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ABSTRACT
Geographical displays are commonly used for visualizing
wide-spread malicious behavior of Internet hosts. Placing
dots on a world map or coloring regions by the magnitude of
activity often results in cluttered maps that invariably em-
phasize population-dense metropolitan areas in developed
countries where Internet connectivity is highest. To un-
cover atypical regions, it is necessary to normalize activ-
ity by the local computer population. This paper presents
EMBER (Extreme Malicious Behavior viewER), an analysis
and display of malicious activity at the city level. EMBER
uses a metric called Standardized Incidence Rate (SIR) that
is the number of hosts exhibiting malicious behavior per
100,000 available hosts. This metric relies on available data
that (1) Maps IP addresses to geographic locations, (2) Pro-
vides current city populations, and (3) Provides computer
usage penetration rates. Analysis of several months of suspi-
cious source IP addresses from DShield identifies cities with
extremely high and low malicious activity rates on a day-
by-day basis. In general, cities in a few Eastern European
countries have the highest SIRs whereas cities in Japan and
South Korea have the lowest. Many of these results are
consistent with news reports describing local cyber security
policies. A simulation that models how malware spreads
preferentially within cities to local IP addresses replicates
the long-tailed distribution of city SIRs that was found in
the data. This simulation result agrees with past analyses
in suggesting that malware often preferentially spreads to
local regions with already high levels of malicious activity.

Categories and Subject Descriptors
H.5 [Information Interfaces and Presentation]: User
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1. INTRODUCTION
World maps are commonly used for visualizing widespread
malicious behavior of Internet hosts. However, their util-
ity has often been dismissed by security and visualization
experts. For example, some existing displays geo-locate ma-
licious IP addresses and show them as separate dots on a
world map. These displays may indicate that there is an
overall threat, but they are overly cluttered with individual–
often overlapping–dots, rendering it difficult to interpret re-
gional differences in the threat. In addition, these displays
often only indicate the locations of major population cen-
ters in developed countries because these are the locations
of the greatest numbers of hosts in the world that can be
compromised or used for malicious purposes. Even when
these displays provide a heat map that indicates the local
density of infections instead of individual dots, it is still dif-
ficult to determine if a region has more or fewer infections
than expected for the local computer population.

Despite its limitations, a world map is an intuitive repre-
sentation for global situational awareness. It is accessible
to non-experts and well-suited for depicting the geopolitical
context of cyber events. A geographical view can be used
to identify threats that target specific regions, employ lan-
guage or culture-specific social engineering, or exploit local-
ization or pirated software. It can also be used to assess
“network hygiene” of different regional ISPs. Some local
organizations or ISPs explicitly engage in or harbor crim-
inal activity, while others prevent, block, and rapidly detect
and eliminate malicious activity. Furthermore, a geograph-
ical view can be used to explore the effectiveness of differ-
ent policies on cyber security. For example, Japan’s Cyber
Clean Center [11] is a government initiative that collaborates
with ISPs to expunge botnets by alerting users when their
computers become infected and providing instructions for
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cleanup. China operates one of the most pervasive Internet
filtering systems, dubbed “the Great Firewall”, to censor po-
litical dissent. Other countries such as Iran, Syria, Burma,
and Saudi Arabia also practice heavy filtering on politically
or socially sensitive materials [12]. South Korea has in re-
cent years enacted the Cyber Defamation Law, which re-
quires users to submit identification when posting on large
websites, and the Anti-Piracy Law, which shuts down sites
and suspends user accounts when copyright violations occur
[13]. We created EMBER, the Extreme Malicious Behavior
viewER, to provide high-level global situational awareness.
Among other uses, EMBER makes it possible to study the
effects of the above policies, targeted threats, and the spread
of malware.

EMBER provides a geographical view of locations in the
world with extremely high or low malicious activity, where
the malicious activity level is normalized for the number of
potential victim or malicious machines in each region. This
paper presents the techniques behind the EMBER display,
as well as its application to a large global dataset of firewall
and intrusion logs provided by the SANS Internet Storm
Center’s DShield project [1]. This work makes several con-
tributions:

1. We demonstrate the application of a metric called the
Standardized Incidence Rate (SIR) for identifying re-
gions with extreme levels of malicious activity normal-
ized by the local computer population. We demon-
strate that the number of available computers in a
region can be estimated from publicly available data
sources.

2. We compare malicious activity across cities by SIR.
Both highly infected cities and well-protected cities can
be clearly identified on EMBER’s world map. The vi-
sualization reflects the varying infection rates of threats
rather than the general distribution of available vic-
tims (computers) in the world.

3. Using the DShield dataset, we have identified several
Eastern European cities as highly malicious. On the
other hand, cities in Korea, Japan and Australia are
consistently ranked as the best protected.

4. We observe that the distribution of SIRs for cities has
a long tail similar to a power law. Simulations sug-
gest that this is the result of malware preferentially
spreading to regions with already high levels of mali-
cious activity.

In the remainder of the paper, Sections 2 and 3 explain the
EMBER approach and user interface. Section 4 presents a
case study using the DShield dataset. The extreme cities,
infection duration, and the distribution of city SIRs are re-
viewed in depth. In addition, a simulation is presented show-
ing how long-tailed SIR distributions may be generated by
malware preferentially spreading to local IP addresses. Sec-
tion 5 surveys related work in characterizing and visualizing
global malicious activity. Sections 6 and 7 provide a sum-
mary of the work and address future directions.

2. APPROACH
It is common to characterize malicious activity or malware
distribution by network or Autonomous System. This ap-
proach provides insights on malware propagation strategies
and network targets. EMBER takes an alternative per-
spective based on geopolitical divisions rather than rout-
ing boundaries. Our display can be used to show countries,
cities, language or ethnic regions actively targeted or avoided
by malware. It can also be used to correlate malware distri-
bution with local cyber policies regarding piracy, indecency,
antidefamation and censorship.

EMBER provides a geographical view of cities in the world
with extremely high or low malicious activity. We choose
to examine aggregated statistics by city because an analy-
sis by country is often too coarse and because cities often
delineate the range of organizational networks, ISPs, law
enforcement domains, and traffic monitored by a single au-
thority to detect and prevent malicious activity. To fairly
compare cities of different sizes and levels of technological
advancement, we use a city’s population and Internet pen-
etration rate to estimate its network size (i.e., the overall
host population), then normalize detected malicious hosts
by overall host population. The result is a normalized mea-
sure of detected malicious activity or malice in the city that
is as unbiased as possible with existing data sources.

2.1 IP Geo-Location
To analyze malicious activity by cities, detected malicious
IP addresses are geo-located to determine their hosts’ phys-
ical locations. The free MaxMind GeoLite City [5] database
provides country, state/region, city, latitude, longitude, and
Autonomous System Number for IP addresses. Table 1
provides a breakdown of the post-processing results for IP
addresses collected on a typical day, where 30,398 out of
603,546 IP addresses, or approximately 5%, could not be
geo-located to a city and had to be discarded. Of the re-
maining 95%, a subset may be geo-located to the wrong
cities. [20] presents the accuracy of GeoLite City on a city
level, which averages about 75% but varies widely by coun-
try. For countries with low accuracy, mis-location of IP ad-
dresses can significantly distort their cities’ infection rates.
To remedy this problem, one could use other (commercial)
geo-location services that provide more complete and more
accurate city coverage. Alternatively, one could adjust the
infection rate to compensate for low geo-location accuracy.
We did not apply either option to correct for mis-located IP
addresses but intend to do so as part of our future work.

2.2 City Host Population
Fair comparison of cities necessitates normalization of a city’s
malicious hosts by its total available hosts, but estimating a
city’s host population proves to be a difficult problem. One
way to get an estimate is to actively probe networks in a city
and count the hosts that respond. This is often not practi-
cal because many networks use firewalls to block suspicious
or non-essential traffic, preventing others from discovering
their internal structures.

Another way is to use Internet address registries provided by
organizations such as the Internet Corporation for Assigned
Names and Numbers (ICANN). This is simple but insuffi-
cient because registries could be out of date and reserved
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Justification Mal. IPs Subtotal
Discarded No city 30,398 108,680

No population 77,864
Low IPR 418

Retained Adjusted IPR 15,717 494,866
479,149

Total 603,546

Table 1: Approximately 80% of the malicious IP
addresses recorded by DShield on 15 February 2010
are included for analysis and display. We discard
any IP address that cannot be ge-located to a city,
that is in a city with no population data, or that is in
a country with extremely low Internet Penetration
Rate (IPR).

address blocks may be under or over-utilized.

It is common to infer host population size by counting unique
IP addresses observed in traffic passively. This approach has
several problems as well. Some networks use NAT devices
that translate between internal and external IP addresses,
often masking a large number of hosts with a small number
of public-facing addresses. Over time, IP addresses of hosts
may change due to DHCP churn, old hosts going offline, or
new ones coming online. Estimation is further complicated
by ISPs that route traffic through proxies. For example,
AOL is known to route all North American traffic through
a few gateways [20], and satellite Internet providers have to
send their traffic through satellite terminals.

Another option is to infer host population by gathering Do-
main Name System (DNS) records and query statistics from
DNS servers. This could be done at a coarse level by exam-
ining only the root DNS servers, or a fine-grain level if one
has access to local DNS servers. A DNS “census” may allow
us to estimate the number of hosts in a network. However,
such detailed information is hard to obtain, and not all ad-
dressable hosts are in DNS records. It may also be possible
to measure a network’s “NAT factor” by characterizing the
DNS traffic it generates. While it is difficult to learn the host
populations of all cities using only DNS data, this approach
may complement others.

We decided to estimate the host population of a city using
open source population and Internet usage data:

Ncity = Populationcity × InternetPenetrationRatecity

This approach relies on population data, which is easy to ob-
tain and should be reasonably accurate for medium to large
cities. Given the percentage of the population that uses the
Internet, we can approximate the number of computers con-
nected to the Internet assuming a 1:1 ratio of Internet users
to computers. Although there are complicating factors, such
as users who own multiple computers and those who access
shared computers (e.g., Internet cafes, schools, libraries), as
well as servers, they do not appear to bias the results signif-
icantly for a particular country or city. EMBER currently
uses population data from GeoNames [2], a site that pro-
vides regularly updated information on a comprehensive list
of cities. Internet World Stats [3] provides Internet penetra-
tion rates by countries compiled from various online mea-

surement services and local communications providers and
regulators. According to their website, some of its major
data sources include Internet market research firms such as
Nielsen and GfK Group, which use proprietary tools and
techniques to monitor and measure global Internet activity.
The site also uses data from the United Nations’ Interna-
tional Telecommunication Union, which is responsible for
reporting and organizing efforts on worldwide connectivity.

2.3 Standardized Incidence Rate
The EMBER display uses a normalized metric called the
Standardized Incidence Rate (SIR), expressed as the number
of malicious machines (i.e., unique IP addresses) for every
100,000 actual machines that could be infected in a city:

SIRcity =
IPscity
Ncity

× 100, 000

This results in an integer ranging from zero if no hosts are
malicious to 100,000 if all hosts are malicious. Typically,
a small percentage of hosts are infected and the SIR is a
number from 0 to 1,000. For example, if 1% of all hosts in
a city were detected as being engaged in malicious activity,
the SIR for that city would be 1,000 which is 1% of 100,000.
If 0.1% of the hosts were engaged in malicious activity, the
SIR would be 100. SIR has traditionally been used in can-
cer statistics [17]. The Microsoft Security Intelligence Re-
port uses a similar metric called Computers Cleaned per Mil
(CCM) that represents the number of computers cleaned per
thousand executions of the Malicious Software Removal Tool
(MSRT) [21]. These metrics all represent infection rates. In
the context of EMBER, SIR alerts users to cities with dis-
proportionally high or low levels of malicious activity that
warrant further investigation.

2.4 Adjustments
To compensate for data flaws and statistical variability, we
introduce a few adjustments to the computation of city SIR.

2.4.1 Internet Penetration Rate
Since the Internet penetration rates are compiled from a va-
riety of sources and there is no ground truth, we examine
how potential errors in the penetration rate may affect city
scoring. We first assume the city penetration rate to be
the same as the country penetration rate. For every rate
reported, we calculate the SIR of a hypothetical city with
100,000 human population and 1,000 malicious hosts. Fig.
1 shows the resulting SIR scores as the upper red circles.
We observe that SIR scores are highly sensitive for coun-
tries with low penetration rates; that is, cities in these coun-
tries could be substantially overrated or underrated if their
penetration rates err slightly one way or another. Further-
more, undeveloped and developing countries often have the
fastest growth online and the largest technological disparity
between urban and rural areas. We expect city penetration
rates to be higher than the national average for these coun-
tries. Finally, any penetration rate below 0.01 is presumed
too small to be reliable. As of February 2010, There are
30 out of 241 countries and autonomous regions that have
such low rates, including many small island nations, select
African nations (e.g., the Democratic Republic of Congo,
Ethiopia and Liberia), select Southeast Asian nations (e.g.,
Bangladesh, Myanmar and Cambodia), and North Korea.
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Figure 1: The Internet penetration rates of 241
countries in February 2010 and the resulting stan-
dardized incidence rates (SIR) of a hypothetical city.

We exclude cities in these countries from the display and
analysis.

To reduce the effect of inaccurate city penetration rate esti-
mates and account for variability caused by inaccurate rates,
the following formula is used to derive city penetration from
country penetration rates:

ratecity =


ratecountry, if ratecountry ≥ 0.1
2
3
ratecountry + 1

30
, if 0.1 > ratecountry ≥ 0.01

0, otherwise

For most countries, the first case in which the city pene-
tration rate is equivalent to the country penetration rate
applies. The second case gives countries with relatively low
penetration rates a multiplier, gradually diminishing from
4x to 1x. The third case discards countries with extremely
low penetration rates below 0.01. When the same hypothet-
ical city is scored using the adjusted rates, the resulting SIR
curve has a much smaller range of variation as shown by the
lower blue triangles in Fig. 1. The adjustments introduced
in the formula affect a small percentage of hosts observed ev-
ery day. Table 1 shows that on a typical day, less than 0.1%
of the IP addresses (418 out of 603,546) are discarded be-
cause their countries’ Internet penetration rates are too low.
Only 2.6% (15,717 out of 603,546) originate from countries
where the Internet penetration rates need correction.

2.4.2 Population Thresholds
EMBER allows a user to select cities with the highest or
lowest SIR values for display and inclusion on lists that rep-
resent cities with extreme SIR values. It would be mislead-
ing to simply order all cities by SIR and display them with
their rank. Such a simple approach does not account for the
differing effects of changes in the underlying number of in-
fected hosts in each city on the SIR. The SIR scores for cities
with low host populations below 100,000 change much more
dramatically when a few hosts are infected or patched than

SIR scores for cities with populations well above 100,000
because the SIR is a ratio with the city population in the
denominator and the number of infected hosts in the numer-
ator. For example, the SIR for a city with 10,000 potential
infected hosts is 100 when 10 hosts are infected. This SIR
doubles from 100 to 200 when ten more hosts are infected.
The SIR for a city with 1 million hosts is 100 when 1000
hosts are infected. The SIR increases by only 1% when ten
more hosts are infected.

The problem of SIR variability is addressed by only includ-
ing cities with a computer population above a threshold on
EMBER high and low SIR lists and displays. There is a
tradeoff in selecting the population threshold. If the value
is too high, many cities will be excluded and this could po-
tentially allow knowledgeable adversaries to avoid detection
by targeting cities with low computer populations. If the
threshold is too low, it could lead to a misleading display
including cities that had high or low SIRs by chance. In the
current version of EMBER, we only display and list cities
with populations greater than 100,000 for both extreme SIR
value displays and require cities to have at least 20 infec-
tions before they are included on the lowest-SIR list. The
city computer population limit of 100,000 affects primarily
the list of high-SIR cities. First, it reduces the sensitivity
of high-SIR scores to changes caused by adding or removing
a few infected hosts per city. Most of these cities on the
high-SIR list have SIR scores above 300-500. Since the pop-
ulations of these cities is restricted to be above 100,000, the
number of infected hosts in these cities will be above 300-
500 and adding or removing a few infected machines (e.g.
< 10) will vary the final SIR score by less than ±10 which
is only 2% to 3% for SIR scores ranging from 300 to 500.
The population limit of 100,000 also focuses the analysis on
larger cities where human population estimates, computer
penetrations estimates, and IP address mapping are all more
accurate. It also keeps the resulting map less cluttered and
easier to interpret when many cities are displayed.

The requirement that there needs to be 20 malicious IP ad-
dresses in a city before that city is included on an extreme
SIR list affects primarily the list of low-SIR cities. If there
are 20 malicious IP addresses in a city, then adding or re-
moving one infected host varies the SIR by less than ±5%.
When cities have low SIR values ranging from 1 to 5, this
limit indirectly restricts the population of cities on the low-
SIR list to be from 400,000 to 2,000,000. It is thus more re-
strictive in terms of the smallest city population allowed on
the low-SIR list. Although these choices appear to provide
relatively consistent results across days, further statistical
analyses of SIR day-to-day variability is planned to validate
and possibly improve these thresholds.

2.4.3 SIR Ranking
When presenting the lists of cities with extreme SIR values,
it would be misleading to simply order cities by SIR. This
approach suggests to users that the absolute ranks on the
high and low-SIR lists are too important even though many
other cities on the list have SIRs that may be statistically
equivalent. We address this problem by grouping cities with
comparable SIRs and adjusting the display and the list to
reflect ties in the ranking.
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There are several ways to implement grouping. We can clus-
ter cities with similar SIR values and order the clusters by
cluster means to produce the ranking. This approach re-
quires a priori knowledge of the number of clusters or ranks.
We can also use a statistical approach to test whether two
cities’ SIRs are equivalent by comparing confidence inter-
vals. Confidence intervals are determined using per-city in-
terdecile ranges of SIR variability measured over the past 10
days. For the high-SIR list, the ranking procedure begins
by identifying the city with the highest SIR as the proto-
type for rank 1 and assigns the same rank to any city with
SIR ≥ SIRmax − R

2
, where R is the median interdecile

range. Then, from the remaining unranked cities, the city
with the highest SIR is selected as the prototype for the next
rank. Comparable cities are then found for that rank. This
process is repeated until all cities are ranked. The ranking
procedure for the low-SIR list is analogous. This approach
is simple to implement and interpret.

3. EMBER
EMBER aggregates malicious activity by city and displays
a circle of variable size and color (e.g. glowing ember) for
each city that indicates the normalized malicious activity in
that city. The interface (Fig. 2) consists of a calendar on
the right to select a day for analysis, a panel on the upper
center to select metrics and parameters, a central world map
to display extreme cities, a table on the left for details of the
cities, and a histogram of displayed scores on the bottom.

Four different metrics are available for selecting cities to dis-
play in the world map. Users may set a threshold for cities
shown using the upper middle control panel in the applica-
tion. If thresholded by rows, only cities with the N highest
(or for SIR also lowest) values are displayed. If thresholded
by ranks, all cities with the N highest ranks are displayed.
Cities are displayed as dots in the map. Dot colors are pro-
portional to the metric value, ranging from orange for the
highest to blue for the lowest. Dot sizes are proportional to
the rank. The four supported metrics are described below.

Alerts (total number of alerts per city). This metric mea-
sures the total number of alerts triggered by IP addresses
from each city. It shows which cities are responsible for the
greatest number of alerts across the world. It does not dis-
tinguish between a city with a single malicious host that
scans many other hosts across the Internet and a city with
many malicious hosts that contact only one host each. It
also is not normalized for the city population. This metric
is useful for identifying high-volume scanners.

IPs (total number of unique malicious IP addresses detected
per city). This metric measures the number of unique IP
addresses that have been detected performing malicious ac-
tivity in each city. It shows the cities that contain largest
numbers of compromised hosts. Because this display is not
normalized for the size of each city, the display tends to fo-
cus on cities with the largest populations where the potential
numbers of infected computers are also largest. This metric
is useful for assessing the spread of threats.

High Standardized Incidence Rate. This display shows
the cities with the highest SIR scores. As described above,
the SIR is expressed as the number of malicious IP addresses

for every 100,000 actual machines that could be infected
in a city. This metric is useful for identifying cities with
higher-than-expected levels of infection. Cities with high
SIRs may be allowing malicious activity, or they may be
more heavily targeted than other cities. High SIRs could
also be attributed to poor network hygiene or unusual sensor
coverage.

Low Standardized Incidence Rate. This display shows
the cities with the lowest SIR scores. This metric is useful
for identifying cities with lower-than-expected levels of in-
fection; that is, they prevent malicious activity well, are less
targeted than other cities, or are not covered by malicious
activity sensors as well as other cities.

4. CASE STUDY
EMBER is a general-purpose tool that can be applied to
any dataset containing lists of IPv4 addresses. This section
describes a case study of the EMBER display and analysis
using a large dataset collected over several months from the
SANS Internet Storm Center. We will describe the data
source, our observations and interpretations.

4.1 Data Source
The dataset used in the case study comes from the SANS
Internet Storm Center’s DShield project. Each day, DShield
collects millions of intrusion detection logs from firewalls and
intrusion detection systems all around the world, and pub-
lishes on their website a daily feed of source IP addresses ob-
served to exhibit malicious behavior. This may include hosts
engaged in phishing, serving exploits or malware, sending
SPAM emails, hosting scam pages, serving as repositories
for pirated software or pornography, serving as command
and control centers for botnets, or serving as botnet zom-
bies. According to a 2003 study [31] using the same source,
scans were the dominant class of malicious activity detected,
with port 80 worms such as Code Red and Nimda accounting
for 20-60% of the intrusion attempts each day. The Internet
landscape has changed since the study. However, because
the publicly available part of the dataset only contains the
source of malicious activity and not the type of activity, we
have no further insight on the threat types represented in
this dataset without access to the full dataset.

There may be additional limitations to the dataset. The
data could contain many false alarms. Even though the
data is from sensors around the world, it may not provide
complete coverage of all regions due to insufficient log con-
tribution, higher level filtering, or blocking of IP addresses
or ranges. It would be useful to verify the accuracy of the
data used to detect malicious activity either by correlating
across different data sources or by active verification. In
addition, we cannot easily account for spoofed IP addresses
or gateway devices that serve many hosts using only one IP
address. Finally, we do not have any data from the IPv6
address space. Despite its limitations, the dataset serves as
a good test case, and has led to some interesting findings.

4.2 Extreme Cities
The DShield data indicates that the SIR is much higher
in Eastern Europe countries including Moldova, Romania,
Macedonia, and Bulgaria than in any other part of the world.
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Figure 2: The EMBER Interface showing 40 cities with the highest SIR scores on 15 February 2010.

Fig. 3(a) offers a snapshot of the highest-SIR cities on a
typical day. Fig. 4, which shows the range of SIR scores
for each city that has ranked in the top 10 for at least ten
days between 1 January and 13 March 2010, further demon-
strates that the list of high-SIR cities is quite consistent over
time. In this figure, boxes represent interquartile ranges of
city SIR scores, middle dark bands represent median val-
ues, whisker ends represent upper and lower bounds, and
circles represent outliers. This plot illustrates that most
malicious cities have relatively narrow SIR ranges except
Athens and Bangkok, which tend to flare up occasionally.
Bucharest and Chisinau are clearly the worst offenders with
SIRs consistently near 1000, surpassing lower-ranked cities
by almost a factor of 2. The same plot also shows the num-
ber of days each city has been in the top 10 (see the grey
dots connected by lines). Not surprisingly, Bucharest and
Chisinau are among the six cities that have made the top-
10 list almost every day. News reports suggest that ma-
licious activity could be related to organized criminals in
these countries, where cyber law enforcement is lax and eco-
nomic incentive for the “over-educated and under-employed
specialists” is strong [18]. Other cities with high levels of
malicious activity include Moscow, and Nanning, China.

Top cities on the high-SIR list are generally well differenti-
ated. Their color gradation is clearly visible on the map in
Fig. 3(a), and the table contains very few ties. On the other
hand, for low-SIR the top cities are not as clear-cut. Fig.
3(b) shows the typical one-day result, where nearly a dozen
cities are tied for the lowest level of malicious activity. Most
notably, cities in South Korea consistently have the lowest
SIRs. This finding contradicts the Microsoft Security Intelli-
gence Report [21], which ranks South Korea 5th in locations
with the highest infection rates. However, because the CCM

metric used by the report actually measures the number of
computers cleaned per 1,000 MSRT executions, this suggests
that South Korea in fact cleans up computer infections very
quickly, likely contributing to its low SIR scores. The low
level of malicious activity in South Korea may also be at-
tributed to its strong cyber antidefamation laws, Internet
content controls, and personal identification requirements
on large web sites [13].

4.3 Infection Duration
Evaluating cities on a day-to-day basis (without differenti-
ating IP addresses by infection duration) enables detection
of sharp changes, such as a botnet launching a coordinated
attack. It is also useful to analyze the longevity of infected
IP addresses to better understand the long-term dynamics
of infection and cleanup in these cities. For each IP address
observed to behave maliciously on a given day, we exam-
ine its history to determine the date of initial infection (d).
Since hosts could be turned off and malware could be dor-
mant, we cannot expect infected hosts to be active every
day. An IP address is considered a new infection on date d
only if it is absent from the previous t days. The longevity
of an infected IP address, or infection duration, is measured
as the number of days since d.

Determining the threshold t, or the “grace period,” requires
some experimentation. On the one hand, because IP ad-
dresses are often dynamically assigned, the longer the grace
period is, the less likely that two occurrences of an IP ad-
dress separated by the grace period actually address the
same host. On the other hand, a grace period too short
would cause current infections with low frequency of activ-
ity be mislabeled as new. We tested t values ranging from 3
to 9 days and found that the new infection count would only
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(a) (b)

Figure 3: EMBER displays cities with extremely high (a) or low (b) malicious activity daily with SIR scores,
ranks, total alerts, total malicious IP addresses and host populations for 2 March 2010.

get marginally smaller as the grace period increases. This
suggests that the majority of the malicious IP addresses de-
tected each day are short-lived and that it is reasonable to
set t to 5 without significantly over-counting new infections.

Fig. 5 shows the complementary cumulative distribution
function of infection duration for all IP addresses detected
on 13 March 2010. A high churn rate in IP addresses is
the presumed cause of the short durations of most malicious
IP addresses. Approximately 75% of the addresses on this
day are new infections, compared to 10% that have existed
for over a week. This distribution is consistent from day
to day. Furthermore, our observation agrees with the find-
ings of [27], which concludes through the analysis of a botnet
takeover that DHCP churn can lead to gross over-estimation
of botnet drone population using unique IP address count
(by as much as 36.5% in a day). There may still be other
factors that also contribute to the high turnover of malicious
IP addresses. [28] suggests that botnet servers and phish-
ing sites are often cleaned up or abandoned within a few
days. Some malware employ tactics such as “fast-flux” and
spoofing to change their IP addresses constantly to evade
detection on watchful networks.

4.4 Persistent Infections
As mentioned before, a small percentage of IP addresses ob-
served each day are persistent (e.g., over a week). They may
be individual infected hosts that are truly persistent or gate-
way devices that mask large local area networks. The former
implies that persistent IP addresses can be used to find rogue
cities that neglect malicious activity whereas the latter im-
plies false positives. We explore this idea by computing the
SIR on persistent IP addresses exclusively. Fig. 6(a) dis-
plays cities with the highest persistent-SIRs. Moscow and
Athens are notably absent from the group even though they
have high SIRs overall (Fig. 3(a)). Tbilisi of Georgia and

Figure 4: A boxplot of SIRs for extreme malicious
cities (by the High-SIR metric) from 1 January to
13 March 2010. Cities shown have ranked in the top
10 for ten or more days during the observed period.
The grey line indicates the number of days each city
has ranked in the top 10.
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(a) (b)

Figure 6: EMBER displays cities with extremely high (a) or low (b) sustained malicious activity, that is,
activity caused by persistent malicious IP addresses with uptime over 7 days. The date selected is 1 March
2010.

Figure 5: Complementary cumulative distribution
function for infection durations of IP addresses on
13 March 2010. The history of address appearances
goes back to 1 January 2010 (72 days).

Kharkov and Lviv of Ukraine do not have the highest SIRs
overall, but their presence on the rogue list suggests that a
significant portion of their malicious IP addresses are persis-
tent. Finally, Chisinau, Moldova and Bucharest, Romania
are the worst cities either way. A small, randomly selected
subset of persistent IP addresses have been manually cross-
validated with the email reputation system SenderBase [16],
Malware Domain List [4], which tracks domains used for dis-
tributing and controlling malware, and Google Safe Brows-
ing [24], which identifies malicious websites. Many persis-
tent IP addresses in cities with the highest persistent-SIRs
are either identified as spammers in SenderBase or collo-
cated with spammers. Otherwise, persistent IP addresses
are rarely flagged by Malware Domain List or Google Safe
Browsing. The cities from EMBER with the five highest
SIRs were also included in the map generated by the FIRE
system on their associated web site (see [28])on 5 April 2010.

Through identifying cities with low persistent-SIRs, we hope
to find cities that are well-protected. Fig. 6(b) displays cities
that have the lowest persistent-SIRs on a given day. This
picture is markedly different from Fig. 3(b): The finan-
cial and technological centers of the world–Tokyo, Sydney
and New York–now rank as best protected. South Korean
cities fall out of the list because their malicious IP address
counts are below the threshold of 20 (see Section 2.4.2). Un-
like cities with high persistent-SIRs, these results are more
difficult to interpret. While some of the persistent IP ad-
dresses are confirmed malicious by the above data sources,
many others appear to be gateway devices for large cor-
porations such as Akamai based on registry records (i.e.,
whois). These gateways can artificially reduce SIRs because
many malicious IP addresses can be mapped to a single IP
address. Further analysis would be required to determine
if these cities are best-protected because they have effec-
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Figure 7: Histograms of SIRs on one day for A)
Cities with computer populations between 100,000
and 200,000 and B) Cities with computer popula-
tions between 400,000 and 800,000.

tive cyber policies, the technological know-how, or dense
concentration of gateway devices for large corporations and
governmental networks.

4.5 Standardized Incidence Rate Distribution
The standardized incidence rate (SIR) has been used exten-
sively in the past to analyze health statistics and determine
if any city, state or country has higher or lower incidence
rates than expected [9]. When analyzing cancer rates, it is
assumed that the probability that any individual has can-
cer (normalized for age) is the same across locations. When
comparing SIR rates of cites, the overall SIR is computed
across the overall population and deviations from this overall
distribution are computed assuming that the number of can-
cer cases in a city has a binomial distribution with a mean
equal to the overall SIR multiplied by the city or population
divided by 100,000 (e.g. [23]). Before analyzing the DShield
data we assumed that similar assumptions could be used to
model computer infection rates. This assumption proved to
be incorrect.

Fig. 7 shows histograms of SIRs for cities with computer
populations ranging from 100,000 to 800,000 hosts. If all
hosts had the same probability of infection, then these dis-
tributions would be approximately Gaussian-shaped with
means near 80 and a standard deviation of roughly 7.5 in
the upper histogram and 3.7 in the lower histogram. These
distributions are clearly not Gaussian, but have long tails
characteristic of data that is often modeled using a power
law such as the human population of cities and the number
of hyperlinks to web sites (e.g. [10]). The x axis in Fig.
7 was terminated to better show the distribution shapes.
The long tails actually extend to above 1,000. The shapes
of the distributions in Fig. 7 do not vary substantially as
the city population sizes increase by a factor of four from
100,000-200,000 in the upper to 400,000-800,000 in the lower
histogram. Although not shown, the distribution shape is
similar for cities with computer populations above roughly
10,000.

Figure 8: Complementary cumulative density func-
tion for SIRs of cities with computer populations
greater than 10,000 for ten Wednesdays from 13
January to 17 March 2010. A separate black line
is shown for each day. Gray lines are from simula-
tions where new malware preferentially spreads to
cities with most existing infections.

Fig. 8 provides another summary of the SIR distribution. It
shows the SIR complementary cumulative density function
(CCDF) for cities with populations greater than 10,000 us-
ing data from eleven Wednesdays from 13 Jan to 17 March
2010. Note that both axes in this plot are logarithmic. The
CCDFs shown in black are representative of distributions
for other weekdays. They show that SIR values range over
more than three orders of magnitude and that roughly 40%
of the cities have SIR values contained in a long tail extend-
ing above a value of 60 where the distribution tail appears
to begin. Maximum likelihood estimates described in [10]
averaged over these curves indicate that above a lower limit
of roughly 60 the distribution falls off with a power law ex-
ponent of -2.52. Although a Kolmogorov-Smirnov statistical
test described in [10] indicates that these SIR distributions
do not exactly follow a power-law, in practice they have a
long tail and similar characteristics to power low distribu-
tions as noted above.

4.6 Simulation to Explain SIR Distribution
The observation of SIR values that have an approximately
power-law behavior suggests that infected computers on the
Internet detected by DShield could be generated by prefer-
ential attachment models of how computer infections spread
for recent worms and botnets. Preferential attachment mod-
els have been used, for example, to simulate the distribu-
tion of the number of Internet hyperlink connections on web
sites (e.g. [22]). We explored a simple model that assumes
that newly infected hosts in a city are more likely to be
caused by locally infected hosts in the same city than by
more remote hosts in more distant cites. This is consistent
with the behavior of many recent worms and botnets which
preferentially attempt to spread to computers that are geo-
graphically close because they either preferentially scan IP
addresses in local class A and B networks or they take advan-
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tage of IP address, email, chat, and other social networking
information discovered on already-infected computers (e.g.
[26, 7, 25]).

Our simulation is much simpler than many others (e.g. [26,
7, 25]), but is the only simulation we are aware of that has
been used to model the number of hosts that are infected
for worms and botnets on a per-city basis. The simulation
models the number of hosts that are infected in 9,157 cities
with computer populations above 10,000 that are the same
as those used to produce the SIR distribution shown above.
These cities contain a total of roughly 692 million hosts and
the host populations used in simulations are the same as
those used to compute SIR values.

The simulation begins by randomly and uniformly selecting
across all hosts a certain number of infections. It is difficult
to determine the correct number of initial infected hosts to
use in this simulation because we are modeling all the differ-
ent worms and botnets seen in DShield data, “hit-lists” and
other approaches are often used to create multiple initial in-
fections (e.g. [30]), and worms can be propagated physically
via laptop and infected media as well as by scanning. In our
simulations we started by infecting 1% of the total num-
ber of infected hosts seen in the DShield data. Uniformly
spreading these over the entire host population preferentially
places infected hosts in the larger cities.

After initialization, infections are added one at a time until
the number of infected hosts estimated to be in the DShield
data for one day (497,250) is reached. This number was set
to the number of IP addresses seen in DShield data reduced
by 37% to account for DHCP churn as suggested by the
daily DHCP churn analysis in [28]. An infection is added
with probability λ preferentially to cities with more infec-
tions by setting the probability of infection for hosts in each
city proportional to the number of infections in that city. An
infection is added with probability 1−λ to all computers by
setting the probability of infection to be uniform across all
computers. This models malware that preferentially spreads
to IP address that are geographically local. Values of λ rang-
ing from 0.7 to 0.8 provide roughly similar results suggesting
that 70% to 80% of worm spread in local. Over time, the ef-
fectiveness of scanning for new hosts in each city is reduced
to account for scans that reach already-infected hosts.

The gray lines in Fig. 8 that range around the actual CCDF
curves represent CCDF curves generated by 100 runs of
this simulation with different random starting seeds. These
CCDFs provide a good visual fit to the actual CCDFS and
suggest that the simple generative model of worms and bot-
nets preferentially spreading to nearby hosts in the same city
may help explain the power-law like distribution of SIRS.
The good fit to the actual SIR distribution requires values
of λ above roughly 0.7, a correct target goal for total number
of infected hosts, and cities with host populations that also
have a long tail as in this data.

5. RELATED WORK
There have been several efforts to identify centers of ex-
treme malicious activity. The FIRE system [28] automati-
cally identifies rogue networks by monitoring the longevity
of botnet, drive-by-download and phishing servers and scor-

ing Autonomous Systems (AS) based on the number of sus-
tained rogue servers. FIRE generates a malscore by normal-
izing the total number of rogue IP addresses in an AS by a
factor based on the number of /24 prefixes announced by
that AS. EMBER differs from FIRE in that (1) the analysis
is performed at the city-level instead of the AS-level, (2) it
produces the top protected cities as well as the top rogue
cities, (3) it does not differentiate types of malicious activi-
ties, and (4) it has been applied to all malicious IP addresses
and the subset of sustained malicious IP addresses.

HostExploit has compiled lists of the best and worst host-
ing service providers using data drawn from eleven different
sources [15]. It calculates per AS an HE Index, which con-
siders the number of bad instances in the AS normalized by
the size of the AS. Similar to EMBER, adjustments have to
be made to reduce the HE Index’s sensitivity for small ASs.
EMBER discards cities with less than 100,000 computers or
less than 20 infections, whereas HostExploit uses a Bayesian
ratio that moves the score of an AS toward the average as
the size gets smaller. The report also provides top-10 lists by
threat type (e.g., spamming, botnet command and control
and malware distribution). Unlike EMBER, HostExploit
does not consider statistical ties when ranking ASs by their
HE Index scores.

The semi-annual Microsoft Security Intelligence Report [21]
provides a global assessment of cyber threats using data
collected from the Microsoft Windows Malicious Software
Removal Tool (MSRT) running on computers worldwide.
The report uses a metric called Computers Cleaned per Mil
(CCM) for comparing infection rates across regions. CCM
measures the number of computers cleaned per 1,000 exe-
cutions of MSRT. This approach misses a class of high-risk
systems that do not run MSRT, either because the feature
has been disabled by malware or the software is unpatched
or pirated. It also does not distinguish a host performing a
thousand executions from a thousand hosts performing one
execution each. These factors introduce a significant bias in
the final assessment of a location’s level of malice or protec-
tion. The approach is also not extensible to non-Windows
systems.

Several studies have used the DShield dataset to character-
ize cyber attack trends globally. Most recently, [32] presents
an analysis of attack sources based on intrusion records col-
lected between 2004 and 2006. It examines source IP address
distribution across the IPv4 address space and concludes
that a small set of address ranges contain the majority of
the malicious IP addresses. However, the analysis does not
account for the uneven allocation of IP address space. As a
result, the top malicious domains found were major ISPs at
that time.

A world map display is widely used to provide global cyber
situational awareness. The DShield [1] website uses a map
to show high-level attack statistics and port trends by conti-
nent. Shadowserver [6] tracks botnet activities and regularly
posts maps to show geographic distributions of command-
and-control servers and drones, where each dot represents
the relative number of infected hosts at a location. A dis-
play from the FIRE system showing persistent malware sites
with dots all of the same size is available on a website noted
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in [28]. Team Cymru [29] uses a global heatmap to show
density of Conficker infected IP addresses across regions.
While these approaches are good for conveying the extent of
malicious activity worldwide, it is difficult to determine any
regional differences because dots or heatmap regions tend to
concentrate around population centers, where there are also
the greatest numbers of hosts to compromise.

Other visualization techniques have also been adapted for
presenting and analyzing cyber activities. [19] monitors
network traffic using a treemap, where traffic is sliced and
diced by continent, country, AS, and IP address prefix, and
block size is proportional to the traffic quantity within. A
novel feature of the visualization is that it maintains the
relative geographic positions of continents and countries in
the treemap to facilitate detection of regional patterns. The
visualization does not account for the extent different ad-
dress blocks are utilized and does not normalize network ac-
tivity by computer population. STARMINE [14] integrates
geographical, temporal and logical visualizations for moni-
toring cyber attacks. In a 3-D environment, it displays an
IP Matrix, a world map, and a volume-over-time chart on
three orthogonal planes. Lines connect attacks’ originat-
ing IP addresses on the IP Matrix to their locations on the
world map. While this approach allows users to visualize
attacks from different perspectives simultaneously, the dis-
play quickly becomes too cluttered to read as data volume
increases.

Many simulations have been developed to explore worm and
botnet propagation including recent studies that explore the
spread of worms that preferentially spread to local IP ad-
dresses (e.g. [26, 7, 25]). To the best of our knowledge, none
of these simulations have modeled infection rates worldwide
across many cities and considered the resulting SIR distri-
butions.

6. FUTURE WORK
The analysis and display of EMBER could benefit from a
number of enhancements. Our approach could be improved
by obtaining more accurate geo-location data to map IP
addresses to cities. We could also analyze how inaccuracy
affects different regions and correct for it accordingly.

We would like to explore other ways of improving the esti-
mation of city host population. One of the challenges is to
identify gateway devices that mask large networks behind
limited public-facing IP addresses and to more accurately
account for their true size. Another challenge is the lim-
ited data coverage on IPv6 address space even though it has
been adopted by many countries and its usage continues to
grow. Finally, as computing platforms expand beyond desk-
top machines and servers to smart phones and gaming de-
vices, attacks also increase in non-traditional networks such
as public WiFi, cellular, and satellite networks. We need to
expand our research on infection statistics and modeling to
those areas as well.

We plan to apply EMBER to additional datasets and per-
form more systematic cross-validation against other data
sources. It would be interesting to test on threat-specific
datasets such as botnets and phishing sites. Moreover, we
would like to continue to improve the interface to better

illustrate changes over time.

Our simple simulation does not address details of malware
dynamics and it does not rule out other factors that may
contribute to the long-tailed SIR distribution. These in-
clude rates of patching and disinfection, interactions be-
tween multiple malware families, underlying vulnerability
distributions, use of pirated software, size and makeup of so-
cial networks, and enforcement and strength of cybercrime
laws. It is likely that many of these factors causally con-
tribute to creating cities with extreme SIR values and the
long-tailed SIR distributions. Further analyses and simu-
lations are necessary to understand temporal mechanisms
leading to the long-tailed SIR distributions and to model the
dynamics of multiple interacting malware families simulta-
neously in cities worldwide.

7. CONCLUSIONS
We have presented EMBER, a geographical display for ex-
treme malicious behavior worldwide. EMBER scores cities
by the Standardized Incidence Rate (SIR), which is the num-
ber of infections normalized by the local host population.
This metric identifies cities with significantly higher or lower
than expected level of malicious activity. This is useful for
finding generally risky or well-protected regions, as well as
regions that are targeted or avoided by specific threats. We
have applied EMBER to a test dataset from DShield, which
consists of millions of firewall and intrusion logs collected
daily from sensors distributed worldwide. The dataset shows
that cities in several Eastern European countries have the
most malicious activity whereas cities in Korea, Japan and
Australia appear to be best protected.

EMBER displays expose extreme variation in SIRs across
the world and make many viewers curious about whether
there are policies, behaviors, or other principles that are
causally related to low and high SIRs. If so, perhaps these
could be followed or made part of public policy to lower
SIRs. Our simple simulation demonstrates that statistical
variability caused by malware spreading preferentially lo-
cally can cause the extreme range of SIRs seen in the data.
These simulations, however, only model the long-term dis-
tribution of malware. They don’t model dynamics of mal-
ware spread or consider rates of patching and disinfection,
underlying vulnerability distributions, the effect of pirated
software, the size and makeup of social networks, enforce-
ment and strength of cybercrime laws, and other factors. It
is likely that many of these factors causally contribute to ex-
treme SIR values. For example we already noted that many
South Korean cities have low SIRs and that South Korea
has strong cyber antidefamation laws, Internet content con-
trols, and personal identification requirements when adding
content to large web sites [13]. The percentage of pirated
software used in a country also appears to be correlated with
SIRs. Data from [8] indicate that countries for the 10 cities
with the highest persistent SIRs from Fig. 6(a) have high
percentages of pirated software (median 73%) while coun-
tries for the 10 cities with the lowest persistent SIRs from
Fig. 6(b) have much lower percentages of pirated software
(median 27%). Future analyses and research should explore
the relationship between the these and other factors and the
worldwide spread of malware. Computation and visualiza-
tion of the SIR metric is a beginning of this search.

11



8. ACKNOWLEDGMENTS
The authors wish to thank DShield.org for the test data and
Kevin Carter, Carolyn Buractaon and Rob Cunningham for
their feedback.

9. REFERENCES
[1] DShield, 2010. http://www.dshield.org.

[2] GeoNames, 2010. http://www.geonames.org.

[3] Internet World Stats, 2010.
http://www.internetworldstats.com.

[4] Malware Domain List, 2010.
http://www.malwaredomainlist.com.

[5] MaxMind GeoLite City, 2010.
http://www.maxmind.com/app/geolitecity.

[6] Shadowserver, 2010. http://www.shadowserver.org.

[7] A. Bose and K. G. Shin. On Capturing Malware
Dynamics in Mobile Power-Law Networks. In
SecureComm ’08: Proceedings of the 4th international
conference on Security and Privacy in Communication
Networks, pages 1–10, New York, NY, USA, 2008.
ACM.

[8] Business Software Alliance. Sixth Annual BSA-IDC
Global Software 08 Piracy Study, May 2009.
http://global.bsa.org/globalpiracy2008.

[9] Centers for Disease Control and Prevention. U.S.
Cancer Statistics: An Interactive Atlas, March 2010.
http://apps.nccd.cdc.gov/DCPC INCA.

[10] A. Clauset, C. Shalizi, and M. Newman. Power-Law
Distributions in Empirical Data. ArXiv, 706, 2007.

[11] Cyber Clean Center. FY2008 Cyber Clean Center
(CCC) Activity Report, October 2009.
https://www.ccc.go.jp/en index.html.

[12] R. Deibert, J. Palfrey, R. Rohozinski, and J. Zittrain,
editors. Access Denied: The Practice and Policy of
Global Internet Filtering. MIT Press, 2008.

[13] Digital Nation Team. Free Speech in South Korea – Is
the Internet a Poison or Cure? PBS FRONTLINE
Blog, April 2009. http://www.pbs.org.

[14] Y. Hideshima and H. Koike. STARMINE: a
Visualization System for Cyber Attacks. In APVis
’06: Proceedings of the 2006 Asia-Pacific Symposium
on Information Visualisation, pages 131–138,
Darlinghurst, Australia, Australia, 2006. Australian
Computer Society, Inc.

[15] HostExploit. Top 50 Bad Hosts and Networks,
December 2009.
http://hostexploit.com/downloads.html.

[16] IronPort Systems. Reputation-based Mail Flow
Control, 2002. http://www.senderbase.org.

[17] A. Jemal, R. Siegel, E. Ward, Y. Hao, J. Xu, and
M. J. Thun. Cancer Statistics, 2009. CA: A Cancer
Journal for Clinicians, 59(4):225–249, 2009.

[18] N. Kshetri. Positive Externality, Increasing Returns,
and the Rise in Cybercrimes. Commun. ACM,
52(12):141–144, 2009.

[19] F. Mansmann, D. A. Keim, S. C. North, B. Rexroad,
and D. Sheleheda. Visual Analysis of Network Traffic
for Resource Planning, Interactive Monitoring, and
Interpretation of Security Threats. IEEE Transactions
on Visualization and Computer Graphics,
13(6):1105–1112, 2007.

[20] MaxMind. MaxMind GeoLite City Accuracy for
Selected Countries, November 2008.
http://www.maxmind.com/app/geolite city accuracy.

[21] Microsoft. Microsoft Security Intelligence Report
Volume 7, November 2009.
http://go.microsoft.com/?linkid=9693456.

[22] M. Mitzenmacher. A Brief History of Generative
Models for Power Law and Lognormal Distributions.
Internet mathematics, 1(2):226–251, 2004.

[23] H. Ng, G. Filardo, and G. Zheng. Confidence Interval
Estimating Procedures for Standardized Incidence
Rates. Computational statistics & data analysis,
52(7):3501–3516, 2008.

[24] N. Provos, P. Mavrommatis, M. A. Rajab, and
F. Monrose. All your iFRAMEs Point to Us. In SS’08:
Proceedings of the 17th conference on Security
symposium, pages 1–15, Berkeley, CA, USA, 2008.
USENIX Association.

[25] A. Rajab, J. Zarfoss, F. Monrose, and A. Terzis. A
Multifaceted Approach to Understanding the Botnet
Phenomenon. Proceedings of the 6th ACM SIGCOMM
conference on Internet measurement, page 52, 2006.

[26] S. H. Sellke, N. B. Shroff, and S. Bagchi. Modeling
and Automated Containment of Worms. IEEE Trans.
Dependable Secur. Comput., 5(2):71–86, 2008.

[27] B. Stone-Gross, M. Cova, L. Cavallaro, B. Gilbert,
M. Szydlowski, R. Kemmerer, C. Kruegel, and
G. Vigna. Your Botnet is My Botnet: Analysis of a
Botnet Takeover. In CCS ’09: Proceedings of the 16th
ACM conference on Computer and communications
security, pages 635–647, New York, NY, USA, 2009.
ACM.

[28] B. Stone-Gross, C. Kruegel, K. Almeroth, A. Moser,
and E. Kirda. FIRE: FInding Rogue nEtworks. In
2009 Annual Computer Security Applications
Conference, pages 231–240. IEEE, December 2009.

[29] Team Cymru. Conficker Worm Visualizations, 2009.
http://www.team-
cymru.org/Monitoring/Malevolence/conficker.html.

[30] N. Weaver, V. Paxson, S. Staniford, and
R. Cunningham. A Taxonomy of Computer Worms.
Proceedings of the 2003 ACM Workshop on Rapid
Malcode (WORM), pages 11–18, 2003.

[31] V. Yegneswaran, P. Barford, and J. Ullrich. Internet
Intrusions: Global Characteristics and Prevalence.
ACM SIGMETRICS Performance Evaluation Review,
31(1), 2003.

[32] C. Zesheng, J. Chuanyi, and P. Barford.
Spatial-Temporal Characteristics of Internet Malicious
Sources. In 2008 IEEE INFOCOM - The 27th
Conference on Computer Communications, pages
2306–2314. IEEE, 2008.

12




