploration of the similarities between small groups of 
malware samples, we focus on an interface that provides an 
overview of similarity between large numbers of malware samples 
that then allows a user to drill into a selected group of samples 
and compare them. 
Quist et al. have created a system for interactively visualizing 
malware execution traces and execution trace metadata at the 
CPU instruction level [7].  Whereas this work focuses on 
supporting reverse engineering work on individual samples at the 
assembly language level, our work supports reverse engineering 
work across many samples at the system call level. 

7. FUTURE WORK 
To extend the work we have done we plan to evaluate a number of 
our methods and improve them where possible.  Currently we are 
using a Hilbert curve to lay out our sample similarity grid, but this 
may not be the optimal grid layout for our data, and we plan to 

explore the existing literature on multi-dimensional scaling and 
grid layouts.  We would also like to explore incorporating 
multiple similarity metrics into our system, such that a user could, 
for example, toggle between sequence similarity, call graph edit 
distance similarity, and printable strings similarity.  Finally, we 
plan to take our system from prototype to a state that is more 
robust and capable of handling an extended series of use cases. 
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