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This paper proposes a novel malware visual analysis method that contains not only a visualization method to convert binary files
into images, but also a similarity calculationmethod between these images.The proposedmethod generates RGB-colored pixels on
image matrices using the opcode sequences extracted frommalware samples and calculates the similarities for the image matrices.
Particularly, our proposed methods are available for packed malware samples by applying them to the execution traces extracted
through dynamic analysis. When the images are generated, we can reduce the overheads by extracting the opcode sequences only
from the blocks that include the instructions related to staple behaviors such as functions and application programming interface
(API) calls. In addition, we propose a technique that generates a representative image for eachmalware family in order to reduce the
number of comparisons for the classification of unknown samples and the colored pixel information in the image matrices is used
to calculate the similarities between the images. Our experimental results show that the image matrices of malware can effectively
be used to classify malware families both statically and dynamically with accuracy of 0.9896 and 0.9732, respectively.

1. Introduction

Malware authors have been generating new malware and
malware variants through various means, such as reusing
modules or using automated malware generation tools. As
some modules for malicious behavior are reused in malware
variants, malware variants of the same family may have
similar binary patterns, and these patterns can be used to
detect malware and to classify malware families. Moreover,
most antivirus programs focus onmalware signatures, that is,
string patterns, to detectmalware [1].However, various detec-
tion avoidance techniques such as obfuscation or packing
techniques are applied to malware variants to avoid detection
by signature-based antivirus programs and to make analysis
difficult for security analysts [2, 3]. With the help of malware
generation techniques, the amount of malware is increasing
every year.

Although security analysts and researchers have been
studying various analysis techniques to deal with malware
variants, they cannot be analyzed completely because the

malware in which avoidance techniques are applied is expo-
nentially increasing. Therefore, new malware analysis tech-
niques are required to reduce the burden on security analysts.
Recently, several malware visualization techniques have been
proposed to help security analysts to analyze malware.

In this paper, we propose a novel method to analyze
malware visually to classify malware families. The proposed
method converts the opcode sequences extracted from the
malware into images called image matrices and calculates the
similarities between each image. In addition, we apply the
proposed method to the execution traces extracted through
dynamic analysis, so that malware employing detection
avoidance techniques such as obfuscation and packing can
be analyzed. To reduce the computational overheads, we
extract the opcode sequences only from the blocks that are
related to staple behaviors, such as functions and application
programming interface (API) calls, by using a major block
selection technique [2]. Representative images of individual
malware families are generated and are used to classify the
unknown sample rapidly. Using these image matrices, we
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obtain the similarities between the images after the RGB-
colored pixel information of the images is vectorized and the
pixel similarities are calculated.

This paper is composed as follows. In Section 2, malware
analysis-related studies are described. In Section 3, malware
analysis methods using visualized opcode sequences and
the methods to calculate similarity are proposed, and the
experimental results are presented in Section 4. Finally, in
Section 5, conclusions and future directions are provided.

2. Related Work

In general, malware analysis methods to detect and classify
malware can be categorized as either static or dynamic anal-
yses [4]. In the static analysis of malware, various methods
such as control flow graph (CFG) analysis [5–7], call graph
analysis [8, 9], byte level analysis [10], instruction-based
analysis [11–14], and similarity-based analysis [15, 16] have
been proposed.

CFGs are generated by dividing the instructions extracted
through disassembling into blocks and by connecting the
directed edges between the blocks. Some malware analysis
methods using these CFGs as signatures have been proposed.
Cesare and Xiang [5] proposed a method that defines CFGs
as signatures in string form that consist of a list of graph
edges for the ordered nodes and thatmeasures the similarities
among signatures by using theDice coefficient algorithm [17].
Bonfante et al. [6] proposed amethod that converts the CFGs
into tree-based finite state machines through syntactic anal-
ysis and semantic analysis and then uses them as signatures.
Briones and Gomez [7] proposed an automated classification
system based on CFGs. The CFGs are summarized as three
tuples including the number of basic blocks, the number of
edges, and the number of subcalls, and then two functions
can be compared. However, if the complex information is
summarized into a small size, high false alarms may occur.

There is much research aimed at detectingmalware based
on information such as system-calls, functions, and API calls,
which is used for malware execution in operating systems.
Shang et al. [8] proposed a method that generates function-
call graphs, which represent the caller and callee relationships
between functions as signatures ofmalware samples, and they
then compute the similarities by using those function-call
graph signatures. Kinable and Kostakis [9] classifiedmalware
using the call graph clustering technique. Their proposed
method generated the call graphs against the functions
included in the malware samples, and they performed the
clustering based on the structural similarity scores of the call
graphs calculated through the graph edit distance algorithm.

Statistical information regarding the instructions
extracted through disassembling can be used in the static
analysis of malware. Rad and Masrom [11] proposed a
method based on the instruction frequencies in order to
classify metamorphic malware. Since instruction frequencies
are mostly not changed, even though the obfuscation
techniques are applied to the malware, the instruction
frequencies can become the features of malware. Therefore,
their proposed method calculated a distance by using the
instruction frequencies extracted from eachmalware sample,

and they then classified metamorphic malware by using the
distance value. Bilar [12] showed that there were different
instruction frequencies in different malware. Particularly,
they showed that rare instructions in malware could become
better predictors to classify malware than other instruction
could. Han et al. [13] proposed a method using instruction
frequencies. The proposed method generated instruction
sequences that were sorted according to the instruction
frequencies, and they showed that the distances between
instruction sequences from the same malware family had
low distance values. Santos et al. [14] proposed a malware
classification method using n-gram instruction frequencies
in which n-gram instructions included n-instructions. In
the proposed method, they generated the vectors for each
n-instruction sequence and used some of the vectors as
signatures.

In addition, dynamic analysis methods including taint-
ing, behavior-based methods, and API call monitoring have
been proposed. Egele et al. [18] proposed a method using
tainting techniques, which tracks the behaviors related to
the flow of information that are processed by any browser
helper object (BHO). If the BHO leaks sensitive information
to the outside, the BHO is classified as malware. Fredrikson
et al. [19] proposed a method that automatically extracts
the characteristics of behaviors by using graph mining tech-
niques. Their proposed method made clusters by identifying
core CFGs for each similar malicious behavior in a malware
family, and these were then generalized as a significant behav-
ior. Furthermore, methods based on dynamic monitoring
techniques using an emulator have been proposed. Vinod et
al. [20] traced malware API calls via dynamic monitoring
within an emulator andmeasured their frequencies to extract
critical APIs. Miao et al. [21] developed a tool called the “API
Capture” that extracts themajor characteristics automatically,
such as system-call arguments, return values, and error
conditions by monitoring malware behavior in an emulator.

Even though there are many static and dynamic analyses
methods available, new techniques that can complement
existing techniques are still needed to improve malware
analysis performance and conveniences of analysis by secu-
rity analysts. Recently, several visualization methods have
been proposed to help security analysts to observe the
features and behaviors of malware [22]. To visualize malware
behavior, Trinius et al. [23] proposed amethod that visualized
the percentages of API calls as well as malware behavior
into each of two images called a “treemap” and “thread
graph,” respectively. Saxe et al. [24] developed a system
that generated two types of images. One image showed
the system-call sequences extracted from malware system-
call behavior logs, and the other image showed similarities
and differences between selected samples. Conti et al. [25]
proposed a visualizing system that shows the images for the
byte information of malware samples such as byte values,
byte presence, and duplicated sequences of bytes contained
within a sample. Anderson et al. [26] proposed a method
to show the similarities between malware samples in an
image named a “heatmap.” Nataraj et al. [27] converted the
byte information into gray-scale images and classified the
malware using image processing. After generating images
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Figure 1: Overview of the proposed method.

using byte values, they applied an abstract representation
technique for the scene image, that is, GIST [28, 29], to
compute texture features. Moreover, they proved that the
binary texture analysis techniques using image processing
could classify malware more quickly than existing malware
classification methods could [30]. However, since the texture
analysis method has large computational overheads, the
proposed method has problems in processing a large amount
of malware [31].

In this paper, we propose a novel analysis method using
image matrices to represent malware visually so that the fea-
tures of themalware can be easily detected and the similarities
between different malware samples can be calculated faster
than with other visualization methods.

3. Our Proposed Method

3.1. Overview. Our proposed visualized malware analysis
method consists of three steps, as shown in Figure 1. In Step 1,
opcode sequences are extracted frommalware binary samples
or dynamic execution traces. Then, image matrices in which
the opcode sequences are recorded as RGB-colored pixels are
generated in Step 2. In Step 3, the similarities between the
image matrices are calculated. In the following sections, each
step is explained in detail.

3.2. Extraction of Opcode Sequences. Figure 2 shows the
process to extract opcode sequences from malware binary
samples for Step 1 through static analysis or dynamic analysis.

3.2.1. Basic Block Extraction. To extract opcode sequences
from malware binary samples, the binary sample files are
first disassembled and divided into basic blocks, using dis-
assembling tools, such as IDA Pro [32] or OllyDbg [33].
However, if obfuscation or packing techniques are applied in
malware samples, static analysis using a disassembler is not
feasible [34, 35]. Therefore, some malware samples (in which
obfuscation or packing techniques are applied) need to be
executed in a dynamic analysis environment [36].

In dynamic analysis, as shown in Figure 3, some repeated
instruction sequences are included in the dynamic execution
traces because a program may have some loops or repeated
calls, and these repeated sequences can increase the size

of not only the execution traces, but also the processing
overheads. Kang et al. [37] proposed a repetition filtering
method for dynamic execution traces. Our filtered basic
blocks are extracted from the dynamic execution traces
after the repetition filtering method is applied. Finally, if
basic blocks are extracted frommalware samples or dynamic
execution traces, then major blocks are selected from the
basic blocks by our proposed technique, which is explained
in the next section.

3.2.2. Major Block Selection. The malware analysis method
proposed in this paper does not target all of the basic
blocks from the binary disassembling results or dynamic
execution traces. If all the basic blocks are used for analysis,
then some blocks for binary file execution in an operating
system are included in the basic blocks. Moreover, many
meaningless blocks may be included in the basic blocks
extracted from malware samples. As a result, the number of
basic blocks that have to be analyzed by the security analysts
is increased and distinguishing malware features becomes
difficult. In addition, the number of comparisons between
the basic blocks from two malware samples is also increased
dramatically. On the contrary, if the number of unnecessary
blocks can be reduced as much as possible in the malware
analysis, the analysis time cost for not only the individual
malware sample, but also a large number of malware samples
can be reduced. Therefore, we selected some blocks relating
to suspicious behaviors and functions from among the entire
set of basic blocks.

As shown in Figure 4, the blocks selected as major blocks
are those that include the CALL instruction, which is used
to invoke APIs, library functions, and other user-defined
functions. This is because not only user-defined functions,
but also various system calls are used to implement the
behaviors and functions of most programs. If blocks that
include these function invocation instructions are used in
malware analysis, malware features can be extracted [2].
Through a major block selection technique, the image matrix
generating time is reduced by recording only those selected
blocks in the image matrix.

3.2.3. Opcode Sequence Extraction. To extract malware fea-
tures, as shown in Figure 5, the opcode sequences in the
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Figure 2: Opcode sequence extraction procedure.
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0042A68B JBE 

0042A68D MOV AL, BYTE PTR DS: [EDX]

0042A68F INC EDX

0042A690 MOV BYTE PTR DS: [EDI], AL

0042A692 INC EDI

0042A693 DEC ECX

0042A694 JNZ 

0042A68D MOV AL, BYTE PTR DS: [EDX]

0042A68F INC EDX

0042A690 MOV BYTE PTR DS:[EDI],AL

0042A692 INC EDI

0042A693 DEC ECX

0042A694 JNZ 

0042A68D MOV AL, BYTE PTR DS: [EDX]

0042A68F INC EDX

0042A690 MOV BYTE PTR DS: [EDI], AL

0042A692 INC EDI

0042A693 DEC ECX

0042A694 JNZ 

MOV AL,BYTE PTR DS: [EDX]

0042A68F INC EDX

0042A690 MOV BYTE PTR DS: [EDI], AL

0042A692 INC EDI

0042A693 DEC ECX

0042A694 JNZ 

0042A696 JMP 

0042A5FE ADD EBX, EBX

0042A68D

SHORT Exploit .0042A68D

SHORT Exploit .0042A68D

SHORT Exploit .0042A68D

SHORT Exploit .0042A68D

SHORT Exploit .0042A69C

Exploit .0042A5FE

Figure 3: An example of repeated instruction sequences.
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edi, [ebx+8

short loc 40192F

Figure 4: Major block selection.

individual major blocks are used as malware information.
From each opcode, only the first three characters are used
to generate information for the block. The reasons for using
a three-character opcode are as follows. From the entire set
of opcodes used in the Intel x86 assembly language, 41.4% of
them have three characters, and the appearance frequencies
of these opcodes within the binary files are higher than
for other opcodes. On the other hand, 28.8% of opcodes
have four characters, 17.8% have five characters, and 5.2%
have over six characters, respectively; thus, their appearance
frequencies are relatively low. In addition, since themeanings
of the individual opcodes are maintained even though they
are reduced to three characters, the different opcodes can
be distinguished. For example, four-character opcodes such
as PUSH are reduced to three characters, PUS, and two-
character opcodes such as OR are expanded by adding a
blank character to a three-character opcode. Then, these
three-character opcodes are concatenated together, and the
character string is used to represent the block as an opcode
sequence, which is used to generate image pixels in an image
matrix in the next step.

3.3. Generation of the Image Matrix. Figure 6 shows the
procedure for Step 2 that converts the opcode sequences into

pixels in an image matrix. A hash function is used to decide
the𝑋-𝑌 coordinates and RGB colors of the pixels.

To visualize a binary file as an image matrix, both the
length and the width of an image matrix are initialized to 2n,
where 𝑛 is selected by the users. To reduce the probability of
collisions of the hash function; n should be large enough. In
our experiments, we selected 𝑛 as 8 to minimize collisions.

The coordinate-defining module and the RGB color-
defining module are used to generate image matrices. First,
the coordinate-defining module defines the (𝑥, 𝑦) coordi-
nates of pixels on the image matrix of each code block.
Second, the RGB color-defining module defines the color
values of pixels on the image matrix. RGB colors are defined
by calculating values of 8 bits each for the red, green, and blue
colors.

SimHash [38] is applied to opcode sequences extracted in
Step 1 in order to define both the coordinates and the color
values of the pixels. SimHash is a local-sensitive hash function
used in the similar sentence detection system, which assumes
that if the input values are similar, then the output values will
also be similar. That is, since SimHash tokenizes the input
strings and generates hash values for each token, if a few
tokens are different in two input strings, then the generated
hash values are not completely different, but are similar.



6 The Scientific World Journal

PUSH

PUSH
PUSH

PUSH
PUSH
LEA

ADD

LEA

POP

POP
POP

MOV

MOV
OR
JZ

CALL

CALL

ebp

ebp

ebp

ebp

esi

esi

eax, eax

ebp, [ebx + 10 h]

ebp, [ebx + 10 h]

ebx

esp, 8

Major blocks Opcode sequences

PUSLEAPUSPUSCALADDPOPMOV

PUSPUSLEACALPOPPOPMOV OR JZ

0FFFFFFFFh

dword ptr [edi + ecx ∗ 4 + 4]

ebx, [ebp + arg 4]

short loc 40192F

eax, 1

sub 4019EA

Figure 5: Opcode sequences used as malware information.

37 57 D6 C3 2B
X Y R BG

PUSPUSLEACALPOPPOPMOV OR JZ

Malware information

Image matrix

SimHash
coordinate define 

SimHash
RGB color define 

Figure 6: Generating images using opcode sequences.

Therefore, if the character strings of the opcode sequences are
similar, then the outputs will be similar, and they will map
onto similar coordinates in an image matrix.

Once the coordinates and RGB colors of the individual
pixels have been defined, RGB-colored images are recorded
on the individual coordinates of image matrices. To provide
human analysts with amore convenient visual analysis, pixels
around the defined coordinates are recorded simultaneously.
As shown in Figure 7, nine pixels from (𝑥 − 1, 𝑦 − 1) to (𝑥 +
1, 𝑦+1) around an (𝑥, 𝑦) coordinate for a block are recorded.

If the images overlap each other because the coordinates
defined formultiple opcode sequences are adjacent, as shown
in Figure 8, the sums of RGB colors become new pixel colors.
If the result of a color summing exceeds 255 (0xFF), the result
will be set to 255. For example, if RGB

1
is (255, 0, 0) and RGB

2

is (0, 176, 50), the new color will become (255, 176, 50).
The number of pixels recorded on an image matrix varies

according to themajor blocks, and the number of overlapping
pixels will increase as the number of images increases. If there
are too many overlapping images, then the size of the image
matrix should be increased.
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y
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y + 1
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Figure 7: Nine pixels for one opcode sequence.

3.4. Representative Image Matrix Extraction. Since many
malware variants exist in eachmalware family, as the number
of malware samples increases, the total amount and time
of the similarity calculation increase, too. Therefore, we
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Figure 8: Method of recording overlapping pixels.

extracted a representative imagematrix of eachmalware fam-
ily to reduce the costs of malware similarity calculations.That
is, when a new malware sample is found, the amount of time
to calculate the similarity is reduced by comparing the image
matrix of the new malware with the image matrices that
represent individualmalware families instead of comparing it
with all of the imagematrices of the existingmalware samples.

As shown in Figure 9, to extract a representative image
matrix for eachmalware family, imagematrices are generated
for samples in malware families. Then, the representative
image matrix is extracted by recording only the common
pixels that have same coordinates and RGB colors from the
image matrices of individual malware samples in the same
family. Figure 9 shows an example of the generation of
representative images of malware families.

3.5. Similarity Calculation Using Image Matrices. The advan-
tage of the similarity calculation using the imagematrices is a
faster performance than with exact matching using the string
type of opcode sequences, even though there are some extra
false positives due to hash collision. When using the string,
the time complexity is defined as 𝑂(𝑛2) due to the process
of finding pairs of exactly matched strings. However, if the
image matrices are used to calculate similarities, since the
coordinates and colors of the opcode sequences are defined
through SimHash, the process of finding the pairs is skipped.
Therefore, the time complexity of the similarity calculations
using the image matrices is defined as O(n), because only
the color information of the pixels recorded on the same
coordinates in both image matrices is used to calculate the
similarities between the image matrices.

Pixel similarity calculations are carried out first for pixels
in each image matrix. The most important consideration in
a similarity calculation in this case is that only those RGB

color pixels recorded in the individual imagematrices should
be used. Image matrices have RGB-colored pixels on square
imageswith black backgrounds. If black pixels are also used in
similarity calculations, the similarities between samples from
different malware families can be calculated as very high.
Therefore, when the similarities of the image matrices are
calculated, the following cases are considered for pixels on
the same coordinates in the two image matrices, as shown
in Figure 10. In this case, the vector angular-based distance
measurement algorithm is used to calculate the similarities
between color pixels. This algorithm calculates similarity
values by expressing the color pixels constituting each image
as 3D vectors, as shown in (1), and then using the angle
information and size information

(a) Case 1: if all of the pixels in the areas of both image
matrices are black, the pixel similarity calculation will
not be carried out and the next pixel will be selected.

(b) Case 2: if one pixel in a selected area is black and the
corresponding pixel in the other image is colored, the
pixel similarity will be defined as 0.

(c) Case 3: if both pixels are not black but colored, the
color pixel similarity will be calculated using the vec-
tor angular-based distance measurement algorithm
[39], as follows:

𝛿 (𝑥
𝑖
, 𝑥
𝑗
) = [1 −

2

𝜋
cos−1(

𝑥
𝑖
⋅ 𝑥
𝑗

𝑥𝑖



𝑥
𝑗



)][1 −


𝑥
𝑖
− 𝑥
𝑗



√3 ⋅ 2552
] .

(1)

The similarity values of the image matrix when considering
individual cases are calculated, using the results from the
pixel similarity calculations, as shown in (2). That is, the sum
of pixel similarity values calculated in case 3 is divided by the
number of pixels calculated in cases 2 and 3 to calculate the
average:

Sim (𝐴, 𝐵) =
sum of pixel similarity values in case 3

# of pixels in case 2 and case 3
. (2)

4. Experimental Results

4.1. Experimental Data and Environment. Using the visual
analysis tools implemented in this paper, and the malware
samples shown in Table 1, imagematrices were generated, and
similarity calculations were performed. First, set A consists of
290 malware samples from 16 families in which the detection
avoidance techniques, such as obfuscation and packing, are
not applied. These malware samples are used to extract the
basic blocks through static analysis using a disassembler.
Second, set B consists of 560 malware samples from 14 fam-
ilies in which the packed and nonpacked malware samples
coexist. We used these malware samples to generate dynamic
execution traces through the PIN tool in a dynamic analysis
environment, and the filtered basic blocks are extracted from
the dynamic execution traces through the repetition filtering
technique, as explained in Section 3.2.1.
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Image matrix of sample.a Image matrix of sample.n Representative image matrix 
of sample family

Common pixels of sample family

Pixels only in sample.a
Pixels only in sample.n

· · ·

Figure 9: Representative image matrix extraction.
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BlackBlack

Sample A

(a) Case 1: black and black

Black Color

Sample A Sample A

(b) Case 2: black and color

Color Color

Sample A Sample A

(c) Case 3: color and color

Figure 10: Three cases considered in pixel similarity calculations.

For the experiments, we constructed an experimental
environment consisting of the analysis server,malware server,
and monitoring machine, as shown Figure 11. We set up
VMware vSphere ESXi 5.1 in the analysis server, which has
an Intel Xeon E5-1607 processor and 24GB of main memory,
and we installed two Windows operating systems (OSs) as
guest OSs. In the first Windows OS, the dynamic execution
traces were extracted through the PIN. In the otherWindows
OS, the image matrices were generated and similarities were
calculated through our visual analysis tool. Malware samples
that are provided for the analysis server and the dynamic
execution traces extracted from the analysis server are stored
in the malware server. The monitoring machine controls the
analysis server through the PowerCLI tool that is the remote
command line interface.

4.2. Experiments with Static Analysis. For the experiments
in this section, we disassembled the malware samples within
set A and extracted major blocks from the basic blocks. We
then generated the imagematrices using opcode sequences of
thosemajor blocks and analyzed the similarities among them.

4.2.1. Image Matrix Generation. In this paper, we set the sizes
of the generated image matrices to 256 × 256 pixels for the
experiments. As shown in Table 2, the reasons for using this
image matrix size can be briefly summarized as the middle
ground between file size, similarity calculation time, and

classification accuracy. The accuracy was calculated by using
(3):

Accuracy =
# of correctly classified malware samples

# of total malware samples
.

(3)

Figure 12 shows examples of the image matrices generated
from the malware samples of individual families within set
A. Only three image matrices for each malware family and
one representative image matrix extracted by recording only
those pixels commonly existing in all image matrices were
included. Since the number of opcode sequences used as
malware information varied, the number of pixels recorded
on the image matrices differed. In the case of malware,
many of the same or similar RGB-colored pixels are found
among the image matrices of malware samples classified as
the same family. However, even if pixels are recorded on
the same coordinates of different image matrices, the pixel
similarities have different values if the RGB color information
of the relevant pixels is different. Our results show that image
matrices of variants included in the samemalware family can
be shown to be similar and that clear differences exist among
malware samples from different families.

Figure 13 shows the image matrix differences before and
after the application of the major block selection technique.
The image progression indicates that the number of pixels
recorded in the image matrices decreases because of the
selection of major blocks from among the basic blocks. The
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(c) Worm.Win32.Deborm family

Figure 12: Image matrices of malware family samples.
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Table 1: Malware samples.

Set Type Family Number of variants

A

Email-Worm Klez 9
Trojan-DDos Boxed 27

Trojan-Downloader

IstBar 41
Ladder 5
Lemmy 26
Mediket 43

OneClickNetSearch 11
Trojan-Dropper Tab 8

Virus

Eva 6
Evol 3

Fosforo 4
Gpcode 35
Halen 7

Semisoft 14
Zepp 11

Worm Deborm 40

B

Backdoor

Agobot 40
Bifrose 40
IRCBot 40
SdBot 40

Trojan Dialer 40
StartPage 40

Trojan-Downloader
Banload 40
Dyfuca 40
Swizzor 40

Trojan-Spy Bancos 40
Banker 40

Email-Worm Bagle 40
IM-Worm Kelvir 40
P2P-Worm SpyBot 40

Table 2: The selection of image matrix size.

Size
(resolution)

File size
(KB)

Similarity
calculation time

(ms, avg.)

Classification
accuracy (avg.)

128 × 128 48 5.3 0.9595
256 × 256 192 18.2 0.9814
512 × 512 768 66.4 0.9929

similarity changes after the application of the major block
selection is described in the next subsection.

4.2.2. Major Block Selection. Similarity calculations of the
image matrices after the application of major block selection
are shown in Figures 14 and 15. When the major block selec-
tion technique was applied, the similarity changes ranged
from a minimum of 0.002 (the Tab family) to a maximum
of 0.147 (the Lemmy family) among the malware samples in
the same families. The results of the similarity calculations
for different families showed that the changes ranged from
a minimum of 0.001 (the Eva family) to a maximum of

Table 3: Arbitrarily selected malware samples as unknown.

Number Malware sample Most similar family (similarity)
1 Klez.j Klez (0.181)
2 Boxed.g Boxed (0.190)
3 IstBar.gvf IstBar (0.302)
4 Ladder.f Ladder (0.339)
5 Lemmy.z Lemmy (0.341)
6 Mediket.ec Mediket (0.325)
7 OneClickNetSearch.k OneClickNetSearch (0.268)
8 Tab.gd Tab (0.348)
9 Eva.g Eva (0.317)
10 Evol.c Evol (0.329)
11 Fosforo.d Fosforo (0.341)
12 Gpcode.x Gpcode (0.306)
13 Halen.2619 Halen (0.352)
14 Semisoft.n Semisoft (0.281)
15 Zepp.d Zepp (0.265)
16 Deborm.ai Deborm (0.339)
17 Agobot.02.a Mediket (0.042)
18 SdBot.04.a Boxed (0.054)

0.053 (the Klez family). As a result, while the range of the
similarity values among the malware samples in the same
family is more than 0.6, the range of the similarity values
among malware samples from different families is below
0.1. Therefore, although the similarity values change due to
applying the major block selection technique, we can reduce
the image matrix generation time and can find obvious
differences in the similarity values.

4.2.3. Representative ImageMatrix Extraction. For this exper-
iment, we selected an arbitrary malware sample not included
in data set A as the unknown sample. We then analyzed
the similarity calculation time and the similarity values of
an image matrix for the unknown sample with 290 image
matrices of all malware samples and with 16 representative
image matrices extracted from individual families.

Figure 16 shows the results of the similarity calculations
of an unknown sample both with all of the image matrices of
malware samples and with the representative image matrices
of individual families. When all of the image matrices were
used, the Tab family was found to have an average similarity
value of 0.781, while all the other families had values smaller
than 0.05. When representative image matrices of individual
families were used, the average similarity of the Tab family
had a value of 0.348, while the other families had values of
less than 0.03. Therefore, the unknown sample is expected to
be a variant of the Tab family. In fact, the diagnostic name
of the unknown sample used for this experiment was Trojan-
Dropper. Win32.Tab.gd.

Table 3 shows the list of the malware samples selected
as unknown samples for this experiment and it includes
the results of the similarity calculations using represen-
tative image matrices. These malware samples except for
Agobot.02.a and Sdbot.04.a were detected as variants of each
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Every basic blocks Only major blocks

(a) Email-Worm.Win32.Klez.a

Every basic blocks Only major blocks

(b) Trojan-DDos.Win32.Boxed.a

Every basic blocks Only major blocks

(c) Trojan-Downloader.Win32.Lemmy.e

Every basic blocks Only major blocks

(d) Virus.Win32.HLLP.Zepp.a

Figure 13: Comparison of image matrices with and without major block selection.
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Figure 14: Image matrix similarity calculations of malware samples
in each family following major block selection.

corresponding family in set A, with a range of similarity
values among the representative image matrices from 0.181
to 0.352. Since the Agobot.02.a and the Sdbot.04.a samples
are not variants of the malware families in set A, their
similarity values compared to the existing individual family
representative image matrices were very low.

4.2.4. Feasibility in Malware Classification. Figure 17 shows
the changes in similarity values obtained by applying all the
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Figure 15: Image matrix similarity calculations of malware samples
from different families following major block selection.

proposed methods together, that is, the major block selection
and representative image extraction techniques. Whereas the
similarities betweenmalware samples from the same families
had values between 0.19 and 0.36, the similarities between
malware samples from different families were less than 0.05.
The classification accuracy, which was obtained by using
the image matrices that were generated through the static
analysis, was 0.9896. That is, only three malware samples
in set A were misclassified into the other malware families.
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Figure 16: Similarity values of the unknown sample compared to
the representative image matrices of individual families.
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Figure 17: Results of similarity calculations using the three pro-
posed techniques.

Our result was a little better than the average classification
accuracy of 0.9757 using the binary texture analysis in [30].
Therefore, we conclude that our methods are feasible for
malware classification because similarities within the same
families will be relatively high compared to the similarities
between malware samples from different families.

4.3. Execution Trace-Based Experiments. For the execution
trace-based experiments, the malware samples within set B
in Table 1 were executed in dynamic analysis environments
using the PIN tool. Dynamic execution traces were then gen-
erated, and the repetition-filtered basic blocks were extracted
from those execution traces. After filtering, the major blocks
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Figure 18: Changes in execution trace size following the application
of repetition filtering and major block selection.

relating to suspicious behaviors and functions were selected.
Our proposed techniques were applied to these execution
traces to generate image matrices and to analyze similarities.

Figure 18 shows the decrease in size of the execution traces
resulting from the application of the repetition filtering and
major block selection techniques. If the sizes of the execution
traces were first reduced through the repetition filtering
technique and then the major block selection method was
applied, the sizes of the execution traces were reduced
by 76.5% on average (69.3% minimum, 83.6% maximum)
compared to the original execution traces.

Figure 19 shows changes in the generated image matrices
resulting from the application of the repetition filtering
method and the major block selection. Decreases in the
number of recorded pixels in the image matrices can be
recognized when the three image matrices are compared.

Figures 20 and 21 show changes in the similarity values
with the application of the repetition filtering technique and
the major block selection. Although changes in the values are
not large, some malware families are distinguishable if the
threshold of similarity values is set properly.

In these experiments, the average similarity values of
malware samples from the same families was approximately
0.65 and those from different families were approximately
0.36. Compared to the results of the static analysis described
previously, the results from the execution trace-based exper-
iments show relatively small differences. The reason for these
results is that similar system dynamic link libraries (DLLs)
were invoked when the malware samples of each family were
executed in the dynamic analysis environment to extract
the dynamic execution traces. As a result, similar opcode
sequences due to the DLL calls and the executing of DLLs
from the dynamic execution traces were recorded in the
image matrices of individual families, so the similarity values
increased. Nevertheless, the classification accuracy obtained
through the similarity calculations using the image matrices
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Figure 19: Changes in the generated image matrices from the application of repetition filtering and major block selection.
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Figure 20: Changes in similarity between samples in the same
families after repetition filtering and major block selection.

that were generated based on the execution traces was 0.9732
because only 15 malware samples in set B were misclassified,
and this result was similar to the accuracy in [30].

5. Conclusions and Future Work

In this paper, we proposed a novelmethod to analyzemalware
samples visually by generating image matrices. To gener-
ate the image matrices, opcode sequences were extracted
through static analysis and dynamic analysis. In addition,
we calculated the similarities between the malware variants
using vectorized values of the RGB-colored pixels in the
image matrices. The similarity calculation method using the
image matrices has a faster performance than exact matching
using the string type of opcode sequences or basic blocks.
Our proposed method was implemented as a visual analysis
tool. The experimental results showed that malware variants
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Figure 21: Changes in similarity between samples from different
families after repetition filtering and major block selection.

included in the same family were similar when converted
into image matrices, and the similarities between malware
variantswere shown to be higher.With our proposedmethod,
security analysts can analyze malware samples visually and
can distinguish similar malware samples for further analysis.
Our future studies include faster malware detection and
classification using the parallelization techniques and real-
time processing based on GPGPU.
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