
Int. J. Inf. Secur. (2015) 14:1–14
DOI 10.1007/s10207-014-0242-0

REGULAR CONTRIBUTION

Malware analysis using visualized images and entropy graphs

Kyoung Soo Han · Jae Hyun Lim · Boojoong Kang ·
Eul Gyu Im

Published online: 29 April 2014
© Springer-Verlag Berlin Heidelberg 2014

Abstract Today, along with the development of the Inter-
net, the number of malicious software, or malware, distrib-
uted especially for monetary profits, is exponentially increas-
ing, and malware authors are developing malware variants
using various automated tools and methods. Automated tools
and methods may reuse some modules to develop malware
variants, so these reused modules can be used to classify
malware or to identify malware families. Therefore, similar-
ities may exist among malware variants can be analyzed and
used for malware variant detections and the family classi-
fication. This paper proposes a new malware family classi-
fication method by converting binary files into images and
entropy graphs. The experimental results show that the pro-
posed method can effectively distinguish malware families.

Keywords Computer security · Malware analysis ·
Malware visualization

1 Introduction

The number of new malware and variants on the Internet has
been continuously increasing with the help of various auto-
mated tools. Because of automated tools, similar modules
may appear in malware variants, and these similar modules
can be used to detect variants. Most of antivirus programs use
certain character strings or patterns, i.e., signatures to detect

K. S. Han · J. H. Lim · B. Kang
Department of Electronics and Computer Engineering,
Hanyang University, Seoul, Korea
e-mail: 1hanasun@hanyang.ac.kr

E. G. Im (B)
Division of Computer Science and Engineering,
Hanyang University, Seoul, Korea
e-mail: imeg@hanyang.ac.kr

malware [1]. However, signature-based detection methods
can be avoided if diverse detection avoidance techniques are
used in malware [2]. So, malware researchers have studied
various analysis techniques to respond to malware variants
and detection avoidance techniques [3–6].

This paper proposes a malware analysis method that uses
visualized images and entropy graphs to detect and classify
new malware and malware variants. Experimental results
showed that our proposed method can effectively classify
malware families.

The composition of this paper is as follows: Sect. 2
described related work on malware analysis, detection, and
classification methods. In Sect. 3, a malware analysis method
using bitmap images and entropy graphs is proposed, and
experimental results are shown in Sect. 4. In Sect. 5, limita-
tions and future work are discussed. Finally, in Sect. 6, the
conclusions of this paper are presented.

2 Related work

There are various malware detection and classification
methods, including graph-based methods [7–9], instruc-
tion sequence-based methods [10,11], instruction freque-
ncy-based methods [12,13], tainted analysis [14], API call
monitoring methods [15,16], and behavior-based methods
[17] have been proposed to detect and classify malware.
Even though there have been many researches on static and
dynamic analysis, these analysis methods still have problems
with new malware and their variants.

Recently, several visualization techniques have been pro-
posed to compensate or to help malware analysis. These
techniques allow human analysts to observe the features of
malware visually. Trinius et al. [18] visualized the behav-
ior of malware into treemap and thread graph by collecting

123

2 K. S. Han et al.

information about the API calls and the operations of the
performed actions in a sandbox. The treemap shows infor-
mation such as percentage of API calls and section infor-
mation, and the thread graph shows the actual chronological
behaviors of a malware. Saxe et al. [19] proposed a system
to visualize the shared system call sequence relationships.
They extracted meaningful system call sequences from sys-
tem call logs and constructed a Boolean vector representation
of the malware binary file corpus, and then, two visualiza-
tion interfaces have implemented. The first shows map-like
visualization of similarity, and the second shows similarities
and differences between selected samples.

The static analysis-based visualization techniques also
have been proposed. Conti et al. [20] presented an integrated
visualizing system that contains many graphical visualization
techniques. Their system shows each byte, the presences of
bytes, and duplicated sequences of bytes contained within a
sample. Because of the overhead of dot plot algorithm, they
implemented simplified algorithm by applying these visual-
ization techniques. Anderson et al. [21] visualized the simi-
larity measurement results using all of the available informa-
tion extracted through the static analysis and dynamic analy-
sis into images named heatmap. Nataraj et al. [22] proposed
a method to classify malware by using image processing.
The proposed method represented executable binary files into
gray-scale bitmap images by scanning every bit in binary files
by converting each bit value into an image pixel. After gen-
erating images, they applied an abstract representation tech-
nique for the scene image, i.e., GIST [23–25], to compute
texture features and to classify malware. They proved that
the binary texture analysis techniques using image process-
ing can classify malware more quickly than existing malware
classification methods [26]. However, since the texture analy-
sis method has large computational overheads, the proposed
method has problems to process a large number of malware.
D. Baysa et al. [27] used two-dimensional matrix to compare
malware, but the approach has high computational overheads
because 3-gram opcode sequences are used to generate the
matrix.

3 Proposed method

3.1 Overview

In this paper, we propose a malware analysis method using
visualized images and entropy graphs. The proposed method
consists of three steps, as shown in Fig. 1. In Step 1, the
“Bitmap Image Converter” receives Windows PE (Portable
Executable) binary files as inputs and converts binary files
into bitmap images to visualize the binary files. After the
bitmap image conversion, in Step 2, the “Entropy Graph Gen-
erator” calculates the entropy value of each line of bitmap

Fig. 1 Visualized analysis method

images and generates entropy graphs based on these values
to analyze the similarities of original binary files. In addition,
binary files in the Windows PE format are divided into sec-
tions for further analysis. In Step 3, the bitmap images and
entropy graphs are stored in the database as features of mal-
ware, and the features are used to detect and classify malware
by calculating similarities of entropy graphs.

Note that the bitmap images in our proposed malware
analysis method are used as following purposes. First, they
allow malware researchers to understand the structures of
malware binary files without disassembling and to make
a decision for applying of unpacking. Second, the bitmap
images can be used to identify packed sections as well as
to classify malware families. The purpose of this paper is
a malware family classification based on the entropy graph
similarity.

3.2 Bitmap image conversion

A technique to represent different files with gray-scale
images was presented in [28], and a technique of convert-
ing binary files to bitmap images became concrete in [22]. In
this paper, we adopted the converting techniques and imple-
mented a “Bitmap Image Converter”.

As shown in Fig. 2, the “Bitmap Image Converter”, includ-
ing three modules named (1) section initializer, (2) byte
scanner and (3) BMP recorder, converts input binary files
into gray-scale bitmap images so that malware researchers
can visually analyze the binary files. In order to convert

Fig. 2 Bitmap image conversion

123

Visualized images and entropy graphs 3

binary files into bitmap images, first, the “Section Initial-
izer” extracts information about sections such as the name
of the section, the starting offset, and the size of the section
respectively from the header of the PE binary file. Second,
the “Byte Scanner” scans bytes of the binary file based on
the section information, and then, “BMP Recorder” stores
the byte values in bitmap pixels. As a result, a binary file can
be converted to a gray-scale image.

The converted bitmap images can contain patterns that can
be judged as binary features. Since the input binary files in
the PE format are used in Windows operating systems, icons
of malware can also be extracted from the resource section.

3.3 Entropy graph generation

When binary files are converted into bitmap images, mal-
ware researchers can visually compare the bitmap images.
However, one of the problems is that similarity calculation
is difficult and time-consuming, and analysis automation is
even more difficult. To solve these problems, we generated
entropy graphs based on the entropy values from the bitmap
images so that automated comparison can be possible.

As shown in Fig. 3, the “Entropy Graph Generator” gen-
erates entropy graphs based on the bitmap image. That is,
the gray-scale bitmap image is used to calculate entropy val-
ues, which are used to generate a entropy graph. For this
purpose, entropy graph generator calculates those entropy
values using color values of each line of the bitmap image
and then represents these values as a graph called entropy
graph. For example, in case of the image in which the width
is 256 pixels, the entropy value of 256 pixels is represented as
one pixel of an entropy graph. As a result, an entropy graph

for an entire binary file can be generated. An entropy graph
represents entropy values in y axis and heights of bitmap
images in x axis.

Data of entropy graph is calculated as follows:

– Entropy: Entropy is a value that indicates how irregular
values appear. If occurrences of all values are same, the
entropy value will be the largest. On the contrary, if cer-
tain byte values occur with high probabilities, the entropy
value will be smaller. Therefore, entropy can be used to
compare bitmap images. Equation (1) is used in entropy
calculations, where pi refers to the probability of appear-
ances of a byte value i [29]. The range of values was set to
0 through 255 because byte code values are in the range
of 0 through 255.

Entropy = −
255∑

i=0

pi × log2 pi (1)

3.4 Entropy graph similarity measurement

In this paper, the entropy graphs used for the similarity cal-
culation of the malware binary files are generated using the
entire section. Generally, the .text section contains executable
code. However, some malware binary files do not include
the .text section, but include the section with different names
such as .CODE. Therefore, we focused on the entropy graph
of the entire section.

After entropy graphs are generated, numerical similar-
ity measurement can be conducted automatically through an

Fig. 3 Entropy graph generation

123

4 K. S. Han et al.

Fig. 4 Entropy graphs greatly differ from each other in length

entropy graph similarity calculation algorithm. To measure
the similarity between two entropy graphs, we modified the
histogram similarity measuring method proposed by Strelkov
et al. [30]. To measure the graph similarities, the following
two values, k1 and k2, are used.

– k1: k1 is a value calculated using the cumulated sum
of differences of entropy values in the same x-position.
Therefore, k1 indicates the similarity of general forms of
two entropy graphs. When k1 is calculated, the compu-
tation that must be performed first is to align the x-axes
(the heights of bitmap images) of the two entropy graphs.
For instance, as shown in Fig. 4, if the shorter entropy
graph H is included in the other entropy graph L , the
maximum entropy value, i.e., max , found in the shorter
entropy graph H , the corresponding values of the left side
length l and the right side length r of max are used to

Fig. 5 Entropy graphs after solving the problem of different lengths

shorten the longer entropy graph L , as shown in Fig. 5,
to equalize the x-axes before k1 is calculated.

Equation (2) is used to calculate k1 after the lengths of the
x-axes of two entropy graphs are equalized, where s[H, L]
refers to the sum of distances between the two entropy graphs,
and s̄ is the area of the entropy graph.

k1[H, L] = exp

(
− s[H, L]

s̄

)
(2)

where

s[H, L] =
∫

x

|H(x) − L(x)| dx (3)

s̄ = Average(H) × Length of y axis (4)

For the two entropy graphs H and L , distances in each x
axis point are calculated and accumulated. After calculating

123

Visualized images and entropy graphs 5

the accumulated value for all the points, the sum is divided
by s̄, and k1 is calculated through the function exp(). If two
entropy graphs are perfectly the same, no distance will exist,
and thus, the value of k1 will become 1. Since the range of
the values of s[H, L] is from 0 to infinity, when the input
value, s[H, L], is 0, k1 is the maximum value of 1, and as the
input value increases, k1 converges toward 0 on the contrary.

– k2: k2 is a value calculated using the distance between
local maxima of entropy graphs. In this paper, local max-
ima with larger variations in each entropy graph would
be reflected more on k2. Equation (5) is used to calculate
k2. Equations (6)–(9) are also used to calculate individual
elements.

k2[H, L] =
∑

i

ui [H]ci [H, L] (5)

where

ui =
∣∣H (2)(xi)

∣∣ × li
∑n(H)

i=1

∣∣H (2)(xi)
∣∣ × li

(6)

ci, j = cx
i, j × cy

i, j (7)

cx
i, j = − exp

(
�xi, j

δx

)2

�xi, j = xi − x̃ j (8)

cy
i, j = − exp

(
�yi, j

δy

)2

�yi, j = H(xi) − L(x̃ j) (9)

ui refers to the ratios of reflection of local maxima, where ci is
calculated using the distance between the i th local maximum
and the local maximum closest to the i th local maximum; li
refers to the distance between a straight line formed by two
points on both sides of a local maximum where variations
become between 0 and the local maximum. For li to have
a high value, the H(x) values of the two points should be
maximally similar to each other, and the H(x) value of the
local maximum should be larger than the H(x)values of these
two points. The larger value of the second derivative at H(x)

makes the sharper shape of the local maxima. Therefore,
the sharper and higher shape of local maxima, the larger the

Fig. 6 Gray-scale images of Delf family

123

6 K. S. Han et al.

weighted value given to the relevant local maxima. n(H)

refers to the number of local maxima on entropy graph H .
The value of ci is a double of the value obtained by func-

tion exp(), and the resultant value ranges from 0 to 1. The
result of the multiplication of the two values also ranges from
0 to 1. If all resultant values of ci are 1, the sum of ui will
also be 1, and thus, k2 will be 1. As the values of ci converge
on 0, k2 also converges on 0. Therefore, k2 ranges from 0 to
1. Detailed explanation of k2 can be found in [30].

When k1 and k2 have been calculated, these two values
are added up to calculate the final similarities of the entropy
graphs. The ratios of reflection of k1 and k2 are determined
to use the sum of the values of k1 and k2 in the measurement
of the similarities between entropy graphs. Equation (10) is
used in the measurement of entropy graph similarities using
k1 and k2, where t1 and t2 are weighted values given to the
values of k1 and k2, and the sum of them is 1. The values of
t1 and t2 used in this paper are 0.7 and 0.3, respectively.

S = t1 × k1 + t2 × k2 (10)

4 Experimental results

4.1 Experimental environment and data

The proposed method was implemented in the C language
using Visual Studio 2010. Total 24 benign binaries and 27
malware binary files from 8 families were tested in the first
experiments. Malware binary files used in the experiments
were collected from VX Heavens [31]. The collected mal-
ware binary files were Backdoors, Trojans, Viruses, and
Worms that are executable files in the Windows operating
system. We used malware file names assigned by Kaspersky
[32]. In order to generate entropy graphs, we used Gnuplot
[33], which can draw entropy graphs only with coordinate
data and simple commands. After examining the possibili-
ties for malware classification and determining a threshold to
minimize false-positives through the first experiments using
small data, then we experimented with large-scale malware
data.

Fig. 7 Entropy graphs of Delf family

123

Visualized images and entropy graphs 7

4.2 Results of experiments conducted with same malware
family variants

In this subsection, we will explain experimental results of
malware variants, which belong to the same family.

– Trojan-Dropper.Win32.Delf: Figure 6 shows the gray-
scale images of variants of the Trojan-Dropper.Win32.Delf
family, and Fig. 7 shows corresponding entropy graphs
based on entropy values. In Fig. 6, it can be seen that a
particular pattern can be identified despite the heights of
bitmap images being different, since the sizes of individ-

Table 1 Entropy graph similarities of Delf family

Trojan-Dropper.Win32.Delf

gb gy ji xf

gb 1 0.920 0.754 0.759

gy 0.920 1 0.760 0.763

ji 0.754 0.760 1 0.962

xf 0.759 0.763 0.962 1

ual binary files are different. It can be also seen from the
entropy graphs in Fig. 7 that the patterns of the entropy
values are similar to one another. In addition, as men-
tioned in Sect. 3.4, since the similarities are calculated
with reference to the maximum value of the graph, their
similarities have high values. The results of the similar-
ities for the entropy graphs of Delf family are shown in
Table 1.

– Virus.Win32.Evol: Figure 8 shows gray-scale images
and entropy graphs of the entire section from the
Virus.Win32.
Evol family. Because the sizes of malware binary files
are small, the heights of the bitmap images are low and
the maximum values of the x axis of the entropy graphs

Table 2 Entropy graph similarities of Evol family

Virus.Win32.Evol

a b c

a 1 0.938 0.943

b 0.938 1 0.991

c 0.943 0.991 1

Fig. 8 Gray-scale images and entropy graphs of Evol family

Fig. 9 Entropy graphs of Nethief family

123

8 K. S. Han et al.

Fig. 10 Entropy graphs of Zepp family

Fig. 11 Entropy graphs of WMPatch family

Table 3 Entropy graph similarities of Nethief family

Backdoor.Win32.Nethief

21 22 25

21 1 0.889 0.951

22 0.986 1 0.949

25 0.951 0.949 1

are small too. As shown in Table 2, the similarities among
the entropy graphs are high because the entropy graphs
are quite similar.

– Other Malware Families: Similarly, Figs. 9, 10, and 11
show the entropy graphs of Backdoor.Win32.Nethief,
Virus.Win32.HLLP.Zepp and Trojan-Spy.Win32. WM
Patch families. Also, Tables 3, 4, and 5 show entropy
graph similarities of individual families. The average
similarity of each family was greater than 0.9 because
of similar sizes of the binary files.

4.3 Classification threshold

Figure 12 presents similarities of five malware families and
benign files. The left side of the chart has benign files and the
right side has malware binary files. The similarities between

Table 4 Entropy graph similarities of Zepp family

Virus.Win32.HLLP.Zepp

a c i

a 1 0.889 0.880

c 0.889 1 0.982

i 0.880 0.982 1

Table 5 Entropy graph similarities of WMPatch family

Trojan-Spy.Win32.WMPatch

e g i

e 1 0.985 0.983

g 0.985 1 0.981

i 0.983 0.981 1

variants of the same malware family have high values over the
average 0.7 compared with those values for benign and other
malware binary files. Therefore, the malware family classifi-
cation can be possible by calculating the similarities among
entropy graphs of unknown binary files, those of benign and
malware binaries.

123

Visualized images and entropy graphs 9

Fig. 12 The result of similarities among benign and malwaew binary files

The false-positive rates and false-negative rates accord-
ing to the different threshold values are shown in Fig. 13.
The false-positive rate will be increased if benign files are
detected as malware [34]. On the other hand, if malicious
binary files are detected as benign, then the false-negative
rate will be increased. When the threshold value for classifi-
cation is increased, the false-positive rate is reduced, but the
false-negative rate is increased. The threshold value of 0.75 is
the best combination of false-positive rate and false-negative
rate in Fig. 13. To classify new or unknown malware, we
can use 0.75 as a threshold, and our proposed method will
have about 3 % false-negative rate and 3.5 % false-positive
rate.

4.4 Results of experiments using large-scale data

In the previous experiments, we examined the possibilities
of the malware classification based on the similarities of the
entropy graphs using small data. In addition, we discovered
the classification threshold which can minimize both false-
positives and false-negatives.

Fig. 13 The changes of false-positive rate and false-negative rate
according to the threshold

This section shows experimental results with large-scale
data. As shown in Table 6, we used total 1,000 malware binary
files from 50 families. Similarities are calculated by compar-
ing entropy graphs, and Fig. 14 shows the average similar-
ities among individual malware families. The figure shows

123

10 K. S. Han et al.

Table 6 Large-scale data of malware binary files

Type Family (# of Variants)

Backdoor Obana (13)

Worm Chiviper (16) Downloader (72)

Email-Worm Joleee (16) LoveLetter (13)

Mydoom (14) Warezov (12)

Net-Worm Allaple (15) Morto (17)

Rootkit HareBot (14) Hodprot (25

Small (40) Zybr (19)

Trojan Bepiv (10) Favadd (16)

Fidgen (15) Krament (15)

Lampa (23) Llac (16)

Migotrup (14) Pakes (10)

Refroso (13) Regrun (17)

Remex (15) Rozena (14)

Small (58) Starter (18)

Wigon (94)

Trojan-Banker Banker (14)

Trojan-Downloader Deliver (11) Helminthos (13)

ILovlan (20) Myxa (10)

Pher (10) Plosa (7)

Winlagons (15)

Trojan-FakeAV AntiSpyware (16) WinAntiVirus (8

Trojan-PSW Element (10) FireThief (15)

MailRu (16) QQPass (61)

Rebnip (15) YahuPass (13)

Trojan-Ransom Birele (18) BlackDeath (6)

Cidox (7) Hexzone (15)

Trojan-Spy Ardamax (40) Flux (26)

Total 50 (1000)

a clear distinction between similarities of the same families
and those of other families. With the threshold value of 0.75,
our family classification method had the accuracy of 0.979,
the accuracy result is similar to that of the proposed method
in [22]. Twenty-one malware binary files among 1,000 were

Fig. 15 Average similarity calculation times for two cases

Table 7 Two environments for performance test

Environment 1 (old PC) Environment 2 (new PC)

CPU Intel Core2Duo E8400 Intel i7-4770

3.0 GHz (2 cores) 3.4 GHz (4 cores)

Memory DDR2 2 GB DDR3 8GB

OS Windows 7 32 bit Windows 7 64 bit

Fig. 14 Similarity calculation results for individual malware families

123

Visualized images and entropy graphs 11

classified into the other families. Incorrectly classified mal-
ware binary files belong to Deliver, QQPass, and Wigon.

4.5 Computational overheads

Our entropy graph-based method has less computational
overheads than texture analysis methods, such as GIST used

in [22]. In order to evaluate the computational overheads of
our proposed method, we measured the similarity calculation
time of two cases on two general PC environments as shown
in Table 7, and compared our method with the GIST-based
method.

Figure 15 shows the results of similarity calculation time
for each case. In the first case, average times to calculate the

Fig. 16 Similarity calculation
times according to different
binary sizes

Fig. 17 Comparison of the similarity calculation time with the method of [22]

123

12 K. S. Han et al.

Fig. 18 Gray-scale images of
the .text sections of EPS family

similarities of all the benign and malware binary files were
35.29 ms in environment 1 and 11.81 ms in environment 2,
respectively. In the second case, average times to calculate
the similarities among malware binary files only were 3.84
and 1.39 ms in each environment, respectively.

The similarity calculation time depends on the size of the
binary file. Figure 16 shows the average similarity calculation
time and binary sizes of malware, and the graph shows that
similarity calculation time is proportional to the binary file
size.

Even if the differences exist in the average similarity cal-
culation times according to the sizes of binary files and the
environments, the results show that our proposed method is
faster than the GIST-based method proposed in [22], which
shows the average computing time was 54 ms. Actually, as
shown in Fig. 17, two methods had been directly compared
in our environments, and the results show that our proposed
method was still faster than GIST-based texture analysis.

5 Limitation and future work

Figure 18 shows the gray-scale images of the malware
Trojan-PSW.Win32.EPS family. Since no particular pattern
can be identified in Fig. 18, the entropy values of binaries can
be very high. That is, when binary files are packed, packed
sections usually have high entropy values. Figure 19 shows
entropy graphs of packed binaries. The entropy values of
packed binaries maintain values close to 7 in almost all sec-

tions. Therefore, if the binary files have a similar pattern like
entropy graph in Fig. 19, those binary files can be judged to
be packed, and the packed malware binaries are difficult to
classify through the similarity calculation using the entropy
graphs.

In our proposed method, the malware binary files in which
the packing techniques are applied are beyond the scope of
this paper. Therefore, these malware binary files have to be
unpacked before our proposed malware analysis method is
applied. Note that the bitmap images can be used to detect
packed malware binary files.

As future studies, in order to analyze the malware binary
files in which packing techniques are applied, our proposed
method can be extended to instruction-level analysis with the
help of dynamic analysis.

6 Conclusions

This paper proposed a malware family classification method
using visualized images and entropy graphs. The contribu-
tions of the paper are the following:

– We proposed a malware visualization method that con-
verts binary files into gray-scale bitmap images and gen-
erates entropy graphs.

– We also proposed a method to calculate similarities of
malware using visualized images and to classify malware
families.

123

Visualized images and entropy graphs 13

Fig. 19 Entropy graphs of packed binaries

– Experimental results showed that our proposed met-
hod can classify malware families with a small false-
positive/false-negative rate.

Our proposed method can be easily automated and can
be used to preprocess a large number of new or unknown
malware binary files. As a result, our method can reduce

the number of malware binary files need to be analyzed in
dynamic and static analysis.

Acknowledgments This research was supported by the MSIP (Min-
istry of Science, ICT and Future Planning), Korea, under the ITRC
(Information Technology Research Center) support program (NIPA-
2014-H0301-14-1022) supervised by the NIPA (National IT Industry
Promotion Agency).

123

14 K. S. Han et al.

References

1. Christodorescu, M., Jha, S.: Testing malware detectors. ACM SIG-
SOFT Softw. Eng. Notes 29(4), 34–44 (2004)

2. Moser, A., Kruegel, C., Kirda, E.: Limits of static analysis for mal-
ware detection. In: Computer Security Applications Conference,
2007. ACSAC 2007. Twenty-Third Annual 2007, pp. 421–430.
IEEE

3. Willems, C., Holz, T., Freiling, F.: Toward automated dynamic
malware analysis using cwsandbox. IEEE Secur. Priv. 5(2), 32–39
(2007)

4. Jang, J., Brumley, D., Venkataraman, S.: Bitshred: feature hashing
malware for scalable triage and semantic analysis. In: Proceedings
of the 18th ACM Conference on Computer and Communications
Security 2011, pp. 309–320. ACM

5. Dinaburg, A., Royal, P., Sharif, M., Lee, W.: Ether: malware analy-
sis via hardware virtualization extensions. In: Proceedings of the
15th ACM Conference on Computer and Communications Security
2008, pp. 51–62. ACM

6. Christodorescu, M., Jha, S., Seshia, S.A., Song, D., Bryant, R.E.:
Semantics-aware malware detection. In: Security and Privacy, 2005
IEEE Symposium on 2005, pp. 32–46. IEEE

7. Cesare, S., Xiang, Y.: A fast flowgraph based classification system
for packed and polymorphic malware on the endhost. In: Advanced
Information Networking and Applications (AINA), 2010 24th
IEEE International Conference on 2010, pp. 721–728. IEEE

8. Chowdhury, G.: Introduction to Modern Information Retrieval.
Facet publishing (2010)

9. Shang, S., Zheng, N., Xu, J., Xu, M., Zhang, H.: Detecting mal-
ware variants via function-call graph similarity. In: Malicious and
Unwanted Software (MALWARE), 2010 5th International Confer-
ence on 2010, pp. 113–120. IEEE

10. Abou-Assaleh, T., Cercone, N., Keselj, V., Sweidan, R.: Detection
of new malicious code using n-grams signatures. In: Proceedings
of Second Annual Conference on Privacy, Security and Trust 2004,
pp. 193–196

11. Santos, I., Brezo, F., Nieves, J., Penya, Y.K., Sanz, B., Laorden, C.,
Bringas, P.G.: Idea: Opcode-sequence-based malware detection.
In: Engineering Secure Software and Systems. pp. 35–43. Springer,
Berlin (2010)

12. Bilar, D.: Opcodes as predictor for malware. Int. J. Electron. Secur.
Digit. Forensics 1(2), 156–168 (2007)

13. Han, K.S., Kim, S.-R., Im, E.G.: Instruction frequency-based mal-
ware classification method. INFORMATION Int. Interdiscip. J.
15(7), 2973–2984 (2012)

14. Egele, M., Kruegel, C., Kirda, E., Yin, H., Song, D.: Dynamic
spyware analysis. In: Usenix Annual Technical Conference 2007

15. Nair, V.P., Jain, H., Golecha, Y.K., Gaur, M.S., Laxmi, V.:
MEDUSA: MEtamorphic malware dynamic analysis using signa-
ture from API. In: Proceedings of the 3rd International Conference
on Security of Information and Networks 2010, pp. 263–269. ACM

16. Miao, Q.-G., Wang, Y., Cao, Y., Zhang, X.-G., Liu, Z.-L.:
APICapture-a tool for monitoring the behavior of malware. In:
Advanced Computer Theory and Engineering (ICACTE), 2010 3rd
International Conference on 2010, pp. V4–390-V394-394. IEEE

17. Fredrikson, M., Jha, S., Christodorescu, M., Sailer, R., Yan, X.:
Synthesizing near-optimal malware specifications from suspicious

behaviors. In: Security and Privacy (SP), 2010 IEEE Symposium
on 2010, pp. 45–60. IEEE

18. Trinius, P., Holz, T., Gobel, J., Freiling, F.C.: Visual analysis of
malware behavior using treemaps and thread graphs. In: Visual-
ization for Cyber Security, 2009. VizSec 2009. 6th International
Workshop on 2009, pp. 33–38. IEEE

19. Saxe, J., Mentis, D., Greamo, C.: Visualization of shared system
call sequence relationships in large malware corpora. In: Proceed-
ings of the Ninth International Symposium on Visualization for
Cyber, Security 2012, pp. 33–40. ACM

20. Conti, G., Dean, E., Sinda, M., Sangster, B.: Visual Reverse engi-
neering of binary and data files. In: Visualization for Computer
Security, pp. 1–17. Springer, Berlin (2008)

21. Anderson, B., Storlie, C., Lane, T.: Improving malware classifica-
tion: bridging the static/dynamic gap. In: Proceedings of the 5th
ACM Workshop on Security and Artificial Intelligence 2012, pp.
3–14. ACM

22. Nataraj, L., Karthikeyan, S., Jacob, G., Manjunath, B.: Malware
images: visualization and automatic classification. In: Proceedings
of the 8th International Symposium on Visualization for Cyber,
Security 2011, p. 4. ACM

23. Torralba, A., Murphy, K.P., Freeman, W.T., Rubin, M.A.: Context-
based vision system for place and object recognition. In: Computer
Vision, 2003. Proceedings. Ninth IEEE International Conference
on 2003, pp. 273–280. IEEE

24. Oliva, A., Torralba, A.: Modeling the shape of the scene: a holistic
representation of the spatial envelope. Int. J. Comput. Vis. 42(3),
145–175 (2001)

25. Siagian, C., Itti, L.: Rapid biologically-inspired scene classification
using features shared with visual attention. IEEE Trans. Pattern
Anal. Mach. Intell. 29(2), 300–312 (2007)

26. Nataraj, L., Yegneswaran, V., Porras, P., Zhang, J.: A comparative
assessment of malware classification using binary texture analysis
and dynamic analysis. In: Proceedings of the 4th ACM Workshop
on Security and Artificial Intelligence 2011, pp. 21–30. ACM

27. Baysa, D., Low, R.M., Stamp, M.: Structural entropy and metamor-
phic malware. J. Comput. Virol. Hack. Tech. 9, 179–192 (2013)

28. Conti, G., Bratus, S., Shubina, A., Lichtenberg, A., Ragsdale, R.,
Perez-Alemany, R., Sangster, B., Supan, M.: A Visual Study of
Primitive Binary Fragment Types. White Paper, Black Hat USA
(2010)

29. Kapur, J., Sahoo, P.K., Wong, A.: A new method for gray-level
picture thresholding using the entropy of the histogram. Comput.
Vis. Gr. Image Process. 29(3), 273–285 (1985)

30. Strelkov, V.: A new similarity measure for histogram comparison
and its application in time series analysis. Pattern Recognit. Lett.
29(13), 1768–1774 (2008)

31. VxHeaven. http://vx.netlux.org/index.html
32. Kaspersky Lab. http://www.kaspersky.com
33. Gnuplot. http://www.gnuplot.info
34. Karampatziakis, N., Stokes, J.W., Thomas, A., Marinescu, M.:

Using file relationships in malware classification. In: Detection of
Intrusions and Malware, and Vulnerability Assessment. pp. 1–20.
Springer, Berlin (2013)

123

http://vx.netlux.org/index.html
http://www.kaspersky.com
http://www.gnuplot.info

	Malware analysis using visualized images and entropy graphs
	Abstract
	1 Introduction
	2 Related work
	3 Proposed method
	3.1 Overview
	3.2 Bitmap image conversion
	3.3 Entropy graph generation
	3.4 Entropy graph similarity measurement

	4 Experimental results
	4.1 Experimental environment and data
	4.2 Results of experiments conducted with same malware family variants
	4.3 Classification threshold
	4.4 Results of experiments using large-scale data
	4.5 Computational overheads

	5 Limitation and future work
	6 Conclusions
	Acknowledgments
	References

