
Lightweight Structured Visualization of Assembler
Control Flow based on Regular Expressions

Sibel Toprak, Arne Wichmann, and Sibylle Schupp
Hamburg University of Technology, Institute for Software Systems

Schwarzenbergstr. 95e, 21073 Hamburg, Germany

{sibel.toprak,arne.wichmann,schupp}@tuhh.de

http://www.sts.tu-harburg.de

Abstract—regVIS is a tool for viewing directed graphs with
start and end nodes. It applies a new visualization technique,
which uses regular expressions as a meta-representation of all the
paths in an input graph; the result is a containment-based and
structured visualization of that graph. The tool can be configured
to derive these regular expressions from the input graph using
either the Brzozowski algebraic method or the transitive closure
method.

regVIS can be used in combination with the binary code
analysis tool IDA (Interactive Disassembler), either integrated or
standalone, to view the control flow graph (CFG) of assembler
code. The resulting visualization, which restructures the control
flow and can thus help reduce program comprehension efforts,
is called control flow blocks (CFB).

In this paper, we present the workings of regVIS and evaluate
the new CFB visualization it produces against the traditional
CFG visualization in an explorative user study. The study sug-
gests that the CFB is better for analyzing and navigating along
specific execution paths, while the CFG is better for getting an
overview of the overall control flow.

I. INTRODUCTION

Whenever one needs to understand a program, for which

the original source code is no longer available, working with

the binaries is the only option. With the aid of binary code

analysis tools, such as the industry standard disassembler

IDA (Interactive Disassembler, www.hex-rays.com), assem-

bler code can be recovered for large portions of the binaries,

which is then more human-readable, yet still unmanageable for

program understanding purposes. Most binary code analysis

tools therefore provide additional support for examining vari-

ous aspects of the assembly code semantics. Usually, control

flow analysis constitutes a good starting point. Insights into

how the control possibly flows between the basic blocks of

a program during its execution can be gained by taking a

look at the control flow graph (CFG), a commonly used

program visualization technique that conveys the control flow

information using the visual property of linkage [1].

For large program functions, however, these CFGs are

impractical to use. Due to their size, the task of exploring and

navigating through them becomes an arduous one: Viewing

the portion of interest in such a CFG requires a considerable

amount of horizontal and vertical panning. Also, automatically

generated graph layouts are not always optimal for code

exploration. As such, keeping track of the overall control flow,

especially while trying to examine the code details, is difficult.

Deriving a regular expression (RE) over the basic blocks of

a CFG yields a concise one-dimensional representation of all

valid execution paths for the corresponding program function.

In such a regular expression, the concatenation, alternation,

and quantification operators embody the control flow informa-

tion, abstracting the control flow into explicit structures like

sequence, choice, and loop, respectively. Mapping it to a visual

language composed of constructs that make use of the visual

property of containment [1], yields a different visualization of

the control flow; we call it control flow blocks (CFB).

In short, the CFB is an overlay of all valid execution paths,

each one represented by the sequence of basic blocks that

it is composed of. It allows the viewer to analyze a specific

execution path in a focused manner, while all other information

that are not of interest, remain hidden. Fitting the height of the

visualization to the screen space reduces the panning necessary

to see other portions of a selected execution path to a single

direction only.

We present regVIS (Regular Expression-based Graph
Visualizer), a tool that receives a CFG in Graph Description

Language (GDL) [2], [3] format and is capable of visualizing

CFBs.

The remainder of this paper is structured as follows: Sec-

tion II discusses related work. In Section III, the theoretical

foundations are laid for computing a regular expression that

represents all possible execution paths in a CFG, while de-

tails concerning the generation of the CFB are described in

Section IV. Section V introduces the regVIS tool. Following

this, the design of the experiment that was conducted to

evaluate the control flow visualizations against each other, the

results obtained from the experiment as well as any threats

to the validity of these results are presented in Section VI.

Section VII concludes this paper.

II. RELATED WORK

Related research can be divided into program restructuring,

visualizing graphs and programs, and regular expression the-

ory.

Our goal is a structured, linearized CFG representation,

which presents a node’s contents as well as the overall

structure and can be used for program comprehension.

This idea originates in Structured Programming [4], where

the use of explicit control structures, for instance for condi-

2014 Second IEEE Working Conference on Software Visualization

978-0-7695-5305-4/14 $31.00 © 2014 IEEE

DOI 10.1109/VISSOFT.2014.25

97

tional or iterative execution, to structure programs is recom-

mended. The well-known Nassi-Shneiderman Diagrams [5] in-

troduced a notation that enforces the use of these structures by

omitting a notation for the discouraged goto. Our visualization

mimics the structured programming idioms by using regular

expression structures and shows them as visual elements.

The concept of dimensional reduction of flowcharts is not

new, as Knuth [6] writes about systematic program restructur-

ing. He discusses the elimination as well as the introduction

of goto-statements and concludes that:

"In two dimensions it is possible to perceive go
to structure in small examples, but we rapidly lose

out ability to understand larger and larger flowcharts;

some intermediate levels of abstraction are neces-

sary."

Other works on mechanized program restructuring for refac-

toring [7], compiler construction [8], or decompilation [9],

[10] employ various graph transformations or rewriting of

the abstract syntax tree, but either concentrate on concrete

target languages, or require complex transformation systems,

or cannot fully eliminate goto-statements. In difference to

these works, we pass the input graph’s nodes unchanged and

calculate the new representation from its linkage.

Linearization of programs is also used for signature gener-

ation of malware executables [11], which applies CFG struc-

turing to create a signature that allows a simple comparison,

but hides concrete workings of the nodes.

A large body of work exists on graph visualization [12] and

on software visualization [1]. Yet, graph visualization concepts

like (selective) zooming and panning, and conventional 2-

dimensional graph layouts cannot help to achieve the desired

dimensional reduction. The common reduction strategies for

large graphs hide the nodes’ contents and are therefore also

unsuitable for our goal. For hierarchical graphs, treemaps [13]

provide a good method of structuring the visualization, but

lack support for loop structures in the graph. Software visu-

alization provides the above mentioned structured diagrams,

which we employ to display the structure of our computed

regular expression.

For the construction of the regular expression from a

deterministic finite automaton (DFA) [14], [15] we use the

transitive closure method [16] and the Brzozowski algebraic

method [17], [18]. While optimal conversions from a DFA

[19] as well as normal forms [20] for regular expressions exist,

these simpler methods are fully suitable for our visualization

needs.

III. PRELIMINARIES

The equivalence of deterministic finite automata (DFA)

and regular expressions within the Chomsky hierarchy turns

out to be quite useful for our purposes: Because CFGs are

conceptually similar to DFAs, the problem of transforming a

CFG into a regular expression is reduced to the problem of

converting a DFA to an equivalent regular expression. For this,

textbook solutions, such as the Brzozowski algebraic method,

exist. All relevant concepts will be reviewed in this section.

A. Control Flow Graphs

A CFG is a node-link-based visualization that contains all

execution paths in a program function: The nodes corresponds

to the basic blocks (BB), while the directed links connecting

the nodes represent the control flow between the respective

basic blocks. A basic block may have multiple incoming

and outgoing links, meaning that it has as many possible

predecessors and successors respectively. There are two types

of basic blocks in the CFG that pose exceptions: Entry blocks
do not have any predecessors, whereas exit blocks do not have

any successors.

All control flow enters through an entry block and leaves

through one of the exit blocks. Once the control flow reaches

a basic block, the sequence of instructions that it is composed

of, is executed as a unit. Upon completion, the control flow

is transferred to one successive basic block. A sequence of

transitions in the CFG constitutes a valid execution path, if it

starts in an entry block and ends in an exit block.

B. Determininstic Finite Automata

A DFA A is formally [14], [15] denoted by the quintuple

A = (S,Σ, δ : S × Σ→ S, s0, F),

where S is a finite set of states, Σ is a finite input alphabet, δ
is the transition function that determines the next state given

a state and some input symbol, s0 ∈ S is the start state and

F ⊆ S is the set of final states. It is deterministic because in

any of its states and for any input symbol that is accepted at

that particular state, there is only one possible next state it can

transition to.

A sequence of input symbols is called an input string. A
DFA is said to accept any such string if that string makes it

transition from its start state s0 to any final state in F . The set

of all strings that the DFA A accepts, makes up its language
L(A). Languages accepted by DFAs are called regular lan-
guages. The same regular language may be accepted by the

multiple DFAs. The canonical form is the one with the least

number of states, called the minimal DFA.

C. Regular Expressions

In formal language theory, regular expressions [14], [15]

are concise descriptions of regular languages. The language

generated by a regular expression E is denoted by L(E). The
following constants are defined as basic regular expressions:

• A regular language is defined over a finite alphabet Σ.
Each symbol a ∈ Σ constitutes a regular expression.

• The empty set ∅ is a regular expression that denotes the

empty language, that is L(∅) = {}. This constant is the

zero element in the algebra of regular expressions. For

the DFA corresponding to ∅ there is no input string that

could take it from its start state to its final state.

• The epsilon ε is a regular expression that denotes the

language only containing the empty string. In the algebra

of regular expressions, this constant represents the one
element. The corresponding DFA consists of a single

state, which is both a start and a final state.

98

More complex regular expressions can be built inductively

over these basic ones in finitely many steps by means of the

following three algebraic regular expression operators. Let A
and B be two regular expressions, such that:

• The alternation A + B denotes the set union of L(A)
and L(B), that is L(A + B) = L(A) ∪ L(B), where
L(A+B) contains |L(A)|+ |L(B)| strings as a result of

this operation. In the literature, the symbols + and | are

used interchangeably.

• The concatenation A · B denotes the product of the

languages L(A) and L(B), that is L(A · B) = {a ·
b | a ∈ L(A), b ∈ L(B)}. This operation yields a set

of strings that is formed by taking any string a in A and

concatenating it with any string b in B, resulting in a

total of |L(A)| · |L(B)| strings in L(A ·B). This operator
is usually omitted.

• The star operator applied to A, as in A∗, is an abbrevi-

ating for ε+A+A ·A+ It denotes the closure of

L(A), such that L(A∗) = (L(A))∗. This operation yields

a set of strings that is constructed by concatenating L(A)
with itself any number of times. This can be denoted

more formally like so: (L(A))∗ =
⋃∞

i≥0 L(A)
i, where

(L(A))i = L(A) · (L(A))i−1, and (L(A))0 = {ε}.
Although the above operators are sufficient to construct any

regular expression and hence, to express any regular language,

the following two additional quantification operators are intro-

duced as syntactic sugar. Let A be a regular expression:

• Using the plus operator, regular expression of the form

A · A∗ or A∗ · A can be rewritten as A+. The result is

the positive closure of L(A), that is L(A+) = (L(A))+,
which is basically the same as the closure defined above,

except that it does not contain ε: (L(A))+ =
⋃∞

i≥1 L(A)
i.

• With the optional operator regular expressions of the form
ε+A or A+ ε can be written as A? instead.

As for the order, in which the operators are applied in a

regular expression, the quantifiers, namely star (∗), plus (+)
and optional (?) are of highest precedence, followed by the

concatenation operator (·) and, finally, the alternation operator

(+). The precedence can be overridden using parentheses.

D. Simplification of Regular Expressions
In order to keep the size of the regular expressions manage-

able, the transformation laws that are listed in Table I can be

applied. These are equivalences between regular expressions,

such that rewriting one regular expression as the other does

not have any effect on the language that is represented.
Simplifying a regular expression computationally can be

quite time-consuming, if the application of the transformation

laws is implemented to be reversible. If we want to avoid

this by applying these transformation laws unidirectionally,

how the resulting regular expression ends up looking, depends

on the order, in which they are applied. This is due to the

associative and commutative nature of the binary alternation

operation.
The strategy that will be explained briefly in what follows,

is pretty straightforward and has proven itself to be quite

TABLE I
TRANSFORMATION LAWS FOR REGULAR EXPRESSIONS

Associativity: A+B = B +A
A+ (B + C) = (A+B) + C

Commutativity: A · (B · C) = (A ·B) · C

Identities: A · ε = ε ·A = A
A · ∅ = ∅ ·A = ∅
A+ ∅ = ∅+A = A
(∅)∗ = ε
(ε)∗ = ε
(∅)+ = ∅
(ε)+ = ε
(∅)? = ε
(ε)? = ε

Distributivity: A ·B +A · C = A · (B + C)
A · C +B · C = (A+B) · C

Idempotency: A+A = A

Shifting: (A ·B)∗ ·A = A · (B ·A)∗

Additional: A+ ε = ε+A = A?
A ·A∗ = A∗ ·A = A+

A, B, and C are regular expressions.

effective: The simplification process is organized in two steps

and uses recursion. The transformation laws in Table I are

applied only from left to right. In the first step, the intermediate

results obtained at each step of the process of building a

regular expression from simpler ones are simplified as much

as possible. Here, only those transformation rules come to use

that involve the algebraic operators, namely the concatenation,

alternation and star operators. While iterating over the associa-

tivity, commutativity, distributivity, idempotency and shifting

rules, in that order, the regular expression tree is traversed top

down. Once the overall regular expression is obtained and the

first step is completed, the transformation rules involving the

additional plus and optional operators, are applied to it in a

second step.

E. Brzozowski’s Algebraic Method

Brzozowski presents an algebraic method [17], [18] for

converting a DFA into a regular expression: A system of

linear equations, called derivatives or characteristic equations
in the literature, is created, which describes the behavior of the

automaton. By solving this system of equations, the regular

expression that is equivalent to the DFA with respect to the

language it accepts, can be obtained. Let the DFA be denoted

by A = (S,Σ, δ, s0, F). Furthermore, let S be a finite set of n
states, where each state is uniquely identifiable by a number

i between 1 and n.
The construction of the characteristic equations starts by as-

sociating each state i ∈ S with an unknown Xi. This unknown

represents the set of input strings that make A move from the

state i to one of its final states in F . Each Xi can be described

by an alternation over terms of the form ai,j ·Xj . These terms

represent the sequences of transitions over different successor

99

states of i that it takes for the automaton to reach a final

state; each of the sequences is composed, as expressed with the

concatenation operation, of the transition between the state i to
a state j ∈ S on input ai,j ∈ Σ and the sequence of transitions

from j to any final state in F denoted by the unknown Xj . The

alternation over these indicates that there is a choice between

these sets of paths. The absence of a transition between the

state i and a state j is denoted by ∅, this is usually omitted in

the equations. If a state i belongs to the set of final states F ,

then ε is also one of the terms in the equation Xi. Later on, it

will act as a terminal in the process of solving the equations.

The resulting system of characteristic equations can be

solved by substitution. Starting off with the characteristic

equations corresponding to the final states of A, the oc-

currences of the unknowns in all the other equations are

eliminated, until only the characteristic equation corresponding

to the start state s0 is left, which yields the regular expression

that is searched for.

When an unknown appears on both sides of the language

equation Xi, which happens when there is an edge from

state i to itself, further substitution is not possible. In such a

case, Arden’s rule is applied, which states that a characteristic

equation of the form X = A ·X +B can be transformed into

X = A∗ · B. Applying this theorem solves the situation at

hand, since it prevents the same unknown from occurring on

both side of the equation as a result. After having isolated the

unknown, the substitution process can be proceeded with.

Basically, Brzozowski’s method starts from the automaton’s

final states and eliminates in each step the immediate pre-

decessors of the states that were eliminated in the previous

step. There are other methods for transforming a DFA into a

regular expression, for example the transitive closure method.

In comparison, however, this one creates relatively compact

regular expressions. That is the why we confined ourselves to

only discuss Brzozowski’s method in detail.

IV. VISUALIZATION APPROACH

The CFB is a control flow visualization just like the CFG. It

is based on regular expressions that are derived over the basic

blocks of some CFG and capture the set of all paths that can be

traversed in it. This creates a one-dimensional and structured

representation of the control flow: While all execution paths

in the CFG are projected onto a plane, the regular expression

operators abstract the control flow into explicit structures like

loop, choice, and optional execution. These structures are then

simply mapped to a visual language composed of constructs

that make use of the visual property containment to convey the

control flow information. The resulting visualization contains

as much control flow information as the CFG, but is easier

to navigate and explore specific execution paths with. This

section presents the visual language constructs, the workflow

behind the CFB generation, and the expected output CFB for

an example CFG.

A ·B A+B

A∗ A+ A?

A and B denote basic blocks.

Fig. 1. The CFB Visual Language

A. Visual Language

The CFB is an overlay of all possible execution paths in a

CFG, each of which is characterized by the sequence of basic

blocks that lie along it. The constructs that make up its visual

language, are designed to allow the viewer to switch between

the different layers of the visualization. Figure 1 shows the

mapping between the basic components of a regular expression

computed for some CFG and these visual language constructs.

The basic blocks in the regular expression are represented

by simple boxes, which display the instructions contained in

them. At the same time, the regular expression operators that

achieve the structuring of the control flow, are represented by

containers that enclose the basic blocks that they apply to.

For the sake of simplicity, let A and B be two basic blocks

in a program function. But the following would also apply, if

A and B were more complex regular expressions:

The concatenation operator applied to A and B, as in A ·B,

denotes that B is executed right after A. In the visualization,

the two basic blocks are shown in sequence, either one below

the other or both next to each other depending on whether the

orientation of the visualization is to be vertical or horizontal.

The alternation operator applied to A and B, as in A + B,

denotes the choice between the two basic blocks as to which

one is to be executed next. The corresponding visual construct

consists of tabs, one for every possible case. It only displays

one case at a time and allows the viewer to switch from one

case to any other by selecting the respective tab. As for the

quantifiers, they denote variants of iterative execution: Applied

to the basic block A, the star operator (A∗) indicates that it is
executed zero or more times, the plus operator (A+) implies

that it is executed at least once, and the optional operator (A?)
states that it is either executed once during a program run or

not at all. In the visualization, a border with a small indicator

for the respective quantifier type is put around the terminal

representing A.

100

B. Workflow

The workflow for generating the CFB for some given CFG

can be divided into three steps, as illustrated in Figure 2.

Fig. 2. The process of generating the CFB.

First, the CFG is turned into a DFA. Both are conceptually

very similar: The CFG is also deterministic in its behavior,

in that it is not possible to transfer the control flow to two

different basic blocks at the same time. Such being the case,

only a few minor modifications are required to transform the

CFG into a DFA: All nodes of the CFG are reinterpreted as

states of a DFA; each node is assigned a unique identifier i
and is then added to the set S. A new state, linked to all

states representing an entry block, is introduced. This state is

designated as the start state s0. All states corresponding to

an exit block in the CFG are declared as final states of the

DFA by adding them to the set F . The alphabet Σ contains

the identifiers of all states. The directed links in the CFG

are reinterpreted as transitions of the DFA. Each transition

is labeled with the identifier of the target state, which can be

thought of as the address of the next basic block that will be

jumped to during program execution.

Next, a regular expression that accepts the same language

as the DFA is derived by means of the Brzozowski algebraic

method or the transitive closure method. The problem is that

both methods produce different regular expressions for the

same input. The difference lies in how bloated these are due to

basic blocks occurring multiple times in the regular expression.

Ultimately, this problem of basic block duplication leads to

different and unmanageable CFBs to be produced for the same

CFG, which is undesirable. For a good compact visualization

outcome, the underlying regular expression should be minimal:
It should be as short as possible in length, while the set of

execution paths that it represents, remains the same. Simplify-

ing the regular expression according to the strategy previously

described in Section III-D eliminates unnecessary basic block

duplication and results in a minimized regular expression.

Finally, the obtained regular expression is mapped straight-

forwardly to the respective constructs in the visual language,

which completes the workflow.

C. Example

Figures 3 to 5 give an example of what the output of the

process described in Section IV-B looks like. The CFG at

hand (see Figure 3) contains assembly code in its nodes that

corresponds to the code snippet (see Figure 4). In this CFG,

the Blocks that contain a conditional jump at their end use

red and green arrows to show the alternative next blocks.

That snippet shows a program function written in C, which

Fig. 3. Example CFG for the Euclidean algorithm.

Fig. 4. Implementation of the Euclidean algorithm in C.

implements the Euclidean algorithm for computing the greatest

common divisor of two integer numbers. The derivation of a

regular expression from the CFG using Brzozowski’s method

in combination with our systematic simplification approach

yields

0 · 4 · (1 · (2+ 3) · 4)∗ · 5 · 6
as a structured representation of its control flow, in which

the numbers correspond to the basic block identifiers. The

outcome of mapping the regular expression components to the

respective constructs in the visual language is the CFB that is

also shown in Figure 5.

This example shows the duplication of block number 4, the
loop condition, which is traversed at least once, regardless of

an execution of its loop. We accept such shared node dupli-

cations, as trade off for displaying complete paths. If at any

point in time the node duplication in the visualization becomes

a problem, it is possible to widen the regular expressions to

accept more paths and thereby reduce node duplication.

V. TOOL

This section introduces regVIS, a tool for generating the

CFB for a given CFG. It accepts CFGs specified in GDL

and can be used in combination with IDA, in which CFGs

are internally represented in the same format. It is possible

to integrate regVIS into IDA, but it can also be used as a

standalone tool, as IDA is capable of exporting the GDL

representation of CFGs to file. These files have the extension

.gdl and can then be loaded manually into regVIS.

101

Fig. 5. Expected output CFB for the example CFG.

Fig. 6. The graphical user interface of regVIS.

The graphical user interface, of which a snapshot is provided

in Figure 6, is designed to be clear in its structure: Much

of the interface area is designated to rendering the different

program outputs, which also includes the CFG in addition

to the CFB. Each one is displayed in a separate resizable

and dockable panel, which makes it possible to view them

in parallel. Apart from the CFB Viewer and the CFG Viewer,
there is also an RE Tree Viewer showing the tree representation

of the computed regular expression. The color scheme is kept

consistent throughout the different views. Multiple files can

be loaded to the program at the same time. In all views, it

is possible to manually put a description of a basic block’s

content into the box headers that propagate throughout the

views. The renaming of the basic blocks in the CFB can be

stored and restored.

There are certain settings and certain functionalities that

are specific to a particular view. In the CFB Viewer, one

can switch between different regular expression derivation

methods. Currently, one can either select the Brzozowski

algebraic method (see Section III-E) or the transitive closure

method to compute the regular expression for the input CFG.

Moreover, one can view the CFB in horizontal or vertical

layout. The alternative paths that are hidden in the tab controls

can be viewed as tool tips that appear when the mouse is

placed over the tab headers in the CFB. By renaming the

basic blocks in the headers, one can, by hand, create regular

expressions, which are abstract representations of the path

semantics. The one for out example CFG would be like so

pro · a �= b ·
(

a > b ·
(

a−=b + b−=a

)
· a �= b

)∗
· epi · ret

In the CFG Viewer it is possible to select between different

graph layouts, however sticking with the default graph layout

is recommended. Due to the limitations imposed by the used

graph rendering library, the layout of the CFG is not ideal:

Loops are not rendered, moving the basic blocks around results

in weirdly bended arrows, and the positioning of the basic

blocks in the CFG sometimes changes when opening the same

GDL file again. However, it is sufficient for our purposes.

VI. EVALUATION

This section presents the design of the experiment, which

was conducted to validate the claims that were made, up to

this point, about the CFB with respect to the convenience in

navigating along and exploring specific execution paths, the

102

obtained results, and also any threats that could affect the

validity of these results.

A. Experiment Design

The conducted experiment falls into the category of Eval-
uating User Experience (UE) according to Lam, Bertini et

al.’s taxonomy of empirical studies in information visualization

[21]. Among all proposed methodological alternatives listed

for this category, a usability test seemed the most viable

option; an informal evaluation or a field observation were out

of question due to limited availability of domain experts for

the former and lack of extensive time for the latter method. In

the usability test, we had participants analyze the assembler

code of two simplified message protocols, using regVIS to

view the CFG for one and the CFB for the other protocol.

The participants were given program comprehension tasks to

make sure that they familiarized themselves enough with the

peculiarities of each control flow visualization to then ask

them to give feedback about their experience as users. We

were interested in finding out what the participants perceived

as strengths and weaknesses about these visualizations and

which one they found more suitable to perform certain tasks

with. Ultimately, we wanted to see which visualization would

be preferred overall.

Nine computer science students, who were either about to

complete their Bachelor degree or were already enrolled in a

Master study program, and one research assistant participated

in this study. All ten participants were selected on the basis of

previous experience with reading and understanding assembly

code. Considering their academic standing, it was assumed

that all of them knew about control flow graphs and regular

expressions sufficiently well.

Multiple sessions were offered on different dates to fit the

participants’ schedules. All sessions were conducted in a lab

room on university premises and took about two hours. One

moderator was present at each session and made sure that

the experiments took place under examination conditions. All

participants were provided with their own separate desks and

a 23-inch Full-HD screen, which they could connect their

own notebooks to if they wanted. All of the notebooks had

Windows 7 or 8 and the .NET-Framework installed on them,

which is necessary to run regVIS. The distributed test sheets

were printed in black and white on A4-sized paper. The

moderator passed around a USB stick containing regVIS, for

those who had not downloaded it yet, as well as all input files

necessary to complete the tasks, right before the start of the

experiment.

The organization of the experiment is outlined in a detailed

manner in Table II. The time was allocated to the four different

stages keeping in mind that participants would probably be

reluctant to spare more than two hours. For the sake of

obtaining useful feedback, ensuring that the participants have

enough time to play around with the visualizations, was

important. Therefore, as much time as possible within the

existing constraints was made available for the analysis of the

message protocols with the aid of the two different control

TABLE II
ORGANIZATION OF THE EXPERIMENT

Stage Time

Introduction 05 min

Training
• Self-assessment questions concerning programming ex-

perience and assembler knowledge
• Reading section on how to produce the CFB for some

CFG including a small example to illustrate the transfor-
mation process

• A small memory game as self-test question, where CFG
patterns corresponding to the basic high-level control
flow structures have to be mapped to the corresponding
CFB patterns

• Tutorial on how to use the regVIS tool using a simple
CFG as working example in preparation for the upcoming
Use stage of the experiment

15 min

Use 5 x CFG first, 5 x CFB first

Answering questions about the semantics of two simpli-
fied message protocols, where one was to be analyzed
using the CFG and the other using the CFB. The time
given to analyze one protocol was 25 minutes. Half of the
questions were the same for both protocols, the rest was
specific to each protocol. Each participant examined the
visualizations in a different order: 5 participants worked
with the CFG first, while the remaining 5 participants
started with the CFB.

2 x
25 min

Feedback
• Task 1: Choosing the visualization that is more suitable

to perform a program comprehension task with for a total
of eight tasks

• Task 2: Listing any previous knowledge that has made
the questions in the Use section easier to solve

• Task 3: Giving opinion about anything else noteworthy
about the control flow visualizations or regVIS in general

30 min

flow visualizations. In addition, effort was put into creating

tasks that were simple, yet allowed enough exposure to the

visualization techniques for the participants to identify the

strengths and weaknesses. Despite all that, it would not have

been realistic to expect the participants to actually complete

all the tasks correctly within that time frame; this was also em-

phasized during the introductory segment of the experiment.

In the Use part of the experiment, the participants had

to examine two protocol parsers using the CFB and CFG

visualizations. Both parsers comprised 40 lines of C-Code

each. In a general questions part, the participants had to answer

overall questions concerning the parser operation. Individual

questions to allowed message sequences and dependencies

during processing were posed in a special part for each parser.

The actual data and questions can be found on the regVIS

website [22].

The tasks were predominantly multiple-choice. Free spaces

were provided additionally for textual answers and the partic-

ipants were encouraged to make use of these to explain the

reasoning behind their choices. This was especially necessary

for the first task of the feedback section, where the participants

were driven to choose the one visualization among the two that

103

TABLE III
SELF-ASSESSMENT

Competence min max avg med

Programming 1 year 16 years 5.6 years 5 years
Assembler 1 week 3 years 7.9 months 3.5 months

TABLE IV
DETAILED FEEDBACK

Tasks G B X

Strategic

Exploring Neighbors First (Breadth-First Search) 5 3 2
Exploring Paths First (Depth-First Search) 1 8 1

Structural

Finding the Predecessors and Successors of a Basic Block 6 4 0
Detecting Data Dependencies 2 3 5
Detecting Clustering or Proximity 4 5 1

Contextual

Navigating through the Visualization 3 6 0
Searching for a Specific Basic Block in the Visualization 6 2 2
Keeping Track of the Overall Control Flow 4 3 3

Overall Preference 4 3 3

G: Graph, B: Block, X: Undecided

they deemed more suitable to perform a certain graph analysis

or program comprehension task with. Here, the empty spaces

served as an opportunity to backpedal from their choice in case

there was something about the chosen visualization that they

did not find optimal either. If there were any other aspects that

had caught their eye but that were not explicitly asked about

in the previous tasks, such as further strengths and weaknesses

of the visualization techniques, bugs in the implementation or

feature requests, they had the chance to write extensively about

them in the third and last task, where sufficient free space was

left for that purpose.

B. Results

The results of the experiment that was described detailedly

in Section VI-A, will be presented and discussed in what

follows. For starters, Table III is a summary of the rough

estimates that the participants provided in the beginning of

the experiment when asked to assess their programming expe-

rience and assembler knowledge in years, months, weeks or

days. The intention was to have some means for characterizing

the participants.

The evaluation of the Use part of the experiment can be seen

in the performance column of Table V. For each participant,

points were given for correct answers. These were made

relative to the best performer of each task, to make the tasks

and performance in individual visualizations comparable.

There were a total of three tasks for soliciting user feedback.

In the first task, the study participants had to choose for

each one of eight basic program comprehension tasks the

one visualization among the possible two that was, in their

opinion, more suitable to perform it. Table IV shows the eight

tasks, for which the choice had to be made together with the

respective distribution in votes. Note that, despite having only

two options to choose from, where G stands for the CFG

and B represents the CFB, there were certain instances where

participants marked either both options or none at all. These

votes were then counted as undecided (X). Based on the votes,

a winner can be identified for each task. A summary of the

arguments that were provided in the textual answers will be

considered in the discussion of the results of this task in the

following.

The first set of program comprehension tasks were strategic

in nature. For Breadth-First Search, the majority of partic-

ipants chose G with the argument that it was less effort

to track edges than clicking through the tab navigation in

B. Those in favor of B stated that scrolling was necessary

only in one direction to find the neighbors, while G required

a lot of panning in two directions. Those that remained

undecided, were of the opinion that the suitability of the

visualization techniques depended on the size of the assembler

code; accordingly, B would probably be more preferable to G
for larger program functions. As for Depth-First Search, B was

chosen by the majority who felt that the navigation through

unidirectional scrolling and tab selection was the most in line

with the objective of analyzing a specific execution path, while

the one participant opting for G considered it to be the better

means for maintaining an overview of all execution paths.

The second set of program comprehension tasks can be

characterized as being structural. For Finding the Predecessors
and Successors of a Basic Block, most of the participants

selected G, because they deemed tracking the edges to find

the predecessors and successors here to be of less effort and

far less confusing than navigating through B via tab selection.

Those who chose B, reasoned that less scrolling was required

and the positions of the predecessors and successors were

more predictable due to the linearity in the layout. However,

there was one participant who mentioned that there might

be the risk of overlooking an occurrence of a basic block

due to the problem with basic block duplication, introduced

in Section IV-B, in the underlying regular expression. With

regard to Detecting Data Dependencies, the majority of the

participants remained undecided, with a few stating that data

dependencies are easier analyzable along paths. The next task,

Detecting Clustering or Proximity, was interpreted by the

participants differently for each visualization: They thought

of clustering and proximity as the closeness in placement of

the basic blocks in G as defined by the graph layout algorithm

and as the togetherness of blocks indicated by the structures

in B. Here, the majority chose B.
The third and last set of program comprehension tasks were

contextual. The majority voted for B for Navigating through
the Visualization, giving the convenience of unidirectional

scrolling and tab selection as reasons again. There was one

person among those opting for B, however, who considered

the loss of the jump conditions information as a disadvantage.

Those who chose G over B, stated that they preferred one

static view, where the information necessary for navigating is

104

available at one glance and is not hidden, as it is in B. As far
as Searching for a Specific Basic Block in the Visualization
is concerned, the majority opted for G. They argued that less

clicking was necessary in a static view in order to navigate to

the basic block that is of interest, since the information to do so

does not have to be retrieved first. There was one participant,

who mentioned that he was expecting it to be different for

larger program functions. Another participant found this task

difficult to perform with B, as basic blocks can belong to

multiple paths in the visualization. Hence, the task of searching

for a basic block actually becomes the task of searching for

all occurrences of that block in the visualization. There were

also those participants who could not decide between the two

visualization approaches stating that both did the job. As for

the task of Keeping Track of the Overall Control Flow, most

users preferred G. One person explained his choice with the

availability of the jump conditions in G, which were missing

in B. A participant, who remained undecided, expressed in

his textual answer that he considered both visualizations to be

rather complicated in their own ways.

Finally, the study participants had to declare their overall

opinion as to whether G or B is their preferred visualization

approach to perform program comprehension tasks with. Here,

G was selected by a slight majority.

In the second task, the participants were asked to list

any previous knowledge that had helped them in using of

the visualizations and completing the program comprehension

tasks during the experiment. Having an understanding of

assembler code, knowing how message protocols work, and

being familiar with regular expressions as well as graphs

in general were mentioned here, most of which had been

anticipated already. In the third task, the participants had the

opportunity to write about anything else that had caught their

eye and that they wanted to give their opinion on.

About the CFG, the participants stated that they found the

indication of the jump conditions helpful, that much scrolling

was necessary to reach a basic block but that it was easier to

determine where to scroll to, and that the overlapping links

between the basic blocks were confusing. Some participants

requested some additional features for regVIS; these were

undoing manual changes to the placement of the basic blocks

in the graph layout, double-clicking on arrows to quick-follow

long paths and zooming in our out by using the mouse wheel

instead of clicking on the designated control. With respect

to the CFB, the participants wrote that the compactness and

the abstraction of the control flow into explicit structures

constituted an improvement to the user experience but that

this could look different for larger program functions, that

no Full-HD monitor is necessary to view it, that the path

summary tool tips were somewhat helpful but disappeared too

quickly, and that the absence of indicators for jump conditions

in the visualization posed a serious weakness. Requested

features were panning with the mouse wheel, making the

basic blocks resizable to save screen space, making scrolling

faster, displaying pop-up windows for subroutines, and hiding

unnecessary information better. There were points referring

TABLE V
OVERALL EVALUATION

Σ Feedback

Participant Task Order Performance G B X Preference

1 G → B B 3 1 4 G
2 G → B X 3 4 1 X
3 G → B X 4 4 0 G
4 B → G B 4 4 0 G
5 B → G G 6 2 0 G
6 G → B B 1 6 1 B
7 B → G G 1 6 1 B
8 G → B B 2 3 3 X
9 B → G B 3 5 0 B
10 B → G X 2 3 3 X

G: Graph, B: Block, X: Undecided

TABLE VI
INFLUENCE OF TASK ORDER

Performance Preference

Order G B X G B X

G → B 0 3 2 2 2 1
(0%) (60%) (40%) (40%) (40%) (20%)

B → G 2 2 1 2 1 2
(40%) (40%) (20%) (40%) (20%) (40%)

Total 2 5 3 4 3 3
(20%) (50%) (30%) (40%) (30%) (30%)

to regVIS in general, too. The graphical user interface, for

instance, was perceived as well-structured. One participant

suggested that the RE Viewer be improved by making the basic

blocks collapsible and adding the node naming functionality

here as well, arguing that it would be a good complement

for the CFB Viewer. The remaining feedback statements were

about the design of the experiment. Some participants felt

that more training in using the CFB would have been better

and that the difficulty of the program comprehension tasks,

together with lacking understanding of assembler code in

general, made it hard to complete them within the given time.

Table V shows the feedback results for every study partic-

ipant (Σ Feedback) together with his or her preferred control

flow visualization (Preference). Also contained in that table is

the order that the visualizations were used in (Task Order),
indicated with →, and the visualization the respective user

performed better with (Performance).
What remains to be examined is whether any peculiarities

exist in the data that could have influenced the Preference in

any way. Looking at Table V, there is no clear correlation

between the Performance and the Preference. However, one
peculiarity can be detected: The preferred visualization of

a participant was rarely the one that he performed better

with. This is the most visible for the CFB, as the majority

of participants that had actually performed better with that

visualization, still ended up choosing the CFG as the overall

more preferable one. Table VI shows the distribution of

participants among G, B, and X with respect to Performance

105

and Preference with and without considering the Task Order.
There seems to be no effect on the Preference that could be

attributed to the Task Order judging from the similarity in how

the participants are distributed for the two possible orders, in

which they were exposed to the control flow visualizations.

However, an influence of the Task Order on the Performance
is observable: One would expect the total distribution of the

participants to be reflected in the distributions for each case of

Task Order, but this is not the case. Generally speaking, the

first control flow visualization in both sequences had a lower

percentage of participants performing better with it, indicating

a biasing training effect.

All in all, the results speak for the validity of the claims

made about the CFB: As expected, the CFB was perceived

by the users as the better means for navigating along and

exploring execution paths compared to the CFG. Nevertheless,

depending on the program comprehension task that is to be

performed, not being able to view multiple paths can turn out

to be of disadvantage. This is why, for program comprehension

purposes, the best approach seems to be using the CFG and

the CFB together.

C. Threats To Validity

Although large participant groups are desirable in empirical

studies for the sake of obtaining generally valid results, we had

to settle for a small sample size for this usability test, because

more people with some previous experience with assembler

code were unavailable. Despite the effort of simplifying the

program comprehension tasks, the lack of proficiency in

analyzing and understanding assembler code within short time

as well as lack of exposure to the CFB might have caused

a bias in the overall results in favor of the CFG. Also, all

participants were aware of our relation to this work, which

could have led to subjectivity in the feedback.

VII. CONCLUSION AND FUTURE WORK

In an effort to improve understanding of program functions

in assembler language, a new regular-expression-based graph

visualization, the CFB, was introduced to view the control flow

in a structured manner with: A regular expression is computed

for a CFG in order to abstract the control flow into explicit

structures and is then mapped to a visual language consisting

of constructs conveying the control flow information with the

visual property of containment. We also introduced regVIS,

a tool that both the CFG and the CFB of assembler code

can be generated with. This tool came to use in a usability

test, conducted to evaluate the two control flow visualizations

against each other. It turned out that both complement each

other well, because each visualization possesses features that

make it more suitable for certain program comprehension

tasks: While the CFB allows focusing on specific execution

paths, the CFG allows one to view the control flow in a broader

context. As a byproduct, we received useful input on how to

improve the user experience of regVIS; the implementation of

the requested features and a more comprehensive user study in

terms of participation and detailedness remain as future work.

REFERENCES

[1] S. Diehl, Software Visualization: Visualizing the Structure, Behaviour,
and Evolution of Software. Secaucus, NJ, USA: Springer-Verlag New
York, Inc., 2007.

[2] aiSee User Manual for Windows and Linux, Version 3.4.3, AbsInt
Angewandte Informatik GmbH, December 2009.

[3] G. Sander, “Graph layout through the VCG tool,” in Graph Drawing,
ser. Lecture Notes in Computer Science, R. Tamassia and I. Tollis, Eds.
Springer Berlin Heidelberg, 1995, vol. 894, pp. 194–205.

[4] E. W. Dijkstra, “Structured programming,” O. J. Dahl, E. W. Dijkstra,
and C. A. R. Hoare, Eds. London, UK: Academic Press Ltd., 1972,
ch. Chapter I: Notes on Structured Programming, pp. 1–82.

[5] I. Nassi and B. Shneiderman, “Flowchart techniques for structured
programming,” ACM SIGPLAN Notices, vol. 8, no. 8, pp. 12–26, Aug.
1973.

[6] D. E. Knuth, “Structured programming with go to statements,” ACM
Computing Surveys, vol. 6, no. 4, pp. 261–301, Dec. 1974.

[7] T. A. Bunter, “A non-deterministic approach to restructuring flow
graphs,” Department of Computer Science, Columbia University, Tech.
Rep. CUCS-019-93, 1993.

[8] A. M. Erosa and L. J. Hendren, “Taming control flow: A structured
approach to eliminating goto statements,” Proceedings of 1994 IEEE
International Conference on Computer Languages (ICCL’94), no. 1, pp.
229–240, 1994.

[9] U. Lichtblau, “Decompilation of control structures by means of graph
transformations,” in Mathematical Foundations of Software Develop-
ment, ser. Lecture Notes in Computer Science, H. Ehrig, C. Floyd,
M. Nivat, and J. Thatcher, Eds. Springer Berlin Heidelberg, 1985,
vol. 185, pp. 284–297.

[10] C. Cifuentes, “Structuring decompiled graphs,” in Compiler Construc-
tion, ser. Lecture Notes in Computer Science, T. Gyimóthy, Ed. Springer
Berlin Heidelberg, 1996, vol. 1060, pp. 91–105.

[11] S. Cesare and Y. Xiang, “Classification of malware using structured
control flow,” Proceedings of the Eighth Australasian Symposium on
Parallel and Distributed Computing, vol. 107, pp. 61–70, 2010.

[12] T. von Landesberger, A. Kuijper, T. Schreck, J. Kohlhammer, J. van
Wijk, J.-D. Fekete, and D. Fellner, “Visual analysis of large graphs:
State-of-the-art and future research challenges,” Computer Graphics
Forum, vol. 30, no. 6, pp. 1719–1749, Sep. 2011.

[13] B. Johnson and B. Shneiderman, “Tree-maps: A space-filling approach
to the visualization of hierarchical information structures,” in Proceed-
ings of the 2nd Conference on Visualization ’91, ser. VIS ’91. Los
Alamitos, CA, USA: IEEE Computer Society Press, 1991, pp. 284–291.

[14] J. E. Hopcroft, R. Motwani, and J. D. Ullman, Introduction to Automata
Theory, Languages, and Computation (3rd Edition). Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 2006.

[15] J. E. Savage, Models of Computation: Exploring the Power of Comput-
ing, 1st ed. Boston, MA, USA: Addison-Wesley Longman Publishing
Co., Inc., 1997.

[16] S. C. Kleene, “Representation of events in nerve nets and finite au-
tomats,” in Automata Studies, ser. Annals of Mathematics Studies, C. E.
Shannon and J. McCarthy, Eds. Princeton University Press Princeton,
NJ, USA, 1956, vol. 34.

[17] J. A. Brzozowski, “Derivatives of regular expressions,” Journal of the
ACM, vol. 11, no. 4, pp. 481–494, 1964.

[18] R. Kain, Automata Theory: Machines and Language, ser. McGraw-Hill
computer science series. Krieger, 1972.

[19] S. Gulan and H. Fernau, “An optimal construction of finite automata
from regular expressions,” in IARCS Annual Conference on Founda-
tions of Software Technology and Theoretical Computer Science, ser.
Leibniz International Proceedings in Informatics (LIPIcs), R. Hariharan,
M. Mukund, and V. Vinay, Eds., vol. 2. Dagstuhl, Germany: Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2008, pp. 211–222.

[20] H. Gruber and S. Gulan, “Simplifying regular expressions,” in Language
and Automata Theory and Applications, ser. Lecture Notes in Computer
Science, A.-H. Dediu, H. Fernau, and C. Martín-Vide, Eds. Springer
Berlin Heidelberg, 2010, vol. 6031, pp. 285–296.

[21] H. Lam, E. Bertini, P. Isenberg, C. Plaisant, and S. Carpendale,
“Empirical studies in information visualization: Seven scenarios,” IEEE
Transactions on Visualization and Computer Graphics, vol. 18, no. 9,
pp. 1520–1536, Sept 2012.

[22] “regVIS website,” http://www.sts.tu-harburg.de/projects/regvis/regvis.
html, 2014.

106

