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ABSTRACT

Malware classification systems have typically used some ma-
chine learning algorithm in conjunction with either static or
dynamic features collected from the binary. Recently, more
advanced malware has introduced mechanisms to avoid de-
tection in these views by using obfuscation techniques to
avoid static detection and execution-stalling techniques to
avoid dynamic detection. In this paper we construct a clas-
sification framework that is able to incorporate both static
and dynamic views into a unified framework in the hopes
that, while a malicious executable can disguise itself in some
views, disguising itself in every view while maintaining ma-
licious intent will prove to be substantially more difficult.
Our method uses kernels to place a similarity metric on each
distinct view and then employs multiple kernel learning to
find a weighted combination of the data sources which yields
the best classification accuracy in a support vector machine
classifier. Our approach opens up new avenues of malware
research which will allow the research community to ele-
gantly look at multiple facets of malware simultaneously,
and which can easily be extended to integrate any new data
sources that may become popular in the future.

Categories and Subject Descriptors

I.5.2 [Design Methodology]: Classifier design and evalu-
ation; K.6.5 [Security and Protection]: Invasive software
(e.g., viruses, worms, Trojan horses

General Terms

Security, Algorithms, Experimentation

Keywords

Computer Security, Malware, Machine Learning, Multiple
Kernel Learning

1. INTRODUCTION
In 2010, more than 286 million unique variants of mal-

ware were detected [47]. Despite the majority of this new
malware being created through polymorphism and simple
code obfuscation techniques, and thus being very similar to
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known malware, it will still not be detected by signature-
based anti-virus programs [13, 32]. To meet these challenges,
machine learning techniques have been developed that are
able to learn a generalized description of malware and apply
this knowledge to classify new, unseen instances of malware.

The machine learning techniques for malware classifica-
tion have used a variety of data sources to learn discrimina-
tory functions that are able to differentiate benign and mali-
cious software. Some of the most popular data sources that
have been examined include binary files [21, 46], disassem-
bled files [10, 40], entropy measures on the binary [27], dy-
namic system call traces [9, 18], dynamic instruction traces
[4, 14], and control flow graphs [13, 22].

The novel contribution of this paper is to show how to
combine different data sources using multiple kernel learning
[43] to arrive at a new classification system that integrates
all of the available information about a program into a uni-
fied framework. The key insight of our approach is that each
data source provides complementary information about the
true nature of a program, but no one data source contains all
of this information. We aim to construct a classification sys-
tem that does contain all aspects of a program’s true inten-
tions. We begin by defining a kernel, a positive semi-definite
matrix where each entry in the matrix is a measure of sim-
ilarity between a pair of instances in the dataset, for each
data source. We then use multiple kernel learning [6, 43] to
find the weights of each kernel, create a linear combination
of the kernels, and finally use a support vector machine [12]
to perform classification.

Our framework is particularly appealing for three rea-
sons. First, we are able to elegantly combine both static
and dynamic features in a way which allows the learning al-
gorithm to take advantage of both simultaneously. Second,
our method is extendable in the sense that future popular
data sources could be easily added to the model without
complicating the final result. Finally, the method presented
in this paper is highly parallelizable: computing the kernel
values for testing new malware can all be done in parallel,
the implication being that larger datasets can easily be han-
dled.

We present our results on a dataset composed of 776 be-
nign programs and 780 malicious programs. In addition to
this dataset, we test our methods on a separate validation
dataset composed of 20,936 malicious samples. For each
program we collect six data sources: the static binary, the
disassembled binary file, the control flow graph from the
disassembled binary file, a dynamic instruction trace, a dy-
namic system call trace, and a file information feature vector
composed of information gathered from all of the previous
data sources. For the binary file, disassembled file, and two
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dynamic traces, we build kernels based on the Markov chain
graphs; for the control flow graph we use a graphlet ker-
nel [41]; and for the file information feature vector we use a
standard Gaussian kernel as explained in Section 4.
We show that integrating multiple data sources increases

overall classification performance with regard to accuracy,
receiver operating characteristic (ROC) curves, and area un-
der the ROC curve (AUC). We also provide results examin-
ing the efficacy of each individual data source with regard
to different metrics, including the time from receiving the
sample to making a classification decision. We report kernel
combinations (in addition to the combination of all six data
sources) which can achieve reasonably high performance if
time and computing resources are at a premium. We also
demonstrate some of the pitfalls of the dynamic and static
methodologies, such as static data sources having difficul-
ties with packed instances and/or instances with abnormal
entropies.

2. RELATEDWORK
There has been a large volume of work applying machine

learning techniques to the malware classification problem
[8, 14, 22, 35]. Most of this work has used a single data
source (i.e. static binary or dynamic system call data) and
some set of machine learning algorithms (i.e. support vector
machines or decision trees) to perform classification and/or
clustering. Unlike these methods, we incorporate multiple
data sources, both static and dynamic, by using multiple
kernel learning [43] to perform classification.
Combining different features of static files has been ex-

amined [28]. Here the authors use n-grams and features
about the static binary to build a series of classifiers based
on various machine learning algorithms. They then use an
ensemble learning algorithm to combine the results of the
individual learners. In our work, we also incorporate learn-
ing with dynamic trace data, which has been shown to be
very important for classifying classes of malware which are
packed or obfuscated in other ways [29]. Also, the final
combined kernel that we find can be used in a kernel-based
clustering algorithm [26] to look at the phylogenetics of the
malware as discussed in Section 6.
Some authors have looked into combining static and dy-

namic features. In [24], the authors build different cluster-
ings based on exploits, payloads, malware, and behavioral
features captured by the Anubis framework [5]. Then they
explore the relationships between the different clusterings.
This is a results fusion model, whereas we are concerned with
a data fusion model. We do not build separate models for
each type of static and/or dynamic data source, but rather
combines all of the data sources using multiple kernel learn-
ing to arrive at a unified view of what it means to be mali-
cious. Another key difference of our approach is that we are
concerned with classification and not clustering, with previ-
ous efforts not being suitable for the classification domain.
We also base our analysis on different types of data. [24] uses
17 static features for the exploit/payload/malware clusters,
whereas we compare the Markov chain graphs based on the
binary and disassembled information, control flow graphs,
and other file information statistics described in Section 3.
The behavioral features of Anubis are concerned with mod-
ifications to the Windows registry and file system, or inter-
actions with other processes. Our dynamic analysis is based
on the Markov chain graphs of the dynamic instructions and
system calls performed. It is important to note that the
framework presented in this paper is general enough to in-

clude the data sources of [24] once an appropriate Kernel
is defined. Finally, we combine the information of the data
sources using a multiple kernel learning framework and build
a single unified classification system, whereas the individual
clusterings found in [24] are based solely on their respective
data sources.

There has been some work done which combines static
and dynamic analysis to locate packed and/or obfuscated
code. In [36], the authors first disassemble the code, and
then run the code looking for sequences of instructions in
the dynamic trace that are not found in the disassembled
data. They are only concerned with locating the hidden code
which could not be disassembled, whereas we are concerned
with classifying instances of malware, whether they have
hidden code or not. We also make use of more data sources,
such as system calls and control flow graphs.

3. DATA SOURCES
In this work, we take advantage of six different types of

data with the aim of covering the most popular data sources
that have been used for malware classification in the liter-
ature. These data sources also try to capture many of the
different views of a program in the hopes that, while a mali-
cious executable can disguise itself in some views, disguising
itself in every view while maintaining malicious intent will
prove to be substantially more difficult. We use three static
data sources: the binary file, the disassembled binary, and
the control flow graph of the disassembled binary. We use
two dynamic data sources: the dynamic instruction trace
and the dynamic system call trace. Finally, we use a file
information data source which contains seven statistics that
provide a summary of the previous data sources.

Binary. We use the raw byte information contained in the
binary executable to construct our first data source. There
is a long history of using this type of data to classify mal-
ware [21, 46]. Generally, the bytes are used in an n-gram
framework to construct a feature vector that is then given to
some machine learning classification algorithm (i.e. boosted
decision trees [21]). In contrast to these methods, we use
the 2-grams to condition a Markov chain and then perform
classification in graph space as explained in Section 4. In
the Markov chain, the byte values (0-255) correspond to dif-
ferent vertices in the graph, and the transition probabilities
are estimated by the frequencies of the 2-grams.

Disassembled. The opcodes of the disassembled program
have also been used to generate malware detection schemes
[10, 40]. To generate the disassembled code, we use IDA
Pro [33]. Once we have the disassembled code, we build a
Markov chain similar to the way we built the Markov chain
for the binary files. Instead of the byte values being the
vertices in the graph, we use the disassembled instructions
for the vertices in the graph. Unfortunately, the number of
unique instructions found in the disassembled files (∼1200)
gave us very large Markov chains that overfitted the data
resulting in poor initial performance. This is in part due to
the curse of dimensionality: the feature space becomes too
large and we do not have enough data to sufficiently con-
dition the model. Furthermore, some instructions perform
identical or very similar tasks, resulting in many transitions
that are identical yet treated as distinct. To combat this, we
used several categorizations, each with increasing complex-
ity. The coarsest categorization contained eight categories
(math, logic, privileged, branch, memory, stack, nop, and
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Figure 1: An example of a control flow graph demonstrating
jumps.

other). The other categorizations had 34, 68, 77, 86, 154,
and 172 categories. We found the categorization with 86
categories to perform the best. This categorization had sep-
arate categories for most of the initial 8086/8088 instructions
as well as categories for some extended instruction sets such
as SSE and MMX. Further research into an optimal catego-
rization that better represents program behavior is currently
being considered and is discussed in Section 6.

Control Flow Graph. The use of control flow graphs has
become a very popular means to perform malware classifica-
tion [13, 22]. A control flow graph is a graph representation
that models all of the paths of execution that a program
might take during its lifetime (Figure 1). In the graph,
the vertices are the basic blocks, sequential code without
branches or jump targets, of the program, and the edges
represent the jumps in control flow of the program. One
of the advantages of this representation is that it has been
shown to be very difficult for a polymorphic virus to create a
semantically similar version of itself while modifying its con-
trol flow graph enough to avoid detection [22]. To compute
the similarity between different control flow graphs, we use
a simplified kernel based on previous work in the literature
[22], which works by counting similarly shaped subgraphs of
a certain size. This kernel is explained in detail in Section
4.

Dynamic Instruction Traces. Although static analysis
techniques for malware classification have been proven to
perform quite well, it has been shown that these methods can
be evaded by using advanced obfuscation transformations
[29]. Because of these limits to static analysis, we chose to
include two dynamic data sources, the instruction traces and
the system call traces collected over a five minute run using
the Xen virtual machine [7] and the Intel Pin program [25].
Dynamic instructions traces are known to produce highly
accurate malware classification results [4, 14]. Over the 1556
traces, we recorded 237 unique instructions. We built the
Markov chains in the same fashion as the disassembled code,
using the seven categorizations mentioned previously and

Statistic Malware Benign
Entropy 7.52 6.34
Binary Size .799 2.678
Packed 47.56% 19.59%
Num Vertices (CFG) 5,829.69 10,938.85
Num Edges (CFG) 7,189.58 13,929.40
Num Static Instrs 50,982 72,845
Num Dynamic Instrs 7,814,452 2,936,335

Table 1: Summary of the file information statistics used: the
average entropy, average size of the binary (in megabytes),
average number of vertices and edges in the control flow
graph, the average number of instructions in the disassem-
bled files, and the average number of instructions/system
calls in the dynamic traces. The percentage of files known
to packed is also given.

using all 237 unique instructions. We found that mapping
each of the 237 unique instructions to 237 unique vertices
provided the best results.

Dynamic System Call Traces. System call traces have
been another popular dynamic data source [9, 18, 38]. Over
the 1556 traces, we recorded 2460 unique system calls. We
used the Markov chain graph representation, and like the
disassembled instruction set, we found that treating each
unique system call as a vertex in the Markov chain led to
poor initial performance. We grouped the system calls into
94 categories where each category represents semantically
similar groups of system calls, such as painting to the screen,
writing to files, or cryptographic functions.

Miscellaneous File Information. For this data source,
we collected seven pieces of information about the various
data sources described previously. This data is summarized
in Table 1. We look at the entropy and the size of the binary
file. Similar to previous work on entropy [27, 39], we found
the average entropy of the benign files in our dataset to be
6.34 and the average entropy of the malicious files in our
dataset to be 7.52. We also have a binary feature to look
at whether the binary executable has a recognizable packer
such as UPX [49] or Armadillo [48]. To find whether a file
was packed or not, we used the PEID signature method [3].
For the disassembled binary feature, we took the number
of instructions found in the disassembled file. We also use
the number of edges and the number of vertices in the con-
trol flow graph. Finally, we took the sum of the number of
dynamic instructions and dynamic system calls as the last
feature.

4. METHOD
In this section, we first describe how we transform the six

data sources of Section 3 into more convenient representa-
tions. We then show how it is possible to define kernels,
or similarity measures, that are able to accurately compare
these data sources in their new representations. Finally, we
describe a method of multiple kernel learning that finds a
linear combination of these kernels which can then be used
in a support vector machine setting.

Data Representations. The six canonical data sources
described in Section 3 can be grouped into three sets. The
miscellaneous file information that we collect can be repre-
sented as a simple feature vector of length seven where each
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mov esi, 0x0040C000
lea edi, [esi-0xB000]
push edi
or ebp, 0xFF
or ebp, 0xFF
jmp 0x00419532
mov ebx, [esi]
mov ebx, [esi]
sub esi, 0xFC
adc ebx, ebx
jc 0x00419528
... ...

Figure 2: The left table shows an example of the trace data we collect. A hypothetical resulting graph representing a fragment
of the Markov chain is shown on the right. In a real Markov chain graph, all of the out-going edges would sum to 1.

of the seven statistics corresponds to a feature. The control
flow graphs are represented in the same way as the stan-
dard in the literature [13, 22]. For the third set, the raw
binary, disassembled binary, dynamic instruction trace, and
dynamic system call trace, we use a Markov chain represen-
tation.
Given some data source, such as the dynamic instruction

trace P, we are interested in finding a new representation,
P ′, such that we can make unified comparisons in graph
space while still capturing the sequential nature of the data.
We achieved this by transforming the data into a Markov
chain, which is represented as a weighted, directed graph. A
graph, G = 〈V,E〉, is composed of two sets, V and E. The
elements of V are vertices and the elements of E are edges.
In our representation, the edge weight, eij , between vertices
i and j corresponds to the transition probability from state
i to state j in a Markov chain, hence, we require the edge
weights for edges originating at vi to sum to 1,

∑

i;j
eij = 1.

We use an n × n (n = |V |) adjacency matrix to represent
the graph, where each entry in the matrix, aij = eij .
As an illustrative example, we will now consider the dy-

namic instruction trace. We found 237 unique instructions
across all of the traces we collected. These instructions are
the vertices of the Markov chains. The 237 instructions are
irrespective of the operands used with those instructions.
By ignoring operands, we remove sensitivity to register al-
location and other compiler artifacts. It is important to
note that rarely did the instruction trace of a single pro-
gram make use of all 237 unique instructions, and therefore,
the adjacency matrix of that Markov chain graph will con-
tain some rows of zeros. The decision to incorporate unused
instructions in the model allowed us to maintain a consistent
vertex set between all instruction trace graphs, granting us
the ability to make uniform comparisons in graph space.
To find the transition probabilities of the Markov chain,

we first scan the dynamic instruction trace, keeping counts
for each pair of successive instructions. After filling in the
adjacency matrix with these values, we normalize the ma-
trix such that all of the non-zero rows sum to one. This
process of estimating the transition probabilities ensures us
a well-formed Markov chain. Figure 2 shows a snippet of
dynamic instruction trace data with a resulting fragment of
the hypothetical Markov chain graph.

Kernels. A kernel, K(x,x′), is a generalized inner product
and can be thought of as a measure of similarity between
two objects [37]. The power of kernels lies in their ability to

compute the inner product between two objects in a possibly
much higher dimensional feature space, without explicitly
constructing this feature space. Let X be any dataset, then
a kernel, K : X ×X → R, is defined as:

K(x,x′) = 〈φ(x), φ(x′)〉 (1)

where x,x′ ∈ X, 〈·, ·〉 is the dot product, and φ(·) is the
projection of the input object into feature space. A well-
defined kernel must satisfy two properties:

1. A kernel must be symmetric: for all x and y ∈ X,
K(x,y) = K(y,x).

2. A kernel must be positive-semidefinite: for any x1, . . .
xn ∈ X and c ∈ R

n,
∑n

i=1

∑n

j=1 cicjK(xi, xj) ≥ 0.

Kernels are appealing in a classification setting due to
the kernel trick, which replaces inner products with kernel
evaluations [37]. The kernel trick uses the kernel function
to perform a non-linear projection of the data into a higher
dimensional space, where linear classification in this higher
dimensional space is equivalent to non-linear classification
in the original input space.

For the Markov chain representations and the file informa-
tion feature vector, we used a standard squared exponential
kernel:

KSE(x,x
′) = σ2e

− 1

2λ2

∑
i
(xi−x

′

i)
2

(2)

where xi represents one of the seven features for the file
information data source, or a transition probability for the
Markov chain representations. σ and λ are the hyperpa-
rameters of the kernel function (estimated through cross-
validation), and

∑

i,j
sums the squared distance between

the corresponding features.
For the control flow graph data source, we attempted to

find a kernel that closely matched the work done in the lit-
erature [22]. Although the approach we chose did not take
the instruction information of the basic blocks into account,
we settled on a graphlet kernel due to its computational ef-
ficiency [41]. A k-graphlet is defined as a subgraph, of a
graph G, with the number of nodes of the subgraph equal
to k. If we let fG be a feature vector, where each feature is
the number of times a unique graphlet of size k occurs in G,
the normalized probability vector is:

DG =
fG

# of all graphlets of size k in G
(3)

and we have the following graphlet kernel:

Kg(G,G′) = DT
GDG′ (4)
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(a) Binary SE (b) File Info SE (c) CFG 4-graphlet

(d) Dynamic Instruction SE (e) Static Instruction SE (f) System Call SE

Figure 3: Heatmaps for the six individual kernels. The first 780 samples (the top left block in the heatmaps) are the malware
samples and the second 776 samples (the bottom right block) are the benign samples. The off diagonal blocks are the
similarities between malware and benign samples.

We experimented with graphlets of size k ∈ {3, 4, 5} and
found k = 4 to be optimal with respect to both classification
accuracy and AUC.
Figure 3 shows the heatmaps for the six individual kernels

and Figure 4 shows the heatmap of the combined kernel with
the weights of the individual kernels being found using mul-
tiple kernel learning (see Equation 10). The block structure
observed in these figures is very interesting as it shows that
the kernels and data sources we selected are able to discrim-
inate between malware and benign samples. This is very
apparent in Figure 4 where we see that the top left block
(the similarity between the malware samples) has very high
values compared with the rest of the image.
These figures, especially Figure 3 (b), (c), and (e), offer

support in using the methodology presented in this paper
in a malware phylogenetic setting. The structured blocks
along the diagonal lend support to these samples coming
from similar families. Ideas to extend the current work for
use in malware phylogenetics is examined in Section 6.
If we have some set of M valid kernels, K1, K2, . . ., KM ,

we are assured that

Kcomb =
M∑

1≤i≤M

Ki (5)

is also a valid kernel [11]. This algebra on kernels allows
us to elegantly combine kernels that measure very different
aspects of the input data, or even different views of the data,
and is the object of study in multiple kernel learning [6, 43].

Multiple Kernel Learning. The goal of classical kernel-
based learning with support vector machines is to learn the
weight vector, α, describing each data instance’s contribu-
tion to the hyperplane that separates the points of the two
classes with a maximal margin [12] and can be found with

Figure 4: Heatmap for all six kernels combined with the
weights found using multiple kernel learning.

the following optimization problem:

min
α

(

1

2

n∑

i=1

n∑

j=1

αiαjyiyjK(xi,xj)−

n∑

i=1

αi

)

︸ ︷︷ ︸

Sk(α)

(6)

subject to the constraints:

7



n∑

i=1

αiyi = 0 (7)

0 ≤ αi ≤ C

where yi is the class label of instance xi. Equation 7 con-
strains the α’s to be non-negative and less than some con-
stant C. C allows for soft-margins, meaning that some of
the examples may fall between the margins. This helps to
prevent over-fitting the training data and allows for better
generalization accuracy.
Given α found in Equation 6, we have the following deci-

sion function:

f(x) = sgn

(
n∑

i

αiyiK(xi,x)

)

(8)

which returns class +1 if the summation is ≥ 0, and class -1
if the summation is < 0.
With multiple kernel learning, we are interested in finding

β, in addition to the standard α of support vector machines,
such that

Kcomb(xi,xj) =
M∑

k=1

βkKk(xi,xj) (9)

is a convex combination of M kernels with βk ≥ 0, where
each kernel, Kk, uses a distinct set of features [43]. In our
case, each distinct set of features is a different view of the
data given by our different data sources (Section 3). The
general outline of the algorithm is to first combine the ker-
nels with βk = 1/M , find α, and then iteratively keep opti-
mizing for β and α until convergence.
To solve for β, assuming we have a fixed set of support

vectors (α), the following semi-infinite linear program has
been proposed [43]:

max θ (10)

w.r.t. θ ∈ R, β ∈ R
K

subject to the constraints:

0 ≤ β (11)

∑

k

βk = 1

M∑

k=1

βkSk(α) ≥ θ

for all α ∈ R
N with 0 ≤ α ≤ 1C and

∑

i
yiαi = 0, and where

Sk(α) is defined in Equation 6. M is the number of kernels
to be combined. This is a semi-infinite linear program as all
of the constraints in Equation 11 are linear, and there are
infinitely many of these constraints, one for each α ∈ R

N

satisfying 0 ≤ α ≤ 1C and
∑

i
yiαi = 0 [17].

To find solutions for both α and β, an iterative algorithm
was proposed that first uses a standard support vector ma-
chine algorithm to find α (Equation 6), and then fixes α
and solves Equation 10 to find β. While this algorithm is
known to converge, there are no known convergence rates
[17]. Therefore, the following stopping criterion was pro-
posed [43]:

ǫt+1 ≥ ǫt :=

∣
∣
∣
∣
∣
1−

∑M

k=1 β
t
kSk(α

t)

θt

∣
∣
∣
∣
∣

(12)

Method Acc (%) FPs FNs AUC
All Six Data Sources 98.07% 16 14 .9978

Three Static Sources 96.14% 36 24 .9934
Two Dynamic Sources 88.75% 88 87 .9509
Binary 88.11% 93 92 .9437
Disassembled Binary 89.97% 71 85 .9483
CFG (4-graphlets) 88.05% 88 98 .9361
Dynamic Instructions 87.34% 92 105 .9335
Dynamic System Call 87.08% 88 113 .9368
File Information 84.83% 126 110 .9111
AV0 78.46% 4 331 n/a
AV1 75.26% 7 378 n/a
AV2 71.79% 0 439 n/a

Table 2: The classification accuracy, number of false pos-
itives and false negatives, and the full AUC values for 776
instances of benign software versus 780 instances of malware.
Statistically significant winners are bolded.

This method of multiple kernel learning has been found
to be very efficient. Solving for α and β with as many as
one million examples and twenty kernels has been shown to
take just over an hour [43]. It is important to note that
this optimization problem only needs to be solved once, as
the support vectors (α) and kernel weights (β) found can be
used to classify all of the newly collected data.

5. RESULTS
In this section, we present our results on a dataset com-

posed of 1,556 samples, 780 malicious programs and 776
benign programs. This dataset was provided by Offensive
Computing [1]. In order to get a relevant sample set, the
Offensive Computing samples were obtained from a fresh
malware feed. This feed takes place between security ven-
dors who harvest malware from a variety of sources such as
web spidering and customer uploads. These are distributed
in a batched format to researchers on a daily basis. We
also present results which demonstrates the generalization
accuracy of our methods on a separate dataset composed of
20,936 malicious samples. All of this data was gathered over
a six month period, from August 2011 to January 2012.

The metrics we use to quantify our results are classi-
fication accuracy, receiver operating characteristic (ROC)
curves, area under the ROC curve (AUC), and the average
time it takes to classify a new instance. We look at three
combination strategies: static sources, dynamic sources, and
a combination with all six of our data sources. We compare
our combined kernel method against methods based on a
single data source. We conclude this section with some inter-
esting observations we found with regard to the performance
of the static sources versus the dynamic sources.

Machine/Tools. To perform all of our experiments, we
used a machine with quad Xeon X5570s running at 2.93GHz
and having 24GB of memory. To perform the multiple ker-
nel learning, we used the modular Python interface of the
Shogun Machine Learning Toolbox [44].

Accuracy. Table 2 presents our results for the individual
kernels as well as the combined kernels using 10-fold cross
validation. The three best performing anti-virus programs
(out of 11 considered) are also shown. For the anti-virus
program results, it is important to emphasize that our ma-
licious dataset was not composed of zero-day malware, but
rather malware that is 9 months to a year old. Despite
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(a) Full ROC Image (b) Zoomed ROC Image

Figure 5: ROC curves for all six individual kernels, a kernel based on the three static sources, a kernel based on the two
dynamic sources, and the combined kernel composed of all six data sources. It is easy to see that the kernel based on all six
data sources performs significantly better than the other kernels. The full AUC values for the kernels are are listed in legend
in parenthesis.

Method .01 .05 .1 .25 .5 Full AUC
All Six Data Sources .9467 .9867 .9933 1.0 1.0 .9978

Three Static Sources .9224 .9634 .9812 1.0 1.0 .9934
Two Dynamic Sources .5000 .8487 .8882 .9605 .9803 .9509
Binary .5369 .7919 .8523 .9262 .9597 .9437
Disassembled Binary .5574 .7347 .8699 .9628 .9878 .9483
CFG (4-graphlets) .4182 .6814 .8724 .9378 .9675 .9361
Dynamic Instructions .3401 .6395 .7211 .9116 .9796 .9335
Dynamic System Call .5266 .7337 .8580 .9586 .9763 .9368
File Information .0946 .4527 .7703 .9054 .9730 .9111

Table 3: AUC values for the full ROC curve as well as values for five different false positive rates: .01, .05, .1, .25, and .5.
The combined kernel composed of all six data sources performs the best at all values.

this, the worst performing data source based on the file in-
formation feature vector still had ∼6% better classification
accuracy than the best anti-virus program. All but one of
the false positives found by the anti-virus programs were
actually confirmed to be true positives as discussed later in
this section.
The best performing method was the combined kernel that

used all six data sources and achieved an accuracy of 98.07%.
Although using purely static sources performed very well
(96.14%), adding dynamic information significantly improved
overall performance. All of the single data sources were be-
tween 84% to 89% with the single data source winner being
the disassembled binary at 89.97%. The disassembled binary
most likely has an advantage over the raw binary because it
was unpacked before it was disassembled.

ROC Curves / AUC Values. To analyze the different
data sources with regard to different false positive thresh-
olds, we looked at the ROC curves and various ROC points
representing different false positive rates. Figure 5 plots all
the ROC curves together (including the combined kernels)
along with a zoomed version of the curve. Figure 5 (b) is
particularly informative as we can see that the combined
kernel, which includes all six data sources, performs bet-
ter than any single data source or the two other combined

kernels for all false positive rates. If there are certain time
and/or other resource constraints, Figure 5 (b) also shows
that we are able to achieve reasonably high results by just
using the kernel based on the three static sources.

Table 3 displays the full AUC value, as well as the AUC
values for five different false positive rates: 0.01, 0.05, 0.1,
0.25, and 0.5. We see that by integrating all six data sources,
we can achieve an AUC value of .9467 with a .01 false pos-
itive rate, significantly higher than any other kernel based
on a single data source, which adds more support to the
power of our approach and multiple kernel learning in gen-
eral. The file information data source is the worst perform-
ing data source with regard to this metric, and as we explain
at the end of this section, we expect this is due to misclassi-
fying a large percentage of files that are packed and/or have
abnormal entropy values.

Learned Kernel Weights. The kernel weights learned
from 10 are an interesting way to look at how informative
different data sources are with regard to the classification
accuracy. The weights we found for our data views are shown
in Table 5. It is interesting to note that the weights are not
representative of how well the single data source does at
classification. For example, the dynamic instruction view
has the highest kernel weight among the weights for all six
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Method Trace Data Transformation Classify Total
All Six Data Sources 300.0s 3.12s 0.21s 303.52s
Three Static Sources n/a 1.18s 0.13s 2.03s
Two Dynamic Sources 300.0s 1.94s 0.06s 302.53s
Binary n/a 0.26s 0.05s 0.31s
Disassembled Binary n/a 0.63s 0.05s 0.68s
CFG (4-graphlets) n/a 0.97s 0.06s 1.03s
Dynamic Instructions 300.0s 1.10s 0.04s 301.15s
Dynamic System Call 300.0s 0.82s 0.01s 300.83s
File Information 300.0s 1.41s 0.01s 301.41s

Table 4: The average time it takes from receiving the raw data until a classification decision can be made. This time includes
running the program for the dynamic sources (we allow 5 minutes for the tracing), transforming the data to the appropriate
representation (which includes the time to disassemble the code, collecting all of the 2-grams from the trace files, building the
Markov chains, etc.), and finally computing the class from the decision function of Equation 8.

Figure 6: Plot demonstrating the trade-off between accuracy
and time to classify. Time is in seconds and the x-axis is
the time it takes to first collect the dynamic trace (for the
dynamic data sources), transform the data instance into our
representation, and finally classify the instance.

Data View All Views Static Views Dyn Views
Binary .2248 .2671
Disassembled .2576 .3284
CFG .1559 .4046
Dyn Instrs .3299 .5817
System Calls 0.0 .4183
File Info .0319

Table 5: The kernel weights learned from Equation 10 for
the different kernel combinations we examine.

views, but in our experiments, the binary, disassembled and
CFG all individually have higher accuracy than the dynamic
instruction view.

Speed. Due to the fact that computing the kernel for each
dataset, finding the kernel weights for the combined ker-
nels, and finding the support vectors for the support vector
machine are all essentially O(1) operations (all of these cal-
culations only need to be done once, offline), we will focus
our analysis of the timing results on the average amount of
time it takes to classify a new instance. As a note of interest,
the time to find the kernel weights and support vectors for
the kernel composed of all six data sources, averaged over
10 runs, was only 0.86 seconds!

Given a new instance to classify, there are two or three
steps, depending on whether we are using a dynamic data
source, that must be performed:

1. Run the instance in a virtual machine keeping a log
of the instructions and system calls the program per-
forms.

2. Transform the data source into one of our data repre-
sentations.

3. Classify the transformed data instance according to
Equation 8.

In our timing results, we allow five minutes to collect the
dynamic trace data. Transforming the data to our repre-
sentation could mean several different things for each of the
different data sources. For instance, we might have to disas-
semble the data, find the 2-grams in the disassembled data,
and finally build the Markov chain; we might have to build
the control flow graph and find the number of graphlets with
a specific structure; we might have to collect the statistics
of Table 1 in the case of the file information data source;
etc. For the classification step, it is important to note that
support vector machines are known to find sparse α vectors
[12], easing the computational burden of Equation 8.

The timing results, which are broken down into the three
stages, are presented in Table 4 and are pictorially featured
in Figure 6. These results were averaged over the entire
dataset. As the reader can see, classifying an instance takes
very little time, and the only real bottleneck is the time to
collect the dynamic trace. The combined kernel composed
of the three static sources is especially impressive as we have
shown it to have great performance and it only takes 2.03
seconds on average to transform the data and make a clas-
sification decision. Using the combined kernel based on the
static data sources, assuming 2.03 seconds per data instance,
it is possible to classify up to 42,561 new samples each day!
Again, the methods presented in this paper are highly paral-
lelizable, and these methods will scale very easily with more
computational resources.

Testing on a Large Malware Sample. As explained
earlier in this section, obtaining a large benign dataset is
difficult. On the other hand, we had an additional 20,936
malware samples at our disposal. We are treating this data
as a validation set to test the generalization accuracy of
our methods. We first train on all of the 1,556 samples
(780 malicious and 776 benign), find the β’s and α’s, and
finally classify the 20,936 malicious samples as either benign
or malicious according to Equation 8.
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Method Accuracy (%)
All Six Data Sources 97.97%
Three Static Sources 95.27%
Two Dynamic Sources 91.57%
Binary 86.76%
Disassembled Binary 88.23%
Control Flow Graph (4-graphlets) 85.92%
Dynamic Instructions 88.42%
Dynamic System Call 86.38%
File Information 84.46%
AV0 57.55%
AV1 56.01%
AV2 55.32%

Table 6: The classification accuracy on a validation dataset
consisting on 20,936 malicious samples.

The results for this experiment are shown in Table 6. The
classification accuracies are similar to those of the dataset
with 780 malicious and 776 benign samples with the excep-
tion that the signature-based anti-virus programs do worse.
This is due to the fact that in the original dataset, these
methods would always get close to 100% accuracy on the
benign samples giving a positive skew to their results. As
with the previous results, we can see that by combining data
sources in our multiple kernel learning framework we were
able to achieve a large increase in classification accuracy.
The results presented in Table 6 suggest that our methods
would generalize very well to larger datasets given that they
performed well on this validation set.

Observations. A well-known problem in any supervised
machine learning setting is the integrity of the training dataset.
In training our classifier, we assumed that the labeled be-
nign samples in our dataset were actually benign. This was
reasonable as the executables were taken from clean installa-
tions of commercial software. To test this hypothesis, we ran
our classifier based on the combined kernel, with all six data
sources, using 10-fold cross validation 50 times and counted
how many times a data instance was classified incorrectly.
We found 19 data instances that were consistently misclas-
sified, 8 which were labeled as malicious and 11 which were
labeled as benign. 5 of the 11 benign samples were found
to actually be malicious using VirusTotal [2]. It is interest-
ing that our method was able to reduce the original 1,556
instance dataset to a manageable size of 19 suspicious sam-
ples, making closer manual inspection of these files much
more manageable. Note that we did not correct the dataset
for this paper, and these 5 files are still considered false pos-
itives in the previous results.
Traditional static analysis techniques have been shown to

be insufficient given the rise of newer malware obfuscation
techniques [29]. Due to these limitations, we chose to include
dynamic data sources to improve malware classification de-
spite the time constraints these data collection methods im-
pose. To further analyze some of the pitfalls of our static
data sources, we again ran the combined kernel with all six
data sources, a kernel with all of the static data sources, a
kernel with all of the dynamic data sources, and the six sep-
arate kernels, one for each of the six different data sources
50 times, keeping track of the files that were consistently
misclassified with respect to each kernel.
Table 7 shows the percentage of files consistently misclas-

sified which were packed. The kernel based on the binary
data had significant problems classifying packed benign in-

Method Benign Malicious
All Six Data Sources 0.00% 70.00%
Three Static Sources 20.00% 36.84%
Two Dynamic Sources 18.75% 45.95%
Binary 43.75% 43.14%
Disassembled Binary 10.20% 53.85%
CFG (4-graphlets) 13.89% 55.10%
Dynamic Instructions 20.00% 38.24%
Dynamic System Call 21.62% 32.56%
File Information 28.09% 34.31%

Table 7: % of files which were packed and consistently mis-
classified over 50 runs with our different kernels. Note the
average percentage of packed files in the entire dataset is
19.59% and 47.56% for benign and malicious files, respec-
tively.

Method Benign Malicious
All Six Data Sources 7.43 6.77
Three Static Sources 7.41 6.91
Two Dynamic Sources 6.26 7.50
Binary 7.42 7.01
Disassembled Binary 6.15 7.58
CFG (4-graphlets) 6.12 7.66
Dynamic Instructions 6.29 7.57
Dynamic System Call 6.41 7.55
File Information 7.77 5.98

Table 8: Average entropy of files consistently misclassified
over 50 runs with our different kernels. Note that the average
entropies over the entire dataset are 6.34 and 7.52 for benign
and malicious files respectively.

stances, as one would expect, with 43.75% of the false pos-
itives being packed (only 19.59% of all benign instances in
the training data were packed). On the other hand, us-
ing dynamic data sources, the percentage of false positives
that were packed is the same as the packed percentage of
the training data, which would offer support for the ker-
nels based on these data sources not being deceived by the
packer. Although the dynamic traces of packed files will
also have an unpacking“footprint”, it has been shown that 5
minutes for a dynamic trace is enough time for a significant
number of the instructions to represent the true behavior
of the program [34]. A notable exception of static sources
stumbling on programs that were packed is the disassembled
data source (and the control flow graph which is based on
the disassembled data source), but to get these data sources,
we first had to unpack the binary.

Table 8 shows the average entropy of files which were con-
sistently misclassified. The link between entropy and files
being packed is well-known [27], therefore we see similar
results to Table 7. Again, the two dynamic sources’ clas-
sification accuracies seem to be independent of the entropy
as the average entropy of the files they misclassify corre-
sponds to the average entropy of the entire dataset. Also,
much like the previous results, the binary data source had
problems with classifying instances whose entropies differ
significantly from the norm. As we would expect, the file
information data source had the most problems with en-
tropy (remember that entropy is one of the seven features
for this source), with average entropy of misclassified benign
and malicious files being 7.77 (average in dataset: 6.34) and
5.98 (average in dataset: 7.52), respectively.

11



Malware Sample K(Tracepin,Traceether)
sample0 .9010
sample1 .8392
sample2 .8171
sample3 .7719
sample4 .6424
sample5 .5864
sample6 .5399
sample7 .3725

Table 9: The kernel values between two Markov chains of
the same program’s dynamic instruction trace, one trace run
with Intel Pin, and one trace run with the Ether framework.
The kernel values were computed using Equation 2.

Having a dynamic tracing tool that is able to evade de-
tection from the program being traced is essential to get an
accurate picture of how the program actually behaves in the
wild. Unfortunately, there are malware that are able to de-
tect if they are being run in a sandboxed environment and
being traced [9]. We choose the Intel Pin program [25] be-
cause it allowed us to collect both instructions and system
calls simultaneously, but it does not make an effort to be a
transparent tracing tool like the Ether framework [15]. The
dynamic instruction data source’s classification accuracy in
this paper is lower than that reported in the literature [14]
and we suspect that this is in part due to Intel Pin not being
transparent and the malware altering its behavior.
To test this hypothesis, we looked at 8 malicious data in-

stances that were consistently misclassified (over 50 runs)
by the kernel based on the dynamic instruction data source.
We first collected the dynamic traces with both Intel Pin
and Ether and then computed the kernel values between
the resulting Markov chains of these traces. These results
are displayed in Table 9. Note that a kernel value of zero
represents completely orthogonal behavior between the two
traces (no instruction transitions in common) and a kernel
value of one represents exactly the same program behavior
between the two traces, which would be highly unlikely even
if we used the same tracing tool for both samples (a kernel
value of 0 is also highly unlikely for obvious reasons). Al-
though this is a coarse measure as to whether the program
alters its behavior, it does give us useful information as to
why these instances could have been classified incorrectly.
The lower values of sample4, sample5, sample6, and sam-
ple7 are particularly interesting and do suggest that their
dynamic instruction traces are substantially different under
the different tracing tools.

6. LIMITATIONS AND FUTUREWORK
There has been a rising interest in learning how to cluster

malware so that researchers can gain insight into the phylo-
genetic structure of current viruses [8, 19, 23, 35]. Because
the majority of new viruses are derived from, or are compos-
ites of, established viruses, this information would allow for
more immediate responses and allow researchers to under-
stand the new virus much more quickly. Given our kernel
matrix, we can easily use spectral clustering [26] to partition
our dataset into groups with similar structure with regard to
the data sources we have chosen. We would first construct

the weighted graph Laplacian, a |V | × |V | matrix:

L =







1− evv

dv
if u = v, and dv 6= 0,

− euv√
dudv

if u and v are adjacent,

0 otherwise.

(13)

where evv is the edge weight, in our case the entry in the ker-
nel matrix, and dv is the degree of the vertex, which would be
the sum of the corresponding row in the kernel matrix. Then
we would perform an eigen-decomposition on the Laplacian
and take the l-smallest eigenvectors. Finally, we would use
standard k-means clustering with the l-smallest eigenvectors
as the features [16].

With our method, we are not restricted to only using dif-
ferent data sources, but we also have the flexibility to incor-
porate different data representations for each data source
assuming a suitable kernel can be defined. For instance, it
is common in the literature to use n-gram analysis [14, 45]
on the dynamic trace or static data. But these approaches
have the drawback of choosing the appropriate n. In our
approach, we could use several values for n and then let
the multiple kernel learning optimization weight the choices
which it finds to be the most informative. This would be
an interesting avenue for future research as we can view the
same dataset in a variety of ways which would allow us to
extract even more information for classification.

In this paper, we made the decision to use a standard
squared exponential kernel (Equation 2) for the majority of
the data sources. With our framework, we have the ability
to incorporate more advanced kernels that have the ability
to measure different aspects of similarity of the different data
sources. These kernels can be based on random walks over
the Markov chains, the eigen-structure of the graph Lapla-
cians, the number of shortest paths in the graphs, etc. [20].
And like using different n-gram values, the multiple kernel
learning optimization problem would find the kernel weights
it deems most appropriate.

Although we have shown that acceptable performance can
be achieved if certain time constraints are imposed by using
solely static data sources, the full multiple kernel learning
infrastructure, which includes the time it takes to collect
the dynamic trace data, would be too resource intensive to
be deployed on a normal user’s system. There has been a
rising interest in performing virus classification in the cloud
[30, 31, 50] due to the constraints of users’ resources. Our
work would be perfect for a cloud-based solution as we could
dedicate machines to collect the dynamic trace data and
wouldn’t have to burden the user’s system with these ex-
pensive tracing tools.

As we explained in Section 3, we choose to use instruc-
tion/system call categorizations to reduce the size of the
vertex set of the resulting Markov chains to avoid the curse
of dimensionality with these models. Choosing an optimal
instruction categorization is a non-trivial task. For exam-
ple, using the coarse categorization with 8 categories on the
disassembled data gave us ∼10% less classification accuracy
than the categorization with 86 categories. There is also the
possibility that different categorizations could prove to be
better suited for different tasks. Clustering could be easier
with a categorization that uses categories based on different
instructions that are more likely to be used by different com-
pilers. Or similarly, categories based on different instruction
sets, such as SSE, MMX, AVX, and FMA, could be useful.

A unified data gathering infrastructure that would supply
us with both our static and dynamic data sources would be
an invaluable tool for our analysis. BitBlaze [42] aims to pro-
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vide this need, incorporating static analysis techniques such
as disassembled code generation, control flow graph genera-
tion, and other data flow analyses using the static analysis
component of BitBlaze, Vine. The dynamic analysis com-
ponent of BitBlaze, TEMU, allows for dynamic instruction
traces and memory taint analysis, among other things. Bit-
Blaze has been shown to provide reliable data that has been
used to produce very accurate malware classification results
[51]. It would be interesting to take advantage of all of the
data sources provided by BitBlaze in our multiple kernel
learning framework.

7. CONCLUSIONS
In this paper we have shown that significant benefits, with

respect to both classification accuracy and number of false
positives, can be gained when malware researchers use all
of the information about executables that are available to
perform classification, and not just restricting malware clas-
sification to a single data source. We were able to achieve
an accuracy of 98.07% on a dataset of 780 malware and 776
benign instances. We showed that while we had 16 false pos-
itives in this dataset, several of these were confirmed to be
true positives. Our ROC curve analysis showed significant
increases in performance when the data sources were com-
bined, and also that acceptable performance can be achieved
with just static sources in a resource constrained environ-
ment.
We demonstrated several interesting observations about

our results, illustrating some of the pitfalls of both static
analysis and dynamic analysis techniques. Namely that static
data sources have problems classifying instances which were
packed and/or had abnormal entropy values. We also showed
the importance of having a dynamic tracing tool that is ca-
pable of evading detection from the malware so that we can
get a truly representative sample of how the malware actu-
ally behaves in the wild.
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Henschel, Christian Widmer, Jonas Behr, Alexander
Zien, Fabio de Bona, Alexander Binder, Christian
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