
Article

Information Visualization
2015, Vol. 14(1) 62–75
� The Author(s) 2013
Reprints and permissions:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/1473871613488573
ivi.sagepub.com

Multi-aspect visual analytics on large-
scale high-dimensional cyber security
data

Victor Y Chen1, Ahmad M Razip2, Sungahn Ko2,
Cheryl Z Qian3 and David S Ebert2

Abstract
In this article, we present a visual analytics system, SemanticPrism, which aims to analyze large-scale high-
dimensional cyber security datasets containing logs of a million computers. SemanticPrism visualizes the
data from three different perspectives: spatiotemporal distribution, overall temporal trends, and pixel-based
IP (Internet Protocol) address blocks. With each perspective, we use semantic zooming to present more
detailed information. The interlinked visualizations and multiple levels of detail allow us to detect unexpected
changes taking place in different dimensions of the data and to identify potential anomalies in the network.
After comparing our approach to other submissions, we outline potential paths for future improvement.
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Introduction

We designed and developed a visual analytics (VA) sys-

tem ‘‘SemanticPrism’’ to address the large-scale, high-

dimensional cyber situation awareness problem arisen

by the VAST 2012 Mini-Challenge 1.1 The challenge

is a ‘‘big data’’ problem. A large enterprise network,

named the Bank of Money with approximately 1 mil-

lion machines, generated approximately 160 million

multidimensional data logs (e.g. geographic location,

time, activity, policy, machine class/function, and

number of network connections) in 2 days. For proper

analysis, the analyst must be able to see and compare

all of these different dimensions at multiple granulari-

ties (e.g. enterprise to individual machines in individ-

ual offices). To meet these requirements, we developed

the VA system SemanticPrism to visually analyze the

given data from three perspectives: spatiotemporal dis-

tribution of machines and their health, overall tem-

poral trends, and pixel-based IP blocks. All these

visualizations are interlinked and provide 2–4 levels of

semantic zooming. The analyst can not only grasp the

overall situation of the enterprise network, but also drill

down to read more detailed information of regions,

offices, and even the level of individual computers.

With SemanticPrism’s comprehensive visualizations

and interaction, we were able to discover all anomalies

hidden within the large dataset and won the award of

‘‘Outstanding Integrated Analysis and Visualization.’’

While designing the SemanticPrism, rather than

simply solving this particular challenge, we tried to

explore a more general approach to face real-life large-

scale high-dimensional datasets. In this article, we
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review related literature and then discuss the design

considerations of SemanticPrism in terms of scalabil-

ity, dynamic situation awareness, visualization, and

novelty. Furthermore, we compare our approach to

other submissions and outline potential paths for

future improvement.

Previous research

Previous study has explored a variety of approaches to

handling the problems ‘‘big data’’ create. As ‘‘big data’’

are often complex, multidimensional, and multivari-

ate, many studies have discussed different methods of

visualizing large datasets. Fua et al.,2 for example,

described the use of hierarchical parallel coordinates

to visualize large multivariate datasets. Keim3 and

Oelke et al.4 have shown the use of pixel-based visuali-

zation to fit the huge data space into a small screen

space. Keim et al.5 also developed a hybrid technique

that is scalable with ‘‘big data’’ visualization. Some

approaches also include using multiple linked views to

visualize ‘‘big data.’’6 A summary of recent visualiza-

tion techniques of large multivariate datasets is avail-

able by Keim et al.7 Looking beyond the academic

community, a number of commercial VA systems that

process big data already exist within the marketplace

and have been evaluated.8

We believe that analyzing this high-dimensional

data requires multiple linked views from different per-

spectives and different levels of granularities and

detail. Zoomable user interfaces (ZUIs)9 allow users to

work with a large virtual space and navigate through it

by zooming. Semantic zoom10 lets the user see differ-

ent representations of the data at different zoom levels.

Weaver11 stated that ‘‘semantic zoom is a form of

details on demand that lets the user see different

amounts of detail in a view by zooming in and out.’’

This method has been widely used to provide smooth

analysis experiences through interaction (such as in

malicious network objects12 and relational data13). We

utilize semantic zoom in this system to visualize the dif-

ferent properties of big data at different granularities.

As the number of connected machines and the pos-

sibility of network attacks increased, many experts

have developed various network monitoring tools that

include a number of different visualization techniques.

One of the more popular methods of visualizing net-

work data is to use graph-oriented visualizations14

where machines are mapped to nodes and links con-

necting those nodes with different characteristics, such

as thickness and color, represent relations among

nodes. Boschetti et al.,15 for example, implemented a

graph-oriented approach to monitor network traces

and detect anomaly. Iliofotou et al.16 proposed the use

of traffic dispersion graphs (TDGs) as a way to moni-

tor and analyze network traffic by modeling the social

behavior of hosts. In many systems, different types of

node placement algorithms have been used. Among

those, the force-directed graph drawing method17 and

bipartite algorithms18,19 have been widely adapted.20,21

A different visualization approach is the pixel-based

visualization approach, and it provides some advan-

tages over the traditional graph-oriented visualization

of the computer network. Oelke et al.4 and Keim3

introduced the pixel-based (pixel-oriented) visualiza-

tion technique to maximize the screen space for visua-

lizing large amount of data. In this technique, the

entire visualization space is equally divided into

squares or rectangles, called pixels, where each data

element is assigned. Then, a predefined color map is

applied to represent the range of the data attributes.

The pixel-based visualization technique has been

widely used in various applications and research in

which the datasets are very large and multivariate.

Borgo et al.22 presented how the usability of the pixel-

based visualization varies over different tasks and

block resolutions. Oelke et al.4 studied visual boosting

techniques for pixel-based visualization such as halos

and distortion. Ziegler et al.23 presented how the pixel-

based visualization helps analysts gain insight for long-

term investments. Ko et al.24 demonstrated how sales

pixel matrices can be used for analyzing competitive

advantages of companies. Panse et al.25 discussed the

effectiveness of the technique in PixelMap when the

datasets consist of very large number of points. In our

study, we employ the pixel-based visualization method

to explore the IP address space of the challenge data.

According to MacEachren and Kraak,26 geospatial

datasets are fundamentally different from other kinds

of information in at least three ways: structured spatial

variables, meaningful location names, and emergent

behaviors. To visualize the special geospatial aspects of

the data, the popular technique with many geographi-

cal information systems (GIS) is applied in order to

plot points on a geographical map. This technique has

been employed in a variety of domains, such as crime

mapping,27 public health,28 and social science.29

Other techniques to visualize large spatial datasets

include PixelMaps,5 which is designed to combine

both clustering and pixel-based visualization to plot

points on the map. This technique copes well with

dense geographic data and prevents data point over-

laps. In this study, we used the point-plotting tech-

nique that has more expressive power of identifying

individual offices inside a region.

SemanticPrism system

Although the data provided for this challenge are arti-

ficially generated, this challenge simulates a real sce-

nario. The SemanticPrism system was designed from

the beginning, not only to solve this particular
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challenge, but rather explore a general approach to

achieve cyber situation awareness in a real-life scenario

while facing large-scale multidimensional datasets.

Dataset and tasks

The data from the challenge include a geographical

map (an image file), a KML (Keyhole Markup

Language, an XML notation for expressing geographic

data) data file to define regions, and two large spread-

sheet tables. One table contains basic information of all

computers, including its IP address, business unit, facil-

ity, latitude and longitude, machine class (server, auto-

mated teller machine (ATM), or workstation), and

machine function. The other table contains 160 million

records of computer status logs. Each record contains

information of a computer’s IP address, number of con-

nections (NOCs), policy status, activity flag, and the

log timestamp. The policy violation status is a discrete

data measurement of the health status from normal to

severe (labeled from 1 to 5 to indicate severity). The

activity flag categorizes the machines by different types

of activities (labeled 1–5). The NOC log is a discrete

data value (range from 1 to 100 in the current dataset).

The data provide a 2-day snapshot of the health status

of all computers in the whole organization with 15-min

intervals (192 total time periods).

We first brainstormed several fundamental tasks

and their consequent data queries based on the need

of cyber security situational awareness: (1) See the

geospatial distribution of computers and tell whether

there exists any spatiotemporal status pattern. This

task requires the system to query computer logs

grouped by offices and time periods. (2) Visualize the

trends of computer status at different granularities

from the overall network to individual machines. The

system has to count the numbers of computers of dif-

ferent statuses over time. Also, the NOCs need to be

aggregated to get the maximum and average values.

(3) Study the spatiotemporal pattern of status over the

IP address space. The challenge data do not provide

the structure of the network. In the Internet, comput-

ers’ IP addresses can be classified as Class A–C based

on their four 8-bit numbers. Such classes partially

reflect the network structure. Computers within the

same block (especially a Class C block) are likely to be

in one subnetwork. Data also need to be aggregated

based on Class C IP blocks. (4) Investigate individual

computers through their log history. It requires search-

ing the full history logs of a computer through its office

or IP block. The data should be indexed by the com-

puters’ offices and IP blocks to speed up data query.

Data transformation and aggregation

Our first challenge was to transform the large-scale

data and make it efficient for interactive analysis. Even

when using a MySQL database, the direct querying of

such a large dataset remains inefficient and can take

hours to provide an aggregation number (e.g. the total

number of computers of a given status). To speed up

the data query and enable a responsive system perfor-

mance, we created additional indices and aggregated

data into new tables. The process to treat the data as a

data cube, precompute the aggregation values along

necessary dimensions, and store the aggregated values

into several tables is in line with the online analytical

processing (OLAP) approach.30 Precomputed aggre-

gated values include the number of computers for each

policy status and activity and the maximum and aver-

age NOC at a given time for each Class C IP blocks.

Querying and processing the data for a group of time

series curves only take a small fraction of 1 s; so, most

interactions in the system can produce instant results.

For this challenge, the data provided are a static file,

meaning aggregation is only done once. In a real-life

implementation, such an aggregation and preprocessing

could be performed while collecting data on the fly.

System structure and development platform

Although the raw data from the challenge only cover 2

days and are 8 GB in size, in essence, these data are

streamed and can eventually become truly big data as

time goes on. In order to correctly and effectively man-

age these big data, SemanticPrism uses a client–server

architecture designed as a web application. Clients in

the front end visualize the data but do not retain a copy

of the whole dataset.

As a prototyping system for research purposes, we

built the system with Adobe Flash, PHP, and MySQL.

The client-side application uses Flash that is currently

supported by most web browsers and is an efficient

platform for an application with rich interactions and

dynamic graphics.31 The web server runs PHP to pro-

cess data requests. The communication between Flash

and PHP is done through action message format

(AMF). The PHP web application is hosted in a shared

server. The MySQL database server resides in an Intel

Xeon 3.0-GHz server, with 64 GB of memory. The

Flash client can run smoothly on a notebook computer

(Intel 2.6 GHz Core 2 Duo CPU with 4GB RAM).

Visualization and interaction design

The choice of visualization and interaction design

should be based on the nature of data and the prob-

lems faced. We wanted SemanticPrism to run on a

notebook computer to allow maximum freedom of

working location. With limited screen space, the analyst

should be able to navigate through different dimensions

of data, drill down to investigate details, become aware

of significant changes, and identify anomalies. To
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enable exploration of the data from different data

dimensions, we chose to use a multiple linked views

approach: different types of information are visualized

using the geospatial map, time series curves, and pixel-

oriented visualization views. Each of the views has mul-

tiple visualizations to present different levels of details.

We chose semantic zoom as the basic interaction tech-

nique to navigate through these visualizations.

Geospatial–temporal visualizations

The default view of SemanticPrism is a geographic

visualization with a time slider designed to visualize

the computer status at a given time (Figure 1).

Offices around BankWorld are marked on the map

as square dots. Different icons are used to distinguish

types of offices: small squares represent regular branch

offices, squares with one boundary line represent the

regional headquarters, and squares with two boundary

lines represent headquarters and data centers. The

map provides an overview of the most critical informa-

tion at the current time. Different colors are applied

onto the squares to indicate the maximum policy vio-

lation status of the computers within the office at that

particular time. The colors, varying from yellow to

orange to dark red, represent the maximum policy vio-

lation status (from 1 to 5) for all computers in the

office. The reason the most severe computer health is

shown, instead of the average health status, is to draw

the analyst’s attention to a problem the very first

moment the problem arises. This color setting is con-

sistent in representing policy status across different

visualizations and functions in SemanticPrism. If there

is no log from an office at a certain time, it means that

all computers are off-line. In this case, the office is rep-

resented by the black color.

To update the statuses of all offices to a different time

period, the analyst can drag and slide the time slider to

a new time mark along the bar (Figure 1). Additionally,

the analyst can input the desired time (period number,

ranging from 1 to 192) in the time input slot or use the

time step forward/backward button to advance to the

next time slot or roll back to the previous slot.

Layers on the map

The SemanticPrism map (Figure 1) uses several layers

to stack different dimensions of information together.

The analyst can selectively turn on or off these layers.

The dataset’s Bank of Money is a global organiza-

tion spanning eight time zones of BankWorld. In order

to present the different time zones and local times for

the distributed offices, we provide an overlay time zone

layer. It is a half-transparent layer with vertical strips

of gray shades. Time zones within the early morning

or late night are in darker shades to hint there is less

sunlight. Although at night machines tend to be less

active, we also wanted to draw the analysts’ attention

to the fact that some crucial attacks might take place

during such time periods.

When there are many offices in a relatively small

area, the area can be cluttered with many dots of offices.

To improve that condition, we created two layers to

highlight offices containing computers with a selected

policy status or activity status. The analyst can select a

policy from the policy drop-down menu to turn on the

policy layer. With one policy selected, any office with a

computer that belongs to this selected policy status will

be highlighted as a blinking red/blue square. The size of

the blinking square reflects the number of computers

with the selected policy status. The blinking effect is

good at drawing the analyst’s attention even if the dot is

small. Similarly, the analyst can turn on the activity

layer through the activity menu (Figure 1(b)). The sys-

tem uses orange/green blinking squares to highlight all

offices that have computers with the selected activity.

Correspondingly, the sizes of the squares reflect the

numbers of computers that are involved in such an

activity. As time progresses, the change in size and loca-

tion of blinking squares indicates to the analyst the

trends of the policy status and activity.

If both blinking layers are turned on, the blinking

squares become messy and hard to read. To effectively

reduce the visual clutter and visualize the policy status

and activities together, we use a Kernel density estima-

tion (KDE)32 heat map as an alternative method to

visualize the geospatial distribution of a selected policy

status or an activity. The heat map is computed based

on the density of computers matching the selected sta-

tus in an area using a clustering algorithm. The heat

map uses blue shades: the darker the shade, the more

computers there are that match the selected status.

This layer is stacked under the blinking layer, as shown

in Figure 1(a). With the combination of the two layers

(KDE and blinking), the analyst can read the policy

status and activity at the same time.

Zoom and navigate

Through the right side’s navigation panel, the analyst

can zoom in/out and pan to navigate in the map. A red

square shade (right corner of Figure 2(b) and (c)) is

used in the panel to indicate current visible area of the

map. While zooming in, the space among office dots

increases, which can potentially be used to display

more information.

In SemanticPrism, the analyst can drill down and

investigate the data at different levels of detail

(Figure 2) through semantic zooming.10 Depending
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on the size of available space, an office is dynamically

visualized in one of the following four levels:

Level 1 allows the analyst to visualize an office as an

individual dot when using the default full map view or

when the space is still quite dense after zooming in

(Figure 2(a)). In the full map view, the offices at some

areas appear so dense that the square dots may over-

lap. While zooming in, the squares are also enlarged,

but at a smaller ratio (square root of the screen ratio),

to make the spaces among the offices larger. Thus, the

density decreases and provides better readability to

distinguish these little office dots.

Level 2 (Figure 2(b)) uses a horizontal color bar to

show the percentage of computers with different pol-

icy statuses, including those that are currently off-line.

In this visualization, the analyst may misread those

policy statuses with only a very small percentage of

computers and assume that they do not exist. To avoid

this problem, we used vertical squares to mark if

Figure 1. SemanticPrism map view: (a) the policy layer with the activity heat map at 1:45 a.m. BMT, 2 March 2012; (b)
with only the activity layer on at 2 p.m. BMT, 2 February 2012; and (c) the policy layer with the activity heat map at 3:45
p.m. BMT, 2 March 2012).
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computers with certain policy statuses exist. Also, the

analyst can see the office name and total number of

computers in the office. At this level, the size of the

bar remains the same during zoom in until the space

is big enough to show Level 3 details.

Level 3 (Figure 2(c)) indicates the growth curves of all

policies in the office where the x-axis presents the tem-

poral direction, and the y-axis shows the number of

computers. This graph contains six different curves,

displaying numbers from Policy 1 to Policy 5, and the

Figure 2. Four levels of semantic zooming on the map. (a) level 1 - offices as dots (b) level 2 - offices as bars to show
percentages of problematic computers (c) level 3 - curves to show trends of problems (d) level 4 - history of every
computer in one office.
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total numbers of online computers. The standard pol-

icy colors are used to distinguish different curves. The

size of the graph (200 pixels 3 200 pixels) remains the

same when zooming in.

Level 4 illustrates the history status of each individual

computer within the office (Figure 2(d)). The history

of a computer’s policy status is visualized as shades of

a red bar. The curve in the middle of the bar shows

the NOCs. The computer’s activities are visualized as

blue bars with stacked horizontal lines. The number

of lines represents the activity number. Activity 1 (nor-

mal status) is omitted. The analyst can use this visuali-

zation to read the finest details of a specific computer

in a specific office.

Zooming in/out and panning change the screen dra-

matically. When the analyst’s eyes are focused on one

area and there is a sudden change in the visualization,

change blindness33 might take place. The analyst may

lose his focus. To avoid that, we integrated animation to

permit a more gradual zoom in/out and allow saccadic

eye movements34 to catch up with the changes. Zooming

out creates a reverse effect of zooming in. Detailed views

will be shrunk until the offices become square dots.

Apart from using the navigation panel, the analyst

can directly interact with the map to pan and zoom in/

out. Scrolling the mouse’s middle wheel zoom in/out

of the map. A left mouse drag pans the view. Clicking

on an office will directly open Level 4 details of an

office. Clicking on the boundary of a region will open

the pixel-based visualization of all offices within that

region. These offices are laid out in a rectangular

array to let the analyst see all offices simultaneously

(Figure 4(b)).

Time series curves. While designing the system’s

information query process, we followed

Shneiderman’s information-seeking mantra:35 ‘‘over-

view first, zoom and filter, then detail-on-demand.’’

The SemanticPrism time series curves (Figure 3) pro-

vide an overview of the growth trends of policy sta-

tuses, activities, and NOCs over the given time period.

The default curve view (Figure 3(a)) presents the

growth of policy statuses and activities of one class of

computers. The analyst can choose to use either a lin-

ear or logarithmic scale to draw the curve. The linear

scale can intuitively show the overall growth trend.

But because of the large number of overall computers,

it is hard to read the curve at the early phase of an

attack when there are only a few computers affected.

The logarithmic scale (Figure 3(b)) boosts the small

numbers by adjusting the curves to help the analyst to

catch that first moment when a computer is violating a

policy.

The time series curve visualization can also be

‘‘zoomed in’’ conceptually. The analyst can narrow

down by applying a combination of filters to select cer-

tain computer class, computer functions, activities,

policy statuses, and NOC to visualize the trends of

affected computers.

In SemanticPrism, the user can also create multiple

panels (Figure 3(c)), with each containing curves gen-

erated by different filters. The analyst can then com-

pare different curves side by side to investigate further.

Pixel-based visualizations. The classification of IP

addresses can partially reflect the organization’s net-

work structure. Within these data, we also noted that

computers within a single office with one class (server/

workstation/ATM) belong to the same level Class C.

To visualize such an IP address space, we incorporated

a pixel-based visualization of IP blocks (Figure 4) to

analyze computers in a more detailed classification.

By default, the pixel-based visualization contains

one panel showing the selected policy status and activ-

ity (the red/blue square on the right side of Figure 1).

The selection is done through the same drop-down

menu of highlighting policy status and activity. The

analyst can expand it to show five panels. Each panel

shows the number of computers within an IP block

that are affected by each activity and policy (Figure

4(a)). In each of these five panels, the red side shows

policy status and the blue side is for activity. Each

pixel represents a group of computers in a particular

Class C block. The x-axis consists of the IP’s Class B

block (ranging from 172.1 to 172.56), and the y-axis

consists of the values of Class C blocks (ranging from

0 to 255). The colors of the pixels encode the number

of computers that carry the selected policy status or

activity flags in the C block.

The IP block pixel-based visualization has three lev-

els of semantic zooming. Hovering the mouse pointer

over the inside area of the panel will evoke a zoom-in

lens to show enlarged pixels. Clicking of a pixel brings

up the time series curve of that C block. Clicking on

the bottom x-axis of the panel will evoke the system to

show the time series curves of all C blocks within the

selected B block. The user can choose to see the

curves of policy statuses (Figure 4(b)), activities, or

NOCs (Figure 4(c)). The analyst can also see Level 4

individual computer histories in the C block (similar

to Figure 2(d)) through clicking. The visualization

enables the small approach to multiple comparison36

where analysts can easily investigate the differences of

trends in multiple data. For example, in Figure 4, it is

easy to notice that some C blocks have an abnormal

spike in the middle of the visualization, which is differ-

ent than the regular on–off office hours. This leads us

to investigate abnormal network connections at night.
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Situational awareness analysis

In a real-life context, it is essential that immediate

actions be taken to prevent the expansion of damage.

In SemanticPrism, each of the three visualizations has

been used either individually or collectively to support

situational awareness.

Figure 3. Time series curves in SemanticPrism: (a) linear curve of servers, (b) curves in logarithmic, and (c) dynamic
panels to show the curves of policy statuses and activities of selected types of computers.
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Figure 4. Pixel-based visualizations of IP blocks: (a) five default policy/activity pixel–based visualization panels, (b)
offices in a region (Headquarter), and (c) zoom in to show the NOC graphs of all Class C blocks in one Class B IP block.
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Detection of problematic computers at an
early stage

It is critical to detect the first occurrence of a certain

activity or policy violation. The time series curve view

accurately presents the statuses over time, including

both previous and future growth trends, though it does

not pinpoint the location. With the help of the time sli-

der, both the map view and the IP block pixel view can

hint to the analyst when and where the first computer

fell into policy status 4 or 5. The map view then locates

the office, a perspective that is necessary if the preven-

tion action has to be taken on-site. With both the map

view and IP pixel view, the analyst can drill down to

find the particular computer (IP address), a step that is

necessary for remote access and repair. The quickest

way to find the accurate occurrence time and location

of the problematic computers is to use both the curve

view and the map view: anchor the exact time of the

first occurrence from the curve view and then switch to

the map to find the exact office.

Although it does not appear in the 2012 challenge

data, one potential threat worth monitoring is that of

abnormal activities happening at off-office hours (e.g.

invalid logins or intrusions). Such anomalies can be

easily seen from the map by turning on the activity

highlight layer and the time zone layer. As time goes

on, we can clearly observe how offices become more

idle when their local time slots reach the off-working

time at 6 p.m. and then become active again at 8 a.m.

(Figure 1(b)). The curve view can also help to monitor

abnormal activities (Figure 3(c), bottom). Such activi-

ties are normally rare. The logarithmic method is use-

ful to show even one instance of occurrence.

Overall trend of policy violations and activities

The curve view shows the growth trend of policy sta-

tuses and activities over the time period. By looking at

the curves of different classes or regions, the analyst

can clearly tell the growth or working pattern of the

computers (Figure 3(c)). However, the analyst cannot

see the spatial pattern of the spread. With the map

view, as time passes, we can see that there are more

and more blinking squares, and squares getting larger

and larger, which indicate that there are more and

more computers under high-risk policies (Figure 1(c)).

With the pixel-based visualization, we can see that

more and more IP blocks are affected (Figure 4(a)).

We assumed that the IP pixel view could indicate to

the analyst the spread patterns of policy violation over

the network (e.g. computers within the same IP block

or neighboring blocks get affected first), but we have

not found any good evidence for this within the current

dataset.

Outages in Region 25

Among our three visualizations, the map view accu-

rately shows that there were multiple office outages in

Region 25 (black dots on the right side of the map in

Figure 1(a)). With the time slider, the analyst can see

the development of the outage range and how the

offices then recovered (e.g. black dots in Figure 1(c)).

Since this was caused by a hurricane, the accurate

geospatial locations of these affected offices are useful

to indicate the natural disaster’s affecting range.

The IP block visualization is not effective in disco-

vering this outage because many computers are turned

off at night. The number of hurricane-affected com-

puters does not appear to be distinct or large, so this

outage has not been reflected clearly on the time series

curve view.

Addition of servers to Headquarter
Datacenter 5

The combined use of the time series curve view and

pixel-based visualization has helped us to find that

many servers were added to the Headquarter

Datacenter 5. We can observe a major jump in the

number of servers in the curve view (the black total

curve in Figure 3(a)). However, SemanticPrism can-

not directly link these data change to the individual

offices. We have to manually examine offices through

the pixel-based visualization. In the zoomed-in view of

offices by regions, we can see that there is a significant

jump of the number of servers within Datacenter 5

(Figure 4(b)).

Abnormal NOCs at night

Apart from finding the addition of new servers, the pixel-

based visualization of all Class C IP blocks also helped to

identify another anomaly: abnormal NOC at night. The

map view did not provide a way to visualize NOC. Most

computers are turned off regularly at night, so the change

of NOC is not obvious on the time series curves.

Using the three visualizations to analyze the data, we

came to realize that anomalies were usually identified by

a combination of different visualizations. No visualiza-

tion method is really universal. As different components

of a system, these visualizations cover the weaknesses of

each other and should be used as elements of a tool kit

to detect problems in large-scale data.

Feature discussions

Considering the limitation of individual visualizations

and the strength of their integration, we started to

review the overall pros and cons of SemanticPrism.

The following discussions are based on the comments
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from reviewers of our submission and external ques-

tions raised from the VAST workshop presentation

and system demonstration.

Scalability

The SemanticPrism has the potential to attack much

larger data. The scale of these challenge data can be

expanded in several dimensions. The first expandable

dimension is time: the data can be extended to months

or even years. Other possible data expansions include

the addition of more offices, more computers, or more

types of activity or policy statuses within the logs.

SemanticPrism’s map view only displays the current

status. To fit the enlarged time span, the timeline bar

might be edited so that the analyst can zoom in/out

and navigate semantically. The number of offices will

significantly affect the map view as a result of the

higher density of office dots. Theoretically, our map

can only present a limited number of offices effec-

tively. Since our system uses blinking effects to show

alerts, the analyst can still easily see the problematic

area even if the map has been fully covered by offices.

The heat map layer is fully scalable (O(1)) since it per-

mits the computation and visualization of the relative

density of both offices and computers. Our semantic

zoom technique can also work with higher office den-

sity. While zooming in, the office dots are enlarged at

the square root of the screen ratio, which makes their

proportions within the screen space much smaller and

generates more spaces among the offices. Thus, even

if there are many offices close to each other, the ana-

lyst still can distinguish each individual office by

zooming in further.

The IP block pixel-based visualization will expand

(O(n)) when there are more computers (more IP

blocks). Since one C block contains up to 254 IP

addresses, the number of IP blocks is much smaller

(~1/255) than the number of computers.

The scale of time series curves follows the temporal

scale as O(n) since the x-axis is the time dimension. We

can overcome the time span problem by compressing

the X direction and use interactions to zoom in and

slide along the X direction to see details of the curve.

At last, the system can be converted to handle

streaming data. We can change the server side compo-

nent to only query data for the current moment (or

within a certain period of time range), which will help

to solve the large time span problem.

SemanticPrism employs layers to permit recogni-

tion of multiple properties. If there are an increased

number of properties, more layers can be added, but

the efficiency of readability may decrease. To improve

the analysis, in the future, we might adopt a measure-

ment that integrates multiple properties, such as the

‘‘concern level assessment (CLA),’’37 to combine mul-

tiple individual layers into one comprehensive layer.

Query data on demand

With SemanticPrism, data are stored in an external

database. Only when it is necessary, the client-side

Flash application can send a request to the server to

fetch a small amount of data. Therefore, a significant

size increase of the overall dataset will not necessarily

slow down the performance of SemanticPrism. While

one is working in the map view and zooming in, only

the specific offices within the display area will be

checked to see whether they should be expanded to

display the next level of details. At Level 2 zooming,

the maximum number of offices that will be displayed

simultaneously in the screen is 600 (each office needs

a space of 30 pixels 3 60 pixels), with each office

requiring just six integers for the number of computers

under all policy statuses. At Level 3 zooming, the

maximum number of offices in one screen is 30 (each

office needs a space of 200 pixels 3 200 pixels), with

each office fetching data for its time series curves (an

array of 192 periods with 6 flags = 1152 integers).

In the pixel-based visualization, if the screen space

cannot show all of the items, the user can pan the

screen to read the rest. Similarly, the client-side Flash

only queries data for those elements that are within

the display area.

Visualization design

One of our reviewers indicated that SemanticPrism

did not invent any new visualization. The map with

multiple layers, the time series curves, and the pixel-

based visualization are all very common methods.

However, other reviewers stated that these common

visualizations are among the most suitable ways to

identify anomalies in this challenge. We chose these

visualizations because they are very intuitive and the

analyst can easily adopt and identify the problems

without taking much training.

In this challenge, one main task is to detect anoma-

lies (e.g. virus infection) as quickly as possible. The

percentage of problematic computers can be extremely

low. Some traditional visualization techniques that can

present both the quantity (e.g. use area or length to

represent number of problem computers) and the

quality (e.g. use colors to represent the policy statuses)

may be inefficient to alert the analyst the problem

since the size/length of the graph is too small to notice.

Therefore, we used several ways to boost the visualiza-

tions. In the time series curves, the logarithmic way of

drawing the curve boosts small numbers. In the geos-

patial map, the blinking dots draw the analyst’s atten-

tion even when the dots are tiny. At Level 2 of office
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details, we used separate icons to indicate the existence

of different policy statuses, as well as using length to

represent the percentage of each policy status.

Adobe Flash as the development platform

We would like to spend more time exploring the visuali-

zation and interaction design, rather than devoting too

much time on coding in the limited competition period.

We choose Flash as the platform due to its rich support

on graphics, animation, and interaction. Although it is

not popular with the development of scientific tools, we

found it to fit well with quickly developing functional

prototypical systems for research purposes.

Our VAST 2011 challenge submission38 was also

built upon Flash. It was the only submission that used

animation to vividly demonstrate the flow of people in

different locations. We spent most of our time design-

ing the visualization and interaction. The implementa-

tion is relatively simple and straightforward.

Applications built by Flash’s ActionScript 3 are com-

piled and run in the Flash player’s virtual machine. The

performance is acceptable for our systems. When search-

ing for anomalies with SemanticPrism, most of our inter-

actions are smooth and responsive, and its response time

largely falls in the appropriate time limit suggested by

Shneiderman.39 Thanks to our client–server structure

and the query-on-demand design, the client-side Flash

does not need to handle extremely large amount of data.

Most tasks take much less than the acceptable 2-s

response time,39 and many interactions, such as a

semantic zoom in the map view, can respond instantly.

Inspirations from other submissions

In the VAST 2012 challenge workshop, we had an

opportunity to see other award-winning solutions. All of

them are creative and inspiring. This is actually one of

the most valuable components in the challenge for us.

Dudas et al.40 presented a solution that integrates

OLAP operations30 into VA. They used a matrix to

display multiple histograms simultaneously. The ana-

lyst can perform OLAP operations (drill down, roll

up, slicing, and dicing) to manipulate the matrix of

curves. When compared to our time series curves,

their solution appears superior in two ways. First, the

matrix uses two-dimensional (2D) array, which can

show five dimensions (column, row, x, y, and stack) of

information and concurrently display many histo-

grams. Second, the OLAP operations allow the analyst

to generate many curves with simple interactions. In

our system, the analyst has to manually select and

combine filters to generate the curves. To generate

curves containing exactly the same amount of infor-

mation, our system needs more interactions.

Kachkaev et al.’s41 solution used a single line to

visualize the status change of an office by time. Colors

of the pixel in the line present the maximum NOC, the

maximum policy status, or the activity flag. These sin-

gle lines are then grouped into regions. This approach

inspired us to note that another level of semantic

zooming can be added in our pixel-based visualization.

Our first zooming level uses one pixel to display a C

block at one time (Figure 4(a)). Then, the next level

directly jumps to a 2D histogram (Figure 4(b) or (c)).

Kachkaev’s one-dimensional (1D) method can be used

in between our single-pixel view and 2D curve. At our

current second level of curves, we can only display

curves for all offices in one region or all C-level IP

blocks in one B-level block. This 1D method is com-

pact enough to place a more detailed temporal over-

view of many regions/C blocks into one screen.

Choudhury et al.’s37 submission used a machine-

inferred variable ‘‘CLA,’’ which contains inference

rules that embody adductive inferences from para-

meters including machine class and function, policy

status, activity flag, NOC, and time of the day, to com-

pute the concern level of the computers. Our system

visualizes different parameters separately. Although

our integration of multiple visualizations allows the

analyst to see multiple parameters at once, a compre-

hensive understanding of the combination of para-

meters is difficult.

SemanticPrism uses simple nodes in the map to

show offices. To avoid overlapping, the nodes’ sizes are

tiny and identical and sometimes hard to read. Pabst’s42

system rearranged office locations to align with grids at

the overview. Only when zooming in are the offices

redrawn in full precision. Such an arrangement is super-

ior for more effectively using the screen real estate,

because the office nodes are bigger and easier to read.

Conclusions and future development

Developed as a VA system to solve 2012 VAST chal-

lenge, SemanticPrism has successfully detected all the

anomalies. As Cook et al.43 pointed out, among all the

2012 challenge submissions, traditional visualizations

were well applied, although not many new visualiza-

tion technologies were invented. Our visualization

techniques are traditional and popular, so users can

understand them well without training. The integra-

tion of visualizations is innovative and effective. The

three main techniques covered the weaknesses of each

other and had been used as a tool kit to detect prob-

lems. For large data with many dimensions, the data

may have different characteristics at each dimension,

and using a single visualization technique will be hard

to fully represent the data. The query-on-demand data
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handling behind semantic zoom view made it possible

to create this lightweight client-side application to

solve complicated VA tasks in large-scale datasets. Our

system design executes Shneiderman’s information-

seeking mantra pretty well: the ‘‘overview to detail lev-

els’’ not only exists within each type of visualization,

but also links across different types. The time series

curves act as an overview. The analyst filters and drills

down from either the pixel-based visualization or the

geospatial map. However, currently, SemanticPrism

lacks the capability to automatically indicate potential

anomalies and suggest appropriate zooming areas.

Detection of anomalies in the ‘‘overview’’ curves sim-

ply relies on the analyst’s visual judgment. The analyst

also has to identify the suitable zooming level and

search around. Early stage problems may be ignored

when the signs in the curves are too subtle. Having the

system to suggest zoom level and indicate anomalies in

concerned areas automatically is another potential

research direction for SemanticPrism.

After solving the VAST 2012 challenge 1, we started

to consider whether the SemanticPrism, as a VA tool,

may grow healthily to solve realistic cyber security prob-

lems. The underlying design principle may be general-

ized to help other large-scale high-dimensional data

domains. From our standpoint, we can see that it may

develop in two directions. First, SemanticPrism may

allow us to find a better, natural way to integrate differ-

ent visualization approaches (linking and hinting at each

other), which may eventually lead to new types of visua-

lization and interaction techniques that are more effi-

cient for high-dimensional data analytics. Second, this

tool could enhance the current client–server structure

in order to allow it to solve other more complex geo-

temporal VA problems in real-time large-scale datasets.
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