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ABSTRACT
In an attempt to coerce useful information about the behav-
ior of new malware families, threat analysts commonly force
newly collected malicious software samples to run within a
sandboxed environment. The main goal is to gather intelli-
gence that can later be leveraged to detect and enumerate
new malware infections within a network. Currently, most
analysis environments“blindly”execute each newly collected
malware sample for a predetermined amount of time (e.g.,
four to five minutes). However, a large majority of mal-
ware samples that are forced through sandbox execution are
simply repackaged versions of previously seen (and already
analyzed) malware. Consequently, a significant amount of
time may be wasted in analyzing samples that do not gen-
erate new intelligence.

In this paper, we propose MAXS, a novel probabilistic
multi-hypothesis testing framework for scaling execution in
malware analysis environments, including bare-metal execu-
tion environments. Our main goal is to automatically recog-
nize whether a malware sample that is undergoing dynamic
analysis has likely been seen before (e.g., in a “differently
packed” form), and determine if we could therefore stop its
execution early while avoiding loss of valuable malware intel-
ligence (e.g., without missing DNS queries to never-before-
seen malware command-and-control domains).

We have tested our prototype implementation of MAXS
over two large collections of malware execution traces ob-
tained from two distinct production-level analysis environ-
ments. Our experimental results show that using MAXS we
are able to reduce malware execution time by up to 50% in
average, with less than 0.3% information loss. This roughly
translates into the ability to double the capacity of mal-
ware sandbox environments, thus significantly optimizing
the resources dedicated to malware execution and analysis.
Our results are particularly important for bare-metal exe-
cution environments, in which it is not easy to leverage the
economies of scale that characterize virtual-machine or emu-
lation based malware sandboxes. For example, MAXS could
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be used to significantly cut the cost of bare-metal analysis
environments by reducing the hardware resources needed to
analyze a predetermined daily number of new malware sam-
ples.

1. INTRODUCTION
The common practice of studying malicious software (or

malware) in a controlled environment is analogous to in
vitro studies of biological pathogens, which allow scientists
to understand how a pathogen attacks the victim system
and what mechanisms may be used to develop a cure. For
example, malware analysts routinely force newly collected
samples to run within a sandboxed environment, and study
their system- and/or network-level behavior to derive possi-
ble defense mechanisms [1, 2, 8, 9].

Unfortunately, the in vitro behavior of a malware sample
may differ significantly from what may be observed in vivo,
namely on a live infected machine. One of the leading causes
of such a behavior divergence is the fact that the malware
may be able to detect the nature of the execution environ-
ment itself, and alter the behavior if it believes it is being
studied [4]. For instance, a malware sample may attempt to
detect the side-effects imposed by a virtual-machine (VM)
or emulation-based analysis environment, thus indicating
whether the system has been heavily instrumented to record
detailed information about how the malware“exploits”or in-
fects the victim machine.

One possible approach towards mitigating such drawbacks
is the use of bare-metal malware execution [15,16], in which
the malware is forced to run on a “native” system with no
virtualization, emulation, or other heavy system instrumen-
tations, thus bringing us closer to in vivo malware analy-
sis. While bare-metal execution can only provide less fine-
grained information regarding system-level operations per-
formed by the malware, compared to emulation-based sys-
tems, it still allows for transparently collecting a range of
interesting behaviors, including detailed network activities
that can be leveraged for defense purposes. Unfortunately,
bare-metal analysis environments can incur much higher hard-
ware costs, because they cannot as easily benefit from the
economies of scale that are instead leveraged by traditional
VM- or emulation-based analysis environments, thus limit-
ing the number of malware samples that can be analyzed
per day.

To reduce the cost of bare metal execution, in this paper
we propose MAXS1, a probabilistic multi-hypothesis testing
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framework that aims to increase the capacity of malware
analysis environments, including bare-metal environments.
Specifically, MAXS aims to significantly boost (e.g., dou-
ble) the average number of malware samples that can be
analyzed per day by a given malware analysis system. We
accomplish this goal by dynamically optimizing the amount
of execution time dedicated to the analysis of each malware
sample. To this end, we develop a new probabilistic decision
framework that operates sequentially on malware behaviors
(e.g., malware-generated network events) observed during
malware analysis.

Our work is based on the following observations:

1. Many (if not most) newly collected malware samples
are simply “re-packed,” obfuscated variants of previ-
ously analyzed malware families [11,13,21,23].

2. While appearing syntactically unique, a new sample
may behave in a way very similar or identical to sam-
ples we have already analyzed, thus producing little
or no new actionable intelligence (e.g., new malware-
control domains to be blacklisted).

3. Malware analysis environments typically execute each
sample “blindly” for a predetermined amount of time
(e.g., four to five minutes) [5, 7], irrespective of the
behavior exhibited by the sample being tested and of
malware observed in the past.

MAXS improves the scalability of a malware analysis en-
vironment by dynamically (and probabilistically) deciding
whether a sample really needs to run for a predetermined
maximum execution time, or if its execution should instead
be preemptively stopped. This decision is made by incre-
mentally analyzing the (partial) behavior exhibited by a
sample, and by continuously comparing it with the behavior
profile of a large set of previously observed malware families.
Specifically, as a malware sample is forced to execute, it will
likely start generating a number of network events. For in-
stance, the sample may query one or more domain names,
initiate TCP flows towards outside IP addresses, send HTTP
requests, etc. Every time a new event is observed, MAXS
takes a look at the current execution trace and computes
two quantities: (1) the probability, Pf , that the sample be-
longs to a previously analyzed malware family; and (2) the
probability, Pb, that if we continue to run it, the current
sample will produce previously unseen malware behaviors
(e.g., queries to never-before-seen malware-control domains,
which could be added to a blacklist). Intuitively, if Pf is high
and Pb is very low, we can preemptively stop the sample’s
execution while minimizing the risk of information loss.

MAXS is different from previous work, such as [5]. In
particular, [5] requires access to fine-grained system-level
information and therefore cannot be directly applied to bare-
metal execution environments. In contrast, MAXS is a generic
probabilistic decision framework that can be applied with
little or no changes to a variety of malware analysis out-
puts, including network activities produced by bare-metal
execution environments, system-level information produced
by VM- or emulation-based environments, as well as static
malware code analysis information (see Section 4.4). In
addition, whereas [5] attempts to decide whether to pre-
emptively stop the execution of a malware sample using a
“one shot” decision test at a pre-selected fixed time (e.g.,

after sixty seconds of execution), MAXS provides a sequen-
tial testing framework that allows us to dynamically decide
if/when a sample’s execution should be stopped. Finally,
unlike [5], MAXS explicitly embeds into its probabilistic de-
cision framework the loss of information (e.g., unobserved
malware-control domain names) caused by a possibly pre-
mature termination of a sample’s execution, and thus aims
to optimize the trade-off between resource savings and in-
formation loss for each malware family.

In summary, we make the following main contributions:

• We propose MAXS, a novel probabilistic decision frame-
work that aims to boost (e.g., double) the capacity of
malware analysis environments, including bare-metal
execution environments.

• We provide a detailed description of our proposed prob-
abilistic framework, which is based on multi-hypothesis
sequential probability ratio tests, and discuss how MAXS
can be used to improve the scalability of malware anal-
ysis systems while minimizing information loss.

• We evaluate MAXS over two large datasets of malware
execution traces produced by two different production-
level malware analysis environments, and show that in
average we can decrease the time needed to analyze
these malware samples by up to 50% with less than
0.3% information loss.

2. MAXS FRAMEWORK OVERVIEW
In this section, we provide a brief overview of how our

MAXS framework works. More technical details on our ap-
proach will be presented in Section 3.
Background. A typical production-level malware analy-
sis environment may process tens or even hundreds of thou-
sands“new”malware samples per day. Each malware sample
is usually “blindly” executed for a fixed time window (e.g.,
4 to 5 minutes), during which the malware behavior (sys-
tem and/or network level) is recorded. For instance, as the
malware sample is executed, it may query a set of malware-
control domain names. These domains (or the resolved IP
addresses) may then be added to a domain name blacklist,
and used to enumerate machines infected with the same type
of malware in the wild (e.g., in live ISP or enterprise net-
works) [3, 6].
Goals and Benefits. MAXS aims to reduce the amount of
execution time dedicated to analyzing each malware sample,
instead of executing each sample for a fixed time. As dis-
cussed in Section 1, the main intuition is that many of the
(supposedly) new samples are in fact repacked, obfuscated
versions of previously seen and analyzed malware. There-
fore, our goal is to identify such cases, and preemptively stop
malware execution if we believe the sample is highly unlikely
to produce new actionable intelligence (e.g., new malware-
control domains that can be added to a domain blacklist).

Effectively, MAXS aims to significantly reduce the average
execution time that needs to be dedicated to each malware
sample (e.g., from 4 to 2 minutes). This savings can be
leveraged in multiple ways:

• MAXS can help decrease the cost of malware anal-
ysis systems, because fewer resources are needed to
handle a predetermined daily volume of malware sam-
ples. For instance, we could design and provision a
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new bare-metal malware execution environment at a
lower overall hardware cost.

• Given an existing malware analysis system, MAXS can
help to significantly increase (e.g., double) its capacity,
measured as the average number of malware samples
that can be processed per day.

• In alternative, an existing malware analysis system
could spend less time re-analyzing previously seen mal-
ware families, and reallocate the time saved thanks to
MAXS to running truly new samples (e.g., samples
belonging to new or underrepresented malware fami-
lies) for longer periods of time, thus potentially gaining
more insight into their malicious behavior.

Approach. MAXS works in two phases: (1) a learning
phase, in which malware samples are grouped into families
and behavior profiles are derived; and (2) an operational
phase, in which the events generated by the execution of
new malware samples (e.g., new domain name queries) are
sequentially tested against the previously learned family be-
havior profiles, to decide whether we should preemptively
stop a sample’s execution.

Figure 1a provides an overview of the learning phase.
Given an initial set of malware samples and the respective
execution traces (e.g., obtained by running the samples for
a fixed amount of time), we first need to cluster similar sam-
ples into families, for example by using techniques similar
to [14, 18, 22]. Essentially, a malware family is a group of
malware samples that produce similar events, such as simi-
lar network activities (e.g., similar DNS queries, HTTP re-
quests, TCP flows, etc.). Notice that throughout the reset
of the paper we intentionally use the generic term “events”
because MAXS is a generic framework that can be applied
to different types of malware information, including network
events, system events, and also information extracted using
static analysis (see Section 4.4).

Once the malware families are formed, from each family
we derive a family behavior profile that summarizes the set
of events generated by all the samples in the family. These
behavior profiles are used during the operational phase to
determine if a new malware sample likely belongs to a pre-
viously seen family, and to dynamically decide if we should
continue executing the sample or not.

The learning phase we just described can be performed
periodically (e.g., once a week) offline, to capture the nat-
ural evolution of existing malware families and to discover
previously unseen groups. As the new family profiles become
available, we can replace the older ones without having to
pause the malware analysis infrastructure.

Figure 1b shows how MAXS works during the operational
phase. Let m be a new malware sample to be executed. Ev-
ery time m generates a new event (e.g., a new DNS query)
we compare the events produced so far to each of the family
behavior profiles derived during the learning phase. Specif-
ically, we compute the probability, Pfi(t), that the sample
belongs to family fi, given all events generated by m until
the current execution time t. If Pmax(t) = maxi{Pfi(t)} is
greater than a tunable threshold β (which can be computed
during the learning phase), we assign the sample to the fam-
ily fk whose Pfk (t) = Pmax(t). Otherwise, we wait for the
next event and repeat the process.

After the sample has been assigned to a family, say fk, at
a given execution time, say tk, we compute the probability,

Pbk (t), that a malware samples belonging to fk will produce
previously unseen events at any time t ≥ tk. Specifically, let
Texe be a predetermined maximum execution time allowed
by the analysis infrastructure, and te be the time of the latest
event of interest generated by the currently running sample
m. If Pbk (t′) < γ for each t′ ∈ (te, Texe], we preemptively
stop the execution of the sample at time te. Otherwise,
we continue executing m, and repeat the process described
above as soon as a new event is generated.

Intuitively, we preemptively stop execution if it is highly
unlikely that the sample will generate any never-before-seen
events after te. If the above condition is never satisfied, we
keep executing the sample up to Texe.
Resource Savings v.s. Information Loss. The ap-
proach outlined above aims to reduce the amount of time
spent on executing malware samples that will produce no
new actionable intelligence. For instance, assume our goal
is to build a blacklist of malware command-and-control (or
C&C) domain names. In this case, the actionable intelli-
gence is represented by DNS queries to previously unseen
C&C domains generated while a sample runs within the
malware execution environment. If we executed a sample
for the maximum time Texe and the sample produced no
new domain names (i.e., no domain is queried, or all queried
domains were already queried by previously analyzed mal-
ware samples), we would essentially waste the entire Texe
time slot. Conversely, if at time t < Texe we decided that
the sample is unlikely to produce new actionable intelligence
and stopped its execution, we would be able to save (Texe−t)
time that could be allocated to executing other samples, thus
increasing the capacity of the malware execution infrastruc-
ture.

Naturally, there exists a tension between resource savings
and behavior observation completeness. As explained ear-
lier, MAXS makes decisions in a probabilistic way. For ex-
ample, assume that we preemptively stop a sample’s execu-
tion at time t < Texe. It is indeed possible that if we had
let the sample run, it would have produced new actionable
intelligence (e.g., new C&C domains) during the [t, Texe] ex-
ecution interval. In this case, we would experience infor-
mation loss. To minimize such cases, MAXS explicitly aims
to optimize the trade-off between resource savings and infor-
mation loss by embedding both concepts into the learning of
the parameters β and γ, which influence the attribution of a
sample to a malware family and how early execution should
be halted, respectively (see Section 3 for further details).

3. MAXS FRAMEWORK DETAILS
In this section we provide a more detailed description of

our technical approach. As mentioned earlier, MAXS is a
generic framework that can be applied to a variety of def-
initions of malware-generated events, including network ac-
tivities such as DNS requests, HTTP traffic, TCP flows,
etc., and even static analysis information (see Section 4.4).
In addition MAXS could be extended to using system-level
events, such as file or registry changes. Therefore, in the
following we will primarily discuss our MAXS framework in
terms of generic events, and provide only some examples of
concrete event definitions to make this section more read-
able. We will present a concrete application of MAXS to
real-world malware analysis environments in Section 4.
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Figure 1: MAXS framework.

3.1 Learning the Family Profiles
We now explain how to learn the malware family behavior

profiles (see Figure 1a). This task is divided into two main
parts: (a) clustering malware samples into families based on
the events they generate during execution, and (b) deriv-
ing a behavior profile for each family, which summarizes the
events generated by all the samples in a family. This learn-
ing process can be applied periodically (e.g., once a week),
to update the family behavior profiles to the latest malware
trends.

Malware Clustering. Because MAXS aims to be a generic
framework, it does not dictate what similarity functions and
clustering algorithm should be used to partition a set of
malware samples into families. The main contributions of
this paper are on building MAXS’s probabilistic framework,
and not on the specific algorithms used to cluster malware
samples. Therefore, methods similar to previously proposed
malware clustering systems, such as [14, 18, 22], could be
applied for this task.

As discussed more in detail in Section 4, we concretely
apply MAXS to network events, such as sequences of DNS
queries, which are available as the output of bare-metal mal-
ware execution environments. In the particular application
of MAXS to DNS query information, we measure similar-
ity between two malware samples by computing the Jaccard
index over the sets of domain names queried by the two
samples. We then use the DBSCAN clustering algorithm
[10] over the Jaccard-based similarity matrix to partition a
malware dataset into malware families.

Measuring Behavior Variability. Once the malware
samples are grouped into families, we focus on the behavior
of all the samples in a given family. In particular, we want
to model how variable the behavior of the malware family
is. To better explain what we mean with variable, let us
use an example. Assume the malware-generated events we
are interested in are all the DNS queries issued by a sample
during execution. Given a malware family, fk, if the vast
majority of all samples belonging to fk query the same ex-
act set of domain names, in the same sequential order, we
can say that the behavior of samples in fk is very consistent,

and therefore has low variability. Conversely, if each of the
samples in fk queries several domain names that have never
been queried by any of the other malware samples in fk, we
can say that malware belonging to fk exhibit highly variable
behavior.

We now define how MAXS models event variability for
each malware family. Let us consider a given family, fk, and

let e
(j)
1 , e

(j)
2 , . . . , e

(j)
nj be the sequence of nj events generated

by the j-th malware sample, mj ∈ fk. Now, let EI be
the list of events generated by all malware in fk at event

sequence index I. Namely, EI = {e(1)I , . . . , e
(|fk|)
I }, where

|fk| is the number of samples in family fk. Notice that if a
given malware sample mj generates less than I events, its

e
(j)
I will be represented with a special null event.
We then define a function S(EI), which returns the set

of distinct events in list EI , and a function C(e, EI) that
counts how many times an event e appears in the list EI .
Using the above notation, we define the variability of family
fk at event sequence index I as the normalized entropy of the

events in EI (notice that C(e,EI )
|fk|

estimates the probability

of observing event e at index I):

VI =
1

log(|fk|)
∑

e∈S(EI )

− log
(
C(e, EI)

|fk|

)
C(e, EI)

|fk|
(1)

Intuitively, if all the events in EI are the same, namely
all malware in the family generate the very same event at
sequence index I, then VI = 0 (no variability). Conversely,
if each malware generates a different event, then VI = 1 (i.e.,
max variability).

Family Event Likelihood. Now that we have defined be-
havior variability for a malware family, say fk, we can also
compute the likelihood that an event e may be generated by
a member of fk. Specifically, if e has already been observed
in past samples belonging to fk, we can approximate the
likelihood that a future sample belonging to fk will gener-
ate the same event e by computing e’s relative occurrence
frequencies, compared to all other events generated by the
same family. On the other hand, if e has never been observed
before (i.e., no previously observed sample in fk generated
e), we still cannot exclude that a malware sample in fk could
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generate that event. To take this into account, we compute
e’s likelihood by leveraging the variability measure defined
earlier. Essentially, the more variable the family’s behavior,
the higher the likelihood that a new sample of that family
may generate a previously unseen event e.

To formalize what we described above, we define the likeli-
hood that an event e may be generated by a malware sample
in family fk at event sequence index I as follows:

LI(e) =

α+ (1− α)
C(e, E∗)

|fk|
∀e : C(e, E∗) > 0

αVI ∀e : C(e, E∗) = 0

(2)

where α is a constant set to 0.5 in our experiments, E∗ is
the list of events generated by all malware in fk at any event
sequence index, and C(e, E∗) counts the number of samples
that generated event e at least once (e.g., if e was a do-
main name query, C(e, E∗) would count how many samples
queried e at least once).

Notice that if e has never been observed (i.e., C(e, E∗) =
0) in samples belonging to fk, then its likelihood LI(e) ∈
[0, α]. Notice also that because VI is a function only of the
index I, any event e for which C(e, E∗) = 0 will be assigned
the same exact likelihood value. Conversely, if C(e, E∗) > 0,
then LI(e) ∈ (α, 1]. In other words, if e had been generated
at least once by a previously observed sample assigned to fk
during the learning phase, then its likelihood will be higher
than the likelihood of any previously unseen events (because
LI(e) > α, according to Equation (2)).

Reducing Clustering Noise using Event Likelihood.
Malware clustering is by nature an imperfect task [22], re-
sulting in potential noise (i.e., incorrectly grouped samples)
within the malware families we learn. To alleviate this prob-
lem, we leverage the event likelihood defined in Equation (2)
for denoising purposes, thus improving the learning phase.
We proceed as follows, using a greedy algorithm.

Given a malware family fk, we randomly select a sample

m ∈ fk. Then, using only the remaining samples set, f
′
k =

fk −m, we learn the behavior variability (Eq.(1)) for each
event sequence index I. Finally, we compute the likelihood
of each event generated by m (i.e., we treat m as if it was a

future sample of family f
′
k), and remove m from family fk

if any of these likelihoods is equal to zero. More formally,

we remove m if ∃e(m)
I : LI(e

(m)
I ) = 0, where e

(m)
I is the I-th

event generated by m.
Intuitively, if a malware sample generates an previously

unseen event e at index I, whereas all other samples in fk
had generated a constant (zero variability) event e′ 6= e,
this is an indication that m may not belong to fk after all.
Therefore, we reverse our previous decision (made during the
malware clustering phase) that m belongs to fk, and thus
remove it from that set. Notice, however, that our require-
ment for removing a sample is quite conservative, because

we require that LI(e
(m)
I ) = 0. Also, while this denoising

process is greedy, and may in some corner cases erroneously
remove a sample from its correct family assignment, this
does not cause significant problems because slightly reduc-
ing the size of a malware family cluster will still allow us
to learn reliable behavior profiles from the remaining family
samples. At the same time, removing truly noisy instances
will improve the accuracy of the profiles.

Minimum Cumulative Event Likelihood. After the
denoising process terminates, thus giving us the final set of
samples belonging to family fk, we also compute the fam-
ily’s minimum cumulative event likelihood (MCL) for each
possible event sequence index I. Specifically,

MCL(fk, I) = min
m∈fk

∏
i=1...I

Li(e
(m)
i ) (3)

where e
(m)
i is the i-th even generated by a malware m ∈

fk. The MCL will be useful later to verify if we should
preemptively stop malware execution or not.

3.2 Deciding If and When to Stop Malware
Execution

Given a new, never-before-seen malware sample, we can
leverage the family behavior profiles defined in Section 3.1 to
answer the following questions: Does the new sample belong
to a previously learned malware family? If yes, how variable
is the behavior of the samples in that family? What is the
probability that samples in the considered family will gen-
erate previously unseen events after a given event sequence
index?

Intuitively, if the new sample closely matches a previously
learned family profile, and if we know that all samples in that
family have extremely low behavior variability (as defined in
Section 3.1), it is likely that the new sample will exhibit the
same previously observed behavior. As such, the new sample
is unlikely to generate new actionable malware intelligence,
and we can therefore preemptively stop its execution while
causing little or no information loss. We formalize these
concepts below.

Does the new sample belong to a previously learned
malware family?
Assume we have already collected and executed a set of mal-
ware samples, from which we have learned a set of malware
families and related behavior profiles, as described in Sec-
tion 3.1 (notice that the learning process can be run pe-
riodically to update the profiles). Now, let m be a new,
never-before-seen malware sample that is fed to the mal-
ware analysis infrastructure. At every event generated by
m, e.g., for each domain name queried by m while running
in a bare-metal environment, we compute the probability
that m belongs to one of the previously learned malware
families.

More formally, let fk represent the k-th out of N malware
families. Also, let ej be the j-th event generated by m while

it is being analyzed, and L
(k)
j (ej) be the likelihood that ej is

also generated by malware samples in fk at event sequence
index j, as defined in Equation 2. To decide if and which
malware family m belongs to, we use a multi-hypothesis se-
quential probability ratio test (MSPRT) as follows:

Pfk (m,J) =

∏J
j=1 L

(k)
j (ej)∑N

ν=1

(∏J
j=1 L

(ν)
j (ej)

) (4)

where Pfk (m,J) is the probability that m belongs to fk,
computed after m has generated J events (e.g., after J do-
main names are queried).

As a concrete example, assume we are interested in do-
main name query events. Say that we have run m for a
time t, and during this time m queried two domain names,

e1 =mybots1.cc and e2 =mybots2.cc. Then, L
(3)
1 (e1) would

775



represent the probability that the first DNS query issued by
a malware samples in family f3 is a query to mybots1.cc,

and L
(3)
1 (e2) is the probability that the second domain queried

by the samples in f3 is mybots2.cc. Essentially, while m
is running, for every new event of interest it generates we
compute a new value for the probability Pfk that takes into
account the probability of all events generated so far by m.

For each new event generated by m, we check the fol-
lowing: if there exists a family f∗k for which |f∗k | > θ and
Pf∗

k
> β, where β and θ are tunable parameters, we say that

m belongs to family f∗k . The parameter θ is used to make
sure that f∗k contains enough samples so that we can be con-
fident about the behavior profile we learned for that family.
This is important because if f∗k contains very few samples,
its behavior is learned over few data points and may not
allow us to reliably compute Pf∗

k
. On the other hand, pa-

rameter β determines how “confident” we need to be before
we assign m to any of the N possible malware families. This
also means that m may never be assigned to any family, and
be therefore executed for the maximum allowed time, Texe
(e.g., in those cases when belongs to a new malware strain).

Should we preemptively stop execution?
Assume that malware sample m, after generating J events
of interest (e.g., J DNS queries), is assigned to family fk∗ .
We now need to determine if we should keep running m or
not. To this end, we look back at its family behavior profile
and compute the probability that malware samples in fk∗
will generate previously unseen events after event sequence
index J .

More formally, using Equation 2 we compute the likeli-
hood Lx(e) of a hypothetical new event e, which was never
observed during the learning phase for family fk∗ , for ev-
ery event sequence index x = (J + 1), (J + 2), . . . , up to the
maximum number of events generated be any of the samples
in the family. Then, we compute the following probability:

Pb(J) = max
x>J
{Lx(e)} (5)

If Pb(J) < γ , where γ is a small tunable threshold, we
determine that there is a low probability (less than γ) that,
if we keep running it, m will generate an event never seen
during the learning of the behavior profile for its family fk∗ ,
and therefore we can stop its execution. Intuitively, the
parameter γ allows us to control the trade-off between the
execution time savings and the amount of information loss
we can afford to tolerate.

If we decided to keep running m, for every new event it
generates we recompute the probability Pb. As soon as we
find an event sequence indexH ≥ J for which Pb(H) < γ, we
preemptively stop executing m. Otherwise, we keep running
m for the entire maximum amount of time permitted by the
malware execution infrastructure.

There is one more fine detail that we consider, before stop-
ping the execution of m: we double check that its cumulative
event likelihood is greater than the family’s MCL (see Equa-

tion 3). Formally, we stop m only if
∏
i=1...H Li(e

(m)
i ) >=

MCL(fk, H). Essentially, we want to make sure, before we
stop the sample’s execution, that it is very unlikely that we
are making a mistake by assigning the sample to family fk
and stopping its execution at event index H.

4. EVALUATION
In this section, we describe the set of experiments we have

performed to demonstrate how MAXS can be used to save
malware execution resources with only a small loss of mal-
ware intelligence.

4.1 Datasets
To evaluate our MAXS framework, we use two large mal-

ware datasets obtained from two different production-level
malware execution and analysis systems operated by two
different organizations (a security company and a large aca-
demic research institute). In the following we refer to these
production malware analysis systems as SA and SB . The
first dataset was collected from SA and contains 3,581,503
malware samples that were received and analyzed across sev-
eral weeks between July and December 2013. The second
dataset, collected from SB , contains 840,422 malware sam-
ples received within 6 consecutive days during November
2014. In addition to the actual malware executable files, we
also collected all network traffic generated by each sample
when executed by the respective analysis system from which
they were collected.

Overall, we noticed that about 65% and 52.4% of these
samples from SA and SB , respectively, did not exhibit any
meaningful network activity when executed. This could be
explained by the fact that both SA and SB use a VM-based
analysis environment, and are therefore susceptible to anti-
VM tactics. Consequently, if the presence of the analysis
environment is detected (or suspected), a malware sample
may decide to alter its behavior and avoid exposing mali-
cious network activities.

Because we mainly focus on studying the effects of MAXS
on bare-metal malware execution, in the following we only
consider malware samples that exhibit at least some net-
work activities (e.g., at least one domain name query or
network flow). The key rationale is that samples that stop
executing (or change behavior) due to the detection of a VM
or emulation based environments would more likely run as
expected in a bare-metal environment, and likely generate
some network activities needed to monetize the malware’s
malicious behavior.

We are therefore left with 1,251,865 malware samples from
SA, and 400,041 samples from SB . In the following, we will
refer to these two malware datasets and the related network
traces as MA and MB , respectively. Table 1 summarizes the
properties of the two datasets. Notice that, like most other
malware analysis systems, both SA and SB force each sam-
ple to run “blindly” for a prefixed amount of time: 240 and
360 seconds, respectively. The samples were collected across
a period of 77 days from SA and across 6 consecutive days
from SB . To obtain dataset MA, in average we collected
16,258 malware samples (and related network traces) per
day. Of these, 15,431 performed at least one domain name
query while running (similar observations can be made for
dataset MB), as indicated in Table 1. The reason why we
report the number of samples that generate some DNS traf-
fic is that in the following we describe an application of our
MAXS framework in which each event used to compute the
probabilities described in Section 3 is represented by a dif-
ferent domain name query.
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dataset prefixed run time collection days avg. samples / day avg. samples with DNS queries / day
MA 240s 77 16,258 15,431
MB 360s 6 66,674 62,063

Table 1: Summary of malware dataset properties.

4.2 Experiments Setup
As we explained in Section 2 and 3, MAXS is a generic

framework that can be applied to different types of events.
However, in this paper, our main focus is on optimizing the
resources used by bare-metal malware execution environ-
ments. For our evaluation, we therefore consider malware-
generated network activities, which can be easily collected as
the malware runs in bare-metal environments. Specifically,
we focus on domain name queries (Section 4.3), because ex-
tracting malware domains from malware-generated traffic is
one of the main ways for seeding malware domain blacklists.
Therefore, in this application of MAXS, an event is repre-
sented by a domain name query (more details are presented
in Section 4.3).

Additionally, we apply our MAXS framework to malware
information extracted via static analysis (Section 4.4). In
this second application, our goal is to find malware samples
that we do not even need to start running, because MAXS
tells us that they will (with high probability) generate no
new malware intelligence (e.g., no previously unseen mal-
ware domains). In this case, an event is represented by a
set of static analysis features (explained in more details in
Section 4.4). Finally, we combine the application of MAXS
to both static analysis information and network activities,
to show the overall resource savings that can be achieved
using our framework (Section 4.5).

4.2.1 Measuring Time Savings.
In our evaluation, we measure the amount of execution

time saved by using MAXS, compared to the time needed
by the two production-level malware execution analysis en-
vironments SA and SB . For example, let m be a malware
sample, and T be the fixed execution time originally as-
signed to m by an analysis system S. Also, let TM (m) be
the amount of time for which m would actually be executed
before MAXS decides to preemptively stop running it. This
time TM (m) includes the time to set-up the bare metal en-
vironment, which can be reduced to less than 5 seconds as
was shown in [15].

For each sample, we measure (T −TM (m))/T as the time
savings. We repeat the same measurement for each malware
sample in both datasets MA and MB , and report the overall
time savings as a percentage of the total time that would be
necessary to run all samples without applying MAXS. Notice
that for malware inMA, T is 240 sec, whereas T is 360 sec for
malware in MB . If MAXS decides not to preemptively stop
execution of a sample, we assume the sample is allowed to
run up to the maximum time T . Notice also that in the case
of the application of MAXS to static analysis information
(Section 4.4), TM (m) can be equal to zero, if MAXS decides
not to run sample m at all.

4.2.2 Measuring Information Loss.
Naturally, while we aim to save execution time, we would

like to do so by minimizing the amount of malware intel-
ligence lost by dynamically shortening the average amount
of time dedicated to running each sample. To this end, we

measure information loss as the overall number of malware
domain names that we miss to observe due to MAXS’s de-
cision of preemptively stopping the execution of malware
samples, compared to if we had let the samples run for the
maximum allowed time. For example, let M be a set of mal-
ware samples, Dtrain be the set of domains queried by the
training samples (i.e., the samples used to build the family
behavior profiles), and Dnew be the overall set of distinct
new domains (not seen in the training phase) queried by
running each sample in M for the maximum execution time
T allowed by the underlying analysis environment, S. Now,
assume that, by applying MAXS, the execution of a subset
of malware samples M ′ ⊂M is stopped earlier than T , and
that this causes us to miss a subset D′ ⊂ Dnew of domains
(i.e., the domains in D′ are not queried by any of the mal-
ware samples that run through MAXS). Then, we measure
the information loss as |D′|/|Dnew|.

4.3 Experiment 1: Malware Domain
Intelligence

In this set of experiments, MAXS is setup to continu-
ously monitor the sequence of domain name queries gener-
ated while a malware sample runs. As explained in Section 3,
at every event (i.e., at each DNS query in this particular ap-
plication), MAXS first computes the probability that a sam-
ple belongs to a previously learned malware family. Then,
once a family assignment is made, we leverage information
about past family behavior to decide when (and if) execu-
tion should be preemptively stopped. We then measure time
savings and the related information loss, as defined in Sec-
tion 4.2.

To perform the family learning phase (see Section 2), we
used the DBSCAN clustering algorithm2. We measure the
similarity between two malware samples by simply comput-
ing the Jaccard index between the sets of domain names
queried by the two samples. Notice that our focus here is
not to propose new advanced malware clustering methods.
Rather, we leverage simple well known clustering approaches
to perform the learning phase needed to bootstrap our se-
quential probabilistic decision process.

We performed experiments on both datasets MA and MB .
To conduct this particular set of experiments and compute
the time savings and information loss, we only considered
samples that exhibited at least one DNS query, which rep-
resent more than 93% of the samples in both datasets (see
Table 1). In Section 4.4, we will expand our evaluation to
considering any malware sample, regardless of whether they
issue any DNS query.

4.3.1 Parameter Selection
As already mentioned in Section 3, in order to use MAXS,

we need to set two main parameters: (1) β, which affects how
soon a malware sample can be assigned to a family; and (2)

2We empirically set the algorithms parameters eps = 0.4
and MinPts = 3, via pilot experiments
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γ, which affects how soon the system will stop running a
malware sample after it has assigned the sample to a cluster.

To measure how changes in these parameters affect MAXS’s
performance, we conducted a set of tests using 100 different
value pairs for β and γ. For these parameter search ex-
periments, we limited ourselves to using a small portion of
dataset MA consisting of malware samples collected during
four contiguous days in July 2013. We used the first three
days for training and applied MAXS to the malware from
the fourth day as a validation set. Figure 2 reports the re-
sults of these train-test experiments.

We can see that as β increases for a given value of γ, the
time savings decrease noticeably. This is expected because
as the family assignment threshold is made stricter, we will
need to wait for more events to take place before we can be
confident enough (above the β threshold) about assigning
the sample to a given family. Also, we can notice that the
lower γ, the lower the time savings, because we are asking
MAXS to be highly confident about the fact that the sample
will not query unseen domain names, before we preemptively
stop its execution.

By setting β = 0.05 and γ = 0.1, we are able to reach time
savings above 40% with less than 0.1% of samples causing
any information loss. Naturally, we could decide to tolerate
more information loss (e.g., 1% of samples) and at the same
time obtain a higher time savings, and vice versa. However,
we believe the above parameter values provide a reasonable
savings-to-loss trade off for an operational setting. We there-
fore use the above values in the following experiments.

4.3.2 Longitudinal Train-Test Experiments
To evaluate the effectiveness of our MAXS framework over

domain name query events, we performed longitudinal train-
test experiments across all malware collection days available
for datasets MA and MB . Specifically, we proceeded as fol-
lows. For dataset MA, which includes three months of mal-
ware analysis data (July, August, and December 2013), we
use malware-generated network traces collected during three
contiguous days for building the family behavior profiles.
Then, we use the next day of malware samples for assessing
the time savings and information loss generated by MAXS.
This is repeated for every available four-day-long window of
malware samples in the dataset. We apply a similar evalu-
ation over MB (six days worth of malware from November
2014), with the only difference that we only use one day
worth of malware samples for training and one day for test-
ing, and therefore we slide this two-day-long window over
all available malware collection days.

The results of this set of experiments are reported in Fig-
ure 3. As we can see, the time savings are consistently be-
tween 30% and 55%, with a median time savings of 42.2%
for dataset MA (the three months in 2013). At the same
time, the median domain-based information loss was only
0.25% overall, with a median of only 0.07% samples that
caused any information loss at all. Said another way, only
a tiny fraction of malware samples are responsible for the
0.25% of domain names that we would miss to observe. It is
worth noting also that a 42.2% time savings is substantial,
because in essence it would allow us to significantly increase
the processing capacity (e.g., malware samples executed per
day) for a given bare-metal malware analysis environment.

Similarly, the experiments over dataset MB (Nov. 2014)
produced a 45.5% median time savings, with 0.08% median

information loss and only 0.03% samples responsible this
loss.

Table 2 additionally reports the overall number of sam-
ples that are assigned to a malware family (see Section 3.2),
the average execution time before a sample is assigned to
a family, and the average execution time before the sample
analysis is stopped. As we can see, more than 50% are at-
tributed to a previously learned malware behavior profile,
and their execution is preemptively stopped after less than
70 seconds. This is in contrast to blindly executing each
sample for the same maximum amount of time (240s and
360s, respectively, for the two malware analysis systems we
used), and demonstrates how MAXS is able to achieve sig-
nificant time savings.

4.3.3 Evaluating Retraining Interval
We also performed a number of experiments to evaluate

for how long it takes for family behavior profiles learned over
a given malware subset to “degrade” and be less represen-
tative of new incoming samples. For this, we used the MA

dataset, since it contains samples collected across 77 differ-
ent days. As for the previous longitudinal experiments, we
built numerous training sets, each using three consecutive
days of malware data. We randomly selected 20 of such
training sets. For each one of these sets, we used the fam-
ily profiles learned from it, and ran MAXS on the malware
collected on the following 10 days. In other words, we use
20 time windows of 13 days each. The first 3 days are used
for learning the family profiles, and then these profiles are
fixed and applied for making decisions on if/when to stop
the execution of the malware samples to be analyzed in the
following 10 days.

The median time savings, domain loss, and samples with
domains loss for these experiments are presented in Figure 4.
Not surprisingly, as time passes (i.e., the farther the test day
from the training period) time savings decrease and infor-
mation loss increases, due to the degradation of the family
behavior profiles. Nonetheless, the performance degradation
is not dramatic. Even after 10 days after training, we still
obtained more than 38% time savings, with less than 0.4%
domain loss and less than 0.18% of test samples responsible
for that loss. This shows that it is not needed to rebuild
the malware family behavior profiles every day to maintain
a good level of performance.

4.4 Experiment 2: Leveraging Static Analysis
Information

Static analysis based malware “filters” have been studied
for example in [12, 21, 24]. In this paper, we do not pro-
pose to use new static analysis features to identify potential
duplicate samples. Rather, we aim to show that MAXS is
generic and can also be applied to cases where an event is
represented by information derived via static analysis. Our
goal again is to save execution time while minimizing infor-
mation loss. First, given a training set of malware samples,
we cluster the samples based on static analysis features.
Then, given a new sample, we aim to compare its static
analysis features to the family behavior profiles, and decide
if we should start executing the sample or not. We make
this determination using our MAXS probabilistic decision
framework.

To this end, given a malware sample m, we define a “vir-
tual” event e0 that consists of a vector of static analysis fea-

778



0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

¯

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

Fr
ac

ti
on

Time Savings

° : 0:01

° : 0:05

° : 0:1

° : 0:2

° : 0:3

° : 0:4

° : 0:5

° : 0:6

° : 0:8

° : 1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

¯

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

Fr
ac

ti
on

Samples With Loss

° : 0:01

° : 0:05

° : 0:1

° : 0:2

° : 0:3

° : 0:4

° : 0:5

° : 0:6

° : 0:8

° : 1

Figure 2: Parameter Selection Experiment
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Figure 3: Longitudinal Study Experiment

Dataset samples samples assigned to a family avg. family assignment time avg. stop time median time savings
MA 15,431 9,201 24.4s 69.6s 42.2%
MB 62,063 34,305 28.3s 50.4s 45.5%

Table 2: Summary of results for longitudinal study experiments.
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Figure 4: Retraining interval experiments.

tures measured from m. For example, we measure features
from PE file headers, such as the number of memory sec-
tions, the size of each section, their byte entropy (truncated
to a fixed precision limit) etc., in a way similar to [21]. We
first use this information to learn malware behavior profiles
from a training dataset. In this application, our clustering
algorithm is intentionally very simple. We use a binary simi-
larity function, whereby if the static analysis features match
perfectly the similarity is equal to one, otherwise we assign
similarity zero. Therefore, we put together in the same clus-
ter all samples with identical static analysis features, and
separate them from other samples that do not share their
features. A family behavior profile is represented by just one
(virtual) event e0 that represents the static features that are
shared by all samples in that family.

Now, let m be a new malware sample. Given its own event
e0, we apply MAXS as detailed in Section 3. Notice that
the only difference here is that each malware sample “gener-
ates” only one event. However, this is not a problem, since
our probabilistic decision framework naturally supports this
special case. Ultimately, if m is assigned to a previously
learned family profile (i.e., its static features match those of
a learned malware family), MAXS prevents m from being
executed at all. Otherwise, it lets m run for the maximum
allowed execution time. If we consider a single sample, the
time savings would be either zero or equal to the maximum
execution time.

The time savings and domain name information loss can
be measured in exactly the same way as described earlier in
Section 4.2. For these static analysis based experiments, via
pilot testing we set the parameter γ = 0.5. All other param-
eters remain the same. The results of these experiments are
reported in the first row of Table 3. As we can see, by apply-
ing MAXS while using only static analysis information, we
can reach more than 37% time savings with 0.22% domain
loss.

4.5 Combining Static and Dynamic Analysis
We also performed experiments to show how the static

analysis based information and network activities can be
“combined” and used by MAXS, using dataset MB . Specifi-
cally, we used all samples that produce any network activity,
irrespective of whether or not they make any DNS queries.

We first apply MAXS using static analysis information,
as described in Section 4.4. Then, for every malware sample
that is allowed to run in this first step, we apply MAXS (se-
quentially) over the network events generated as the sample
is executed, in a way analogous to what described in Sec-
tion 4.3. Table 3 summarizes the results. The first row
reports the combined effect of using both static analysis and
network traffic information, whereas the next two rows show
the break down of the contributions of the first (i.e., MAXS
applied over static analysis information) and second step
(i.e., MAXS applied on network events generated by sam-
ples that are run after the first step).

The last row shows the results obtained with MAXS by
using only network events. As can be seen, there is a signifi-
cant difference in time savings between the ‘+Network’ and
‘Network’ rows. This is due to the fact that several malware
samples that exhibit similarities in their network behavior
also tend to exhibit structural similarity. Hence, such sam-
ples would be filtered out at the static analysis stage. As
shown in the first row of Table 3, overall MAXS can achieve
an average of more than 50% time savings with a domain
loss of only 0.3%.

5. RELATED WORK
Bare metal analysis: Balzarotti et al. [4] analyze how mal-

ware may change its behavior in emulated environments.
In order to deal with this class of “anti-VM” malware, re-
searchers developed techniques to automate malware analy-
sis on bare-metal systems, including BareBox [15] and Bare-
Cloud [16]. Our work complements these systems by pro-
viding ways to improving their capacity. For example, using
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Information Time Saving % Domain Loss % # Domains Lost
Static+Network 50.93 % 0.3 % 114

Static 37.16 % 0.22 % 82
+Network 22.01 % 0.08 % 32

Network 45.5 % 0.08 % 35

Table 3: Average results for a “cascade” decision process using both static analysis information and network events.

MAXS, these systems can double the average number of
malware samples they can analyze per day.

Malware clustering: Bayer et al. [18] proposed a system
for clustering malware based on system and network infor-
mation obtained from malware dynamic analysis. Jang et
al. [14] used feature hashing to increase the performance of
such clustering systems, whereas Perdisci et al. [22] used
network level information to cluster HTTP-based malware
and generate URL signatures. Wicherski [24] uses features
from static analysis to cluster malware.

These works focus on clustering malware, for example as
a way to reduce the effort required on behalf of a malware
analyst. The above mentioned clustering systems could be
used in MAXS to aid the generation of family behavior pro-
files. At the same time, MAXS is very different from these
works. MAXS is a probabilistic decision framework whose
main goal is to reduce malware execution time by using se-
quential hypothesis testing.

Efficient malware analysis: Bayer et al. [5] developed a
system to improve the efficiency of dynamic malware anal-
ysis systems. While their goals are similar to ours, MAXS
differs in a number of important ways. For example, [5] em-
pirically derives a fixed stop point when malware could be
stopped from running. Unlike [5], MAXS is a generic prob-
abilistic decision framework that uses sequential hypothesis
testing to dynamically decide if/when to stop executing a
malware sample. In addition, MAXS takes information loss
explicitly into account, to optimize the trade-off between
time savings and missing to observe potentially useful mal-
ware intelligence.

SQUEEZE [20] discusses a system that uses multi-path
exploration to increase the coverage of C&C domains that
are collected by malware analysis. This system is entirely
complementary to MAXS, and the two could be used to-
gether to respectively increase the efficacy and efficiency of
malware execution environments.

FORECAST [19] uses supervised learning techniques over
features obtained from static analysis to increase the infor-
mation obtained from malware analysis. While static anal-
ysis component used in MAXS could be improved using an
approach similar to FORECAST, it is important to notice
that MAXS is a generic framework that uses features ob-
tained from both static and dynamic analysis, and that the
use of dynamic analysis information significantly improves
malware execution efficiency.

6. DISCUSSION AND FUTURE WORK
As most other systems that aid malware analysis, our

MAXS framework suffers from some limitations. For exam-
ple, because MAXS is designed to run “on top” of existing
malware analysis environments, it directly inherits some of
their issues. Specifically, a given malware variant may decide
to sleep for some time (in the order of a few minutes), before
performing meaningful network activities. This mechanism,
called “stalling” [17], is difficult to detect and circumvent.

This is especially true in bare-metal execution environments
(e.g., [15]) where system modifications are avoided in an at-
tempt to prevent the malware from detecting the presence of
the analysis environment itself. When a “stalling” malware
sample is analyzed, MAXS would simply run the sample for
the maximum allowed time, thus falling back to the default
execution configuration of the underlying analysis system.

A malware author may attempt to evade MAXS, for ex-
ample by “prepending” the first few network events of a
known malware family to a piece of new malware. Thus,
MAXS may decide that the new sample belongs to an al-
ready seen family, and prematurely stop execution. How-
ever, this is counter-productive with respect to the malware
author’s main purpose, because the “prepended” network
events may make the new malware more easily detectable
by existing behavioral models or signatures.

In this paper, we focused on demonstrating how MAXS
can be applied to static analysis information and domain
name queries. In our future work, we plan to apply MAXS
to heterogeneous types of network events, including HTTP
requests, SMTP traffic, network flow information, etc., be-
sides DNS traffic.

7. CONCLUSION
In this paper, we proposed MAXS, a novel probabilis-

tic multi-hypothesis testing framework for scaling execution
in malware analysis environments, including bare-metal ex-
ecution environments. Our main goal is to automatically
recognize whether a malware sample that is undergoing dy-
namic analysis has likely been seen before, and determine
if we could therefore stop its execution early while avoiding
loss of valuable malware intelligence.

We tested our prototype implementation of MAXS
over two large collections of malware execution traces ob-
tained from two distinct production-level analysis environ-
ments. Our experimental results show that using MAXS we
are able to reduce malware execution time in average by up
to 50%, with less than 0.3% information loss. This shows
that, MAXS could be used to significantly cut the cost of
bare-metal analysis environments by reducing the hardware
resources needed to analyze a predetermined daily number
of new malware samples.
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