
Yihua Liao, V. Rao
Vemuri

Department of Computer
Science University of
California, Davis One Shields
Avenue, Davis,
CA 95616, USA
{yhliao, rvemuri}@
ucdavis.edu

Abstract

A new approach, based on the k-Nearest
Neighbor (kNN) classifier, is used to classify
program behavior as normal or intrusive.
Program behavior, in turn, is represented
by frequencies of system calls. Each system
call is treated as a word and the collection
of system calls over each program execution
as a document. These documents are
then classified using kNN classifier, a
popular method in text categorization. This
method seems to offer some computational
advantages over those that seek to
characterize program behavior with short
sequences of system calls and generate
individual program profiles. Preliminary
experiments with 1998 DARPA BSM audit
data show that the kNN classifier can
effectively detect intrusive attacks and
achieve a low false positive rate.

Key words: k-Nearest Neighbor classifier,
intrusion detection, system calls, text
categorization, program profile.

1. Introduction

Computer security vulnerabilities will always
exist as long as we have flawed security policies,
poorly configured computer systems, or
imperfect software programs. Intrusion
detection systems play an important role in
detecting attacks that exploit these
vulnerabilities or flaws in computer systems [1].
An ideal intrusion detection system is the one
that has 100% attack detection rate along with
0% false positive rate (the rate of mis-classified
normal behavior), requires light load of
monitoring, and involves minor calculation or
overhead. Current intrusion detection systems,

however, are plagued by either high false alarm
probability or low attack detection accuracy.

There are two general approaches to intrusion
detection: misuse detection and anomaly
detection. Misuse detection via signature
verification compares a user’s activities with the
known signatures of attackers attempting to
penetrate a system. While misuse detection is
useful for finding known intrusion types, it can
not detect novel attacks. Unlike misuse
detection, anomaly detection identifies
activities that deviate from established
statistical patterns for users, systems or
networks. Machine learning techniques have
been used to capture the normal usage patterns
and classify the new behavior as either normal
or abnormal (for example, [2]). In spite of their
capability of detecting unknown attacks,
anomaly detection systems suffer from high false
alarm rate when normal user profiles and system
or network behavior vary widely. Anomaly
detection can be combined with signature
verification to detect attacks more efficiently.

In anomaly detection, there are many different
levels on which an intrusion detection system
could monitor activities on a computer system.
The biggest challenge is to choose features
that best characterize the user or system usage
patterns so that non-intrusive activities would
not be classified as anomalous. One could use,
for instance, Unix Shell command lines, login
events or system calls as observables to
generate profiles of user behavior. Since a
user’s behavior can change frequently, user
profiles have to be updated periodically to
include the most recent changes. It is possible
that a user can fool the system by slowly
changing his or her profile and hiding
malicious activities.

More recently, learning program behavior and
building program profiles, especially those of

439

Use of K-Nearest Neighbor
classifier for intrusion
detection

Computers & Security
Vol 21, No 5, pp 439-448, 2002

Copyright ©2002 Elsevier Science Ltd
Printed in Great Britain

All rights reserved
0167-4048/02US$22.00

An earlier version of this paper is to appear in the
Proceedings of the 11th USENIX Security Symposium, San
Francisco, CA, August 2002

privileged programs, has become an alternative
method in intrusion detection [3-7]. Intrusions
most often occur when programs are misused.
In Unix, intruders usually gain super-user
status by exploiting privileged programs. A
program profile can be generated by
monitoring the program execution and
capturing the system calls associated with the
program. Compared to user behavior profiles,
program profiles are more stable over time
because the range of program behavior is more
limited. Furthermore, it would be more
difficult for attackers to perform intrusive
activities without revealing their tracks in the
execution logs. Therefore program profiles
provide concise and stable tracks for intrusion
detection. To date, however, almost all the
research in learning program behavior has
used short sequences of system calls as the
observable, and generated a large individual
database of system call sequences for each
program. A program’s normal behavior is
characterized by its local ordering of system
calls, and deviations from their local patterns
are regarded as violations of an executing
program. It is still a tedious and costly
approach because system and application
programs are constantly updated, and it is
difficult to build profiles for all of them.

In this paper, we discuss a new technique for
learning program behavior in intrusion
detection. Our approach employs the k-Nearest
Neighbor (kNN) classifier to categorize each
new program behavior into either normal or
intrusive class. The frequencies of system calls
used by a program, instead of their local
ordering, are used to characterize the program’s
behavior. Each system call is treated as a
“word”, and each process, i.e., program
execution, as a “document”. Then the kNN
algorithm, which has been successful in text
categorization applications [8], can be easily
adapted to intrusion detection. Since there is
no need to build a profile for each program and
check every sequence during the new program

execution, the amount of calculation involved
is largely reduced.

The rest of this paper is organized as follows.
Section 2 surveys related work. We explain the
analogy between text categorization and
intrusion detection and the kNN classifier in
Section 3. Section 4 describes our experiments
with the 1998 DARPA data, and Section 5
contains further discussions. Finally, we
summarize our conclusions and future work in
Section 6.

2. Related work

Ko et al. at UC Davis first proposed to specify
the intended behavior of some privileged pro-
grams (setuid root programs and daemons in
Unix) using a program policy specification lang-
uage [9]. During the program execution, any
violation of the specified behavior was consider-
ed “misuse”. The main limitation of this method
is the difficulty of determining the intended
behavior and writing security specifications for
all monitored programs. Nevertheless, this
research opened the door of modeling program
behavior for intrusion detection.

Forrest’s group at the University of New Mexico
introduced the idea of using short sequences of
system calls issued by running programs as the
discriminator for intrusion detection [3].
Normal behavior was defined in terms of short
sequences of system calls of a certain length in a
running Unix process, and a separate database
of normal behavior was built for each process of
interest. This work was extended with various
classification schemes such as artificial immune
systems [4], rule learning [5] and Hidden Mar-
kov Model (HMM) [6]. Ghosh and others [7]
employed artificial neural network techniques
to learn program behavior profiles with system
call sequences for the 1998 DARPA BSM data.
More than 150 program profiles were
established. For each program, a neural network
was trained and used for anomaly detection.
Their Elman recurrent neural networks were

440

Use of K-Nearest Neighbor classifier for intrusion detection

Yihua Liao and V. Rao Vemuri

able to detect 77.3% of all intrusions with no
false positives, and 100% of all attacks with
about 10% mis-classified normal sessions.

Unlike most researchers who concentrated on
building individual program profiles, Asaka et
al. [10] introduced a method based on discrimi-
nant analysis. Without examining all system
calls, an intrusion detection decision was made
by analyzing only 11 system calls in a running
program and calculating the program’s Mahala-
nobis’ distances to normal and intrusion groups
ofthe training data. There were 4 instances that
were misclassified out of 42 samples. Due to its
small size of sample data, however, the feasibil-
ity of this approach still needs to be established.

Ye et al. attempted to compare the intrusion
detection performance of methods that used
system call frequencies and those that used the
ordering of system calls [11]. The names of
system calls were extracted from the audit data
of both normal and intrusive runs, and labeled
asnormal and intrusive respectively. It is our
impression that they did not separate the system
calls based on the programs executing. Since
both the frequencies and the ordering of system
calls areprogram dependent, this over
simplification limits the impact of their work.

3. Methodology

This paper treats the system calls differently.
Instead of looking at the local ordering of the
system calls, our method uses the frequencies of
system calls to characterize program behavior.
Using the text processing metaphor, each
system call is treated as a “word” in a long
document and the set of system calls generated
by a process is treated as the “document”. This
analogy makes it possible to bring the full
spectrum of well-developed text processing
methods [12] to bear on the intrusion detection
problem. One such method is the k-nearest
neighbor classification method. The details on
text categorization and the kNN classifier are
presented in the Appendix.

Analogous to text categorization, each process
is first represented as a vector, where each entry
represents the occurrence of a system call
during the process execution. Weighting
techniques such as frequency weighting (see
A.1) and tf•idf weighting (see A.2) are used to
determine thevalues of vector entries. To
categorize a new process into either normal or
intrusive class, the kNNclassifier calculates the
similarity between the new process and each
training process instance (see A.3), and uses the
class labels of the k most similar neighbors to
predict the class of the new process.The
underlying assumption is that processes
belonging to the same class will cluster together
in the vector space. Table 1 illustrates the
similarity in some respects between text
categorizationand intrusion detection when
applying the kNN classifier.

There are some advantages to applying text
categorization methods to intrusion detection.
First and foremost, the size of the system-call
vocabulary is very limited. There are less than
100 distinct system calls in the DARPA BSM
data, while a typical text categorization problem
could have over 15000 unique words [12]. Thus
the dimension of process vectors is significantly
reduced, and it is not necessary to apply any
dimensionality reduction techniques. Second,
we can consider intrusion detection as a binary
categorization problem, which makes adapting
text categorization methods very
straightforward.

Use of K-Nearest Neighbor Classifier for Intrusion Detection

441

Yihua Liao and V. Rao Vemuri

Table 1: Analogy between text categorization and intrusion detection when applying the kNN classifier.

Terms Text categorization Intrusion Detection

N total number of documents total number of processes

M total number of distinct words total number of distinct system calls

ni number of times ith word occurs number of times ith system call was
issued

fi j frequency of ith word in document j frequency of ith system call in
process j

Dj jth training document jth training process

X test document test process

4. Experiments

4.1 Data Set

We applied the k-Nearest Neighbor classifier to the 1998 DARPA data. The 1998 DARPA
Intrusion Detection System Evaluation program provides a large sample of computer attacks
embedded in normal background traffic [13]. The TCPDUMP and BSM audit data were collected
on a network that simulated the network traffic of an Air Force Local Area Network. The audit logs
contain seven weeks of training data and two weeks of testing data. There were 38 types ofnetwork-
based attacks and several realistic intrusion scenarios conducted in the midst of normal background
data.

We used the Basic Security Module (BSM) audit data collected from a victim Solaris machine
inside the simulation network. The BSM audit logs contain information on system calls produced by
programs running on the Solaris machine. See [14] for a detailed description of BSM events. We
only recorded the names of system calls. Other attributes of BSM events, such as argumentsto the
system call, object path and attribute, return value, etc., were not used here, although they could be
valuable for other methods.

The DARPA data was labeled with session numbers. Each session corresponds to a
TCP/IPconnection between two computers. Individual sessions can be programmatically extracted
fromthe BSM audit data. Each session consists of one or more processes. A complete ordered list
ofsystem calls is generated for every process. A sample system call list is shown below. The
firstsystem call issued by Process 994 was close, execve was the next, then open, mmap, open and soon.
The process ended with the system call exit.

Process ID: 994
close execve open mmap open mmap mmap munmap mmap

mmap close open mmap close open mmap mmap munmap

mmap close close munmap open ioctl access chown ioctl

access chmod close close close close close exit

The numbers of occurrences of individual system calls during the execution of a process were
counted. Then text weighting techniques were used to transform the process into a vector. We used
two weighting methods, frequency weighting defined by (A.1) and tf•idf weighting definedby (A.2),
to encode the processes.

During our off-line data analysis, our data set included system calls executed by all processes except
the processes of the Solaris operating system such as the inetd and shells, which usuallyspanned
several audit log files.

4.2 Anomaly Detection

First we implemented intrusion detection solely based on normal program behavior. In order to
ensure that all possible normal program behaviors are included, a large training data set is preferred
for anomaly detection. On the other hand, a large training data set means large overhead in using a
learning algorithm to model program behavior. There are 5 simulation days that were free of attacks
during the seven-week training period. We arbitrarily picked 4 of them for training, and used the
fifth one for testing. Our training normal data set consists of 606 distinct processesrunning on the

442

Use of K-Nearest Neighbor Classifier for Intrusion Detection

Yihua Liao and V. Rao Vemuri

victim Solaris machine during these 4
simulation days. There are 50 distinct system
calls observed from the training data set, which
means each process is transformed into a vector
of size 50. Table 2 lists all the 50 system calls.

Once we have the training data set for normal
behavior, the kNN text categorization method
can be easily adapted for anomaly detection.
We scan the test audit data and extract the
system call sequence for each new process. The
new process is also transformed to a vector with
the same weighting method. Then the similarity
between the new process and each process in
the training normal process data set is
calculated using Equation (A.3). If the
similarity score of one training normal process is
equal to 1, which means the system call
frequencies of the new process and thetraining
process match perfectly, then the new process
would be classified as a normal process
immediately. Otherwise, the similarity scores are
sorted and the k nearest neighbors are chosen to
determine whether the new program execution
is normal or not. We calculate the average
similarity value of the k nearest neighbors (with
highest similarity scores) and set a threshold.
Only when the average similarity value is above
the threshold, is the new process considered
normal. The pseudo code for the adapted kNN
algorithm is presented in Figure 1.

In intrusion detection, the Receiver Operating
Characteristic (ROC) curve is usually used to
measure the performance of the method. The
ROC curve is a plot of intrusion detection
accuracy against the false positive probability. It
can be obtained by varying the detection
threshold. We formed a test data set to evaluate
the performance of the kNN classifier
algorithm. The BSM data of the third day of
the seventh training week was chosen as part of
the test data set (none of the training processes
was from this day). There was no attack
launched on this day. It contains 412sessions
and 5285 normal processes. (We did not require
the test processes to be distinct in order to

count false alarms for one day). The rest of the
test data set consists of 55 intrusive sessions
chosen from the seven-week DARPA training
data. There are 35 clear or stealthy attack
instances included in these intrusive sessions
(some attacks involve multiple sessions),
representing all types of attacks and intrusion
scenarios in the seven-week training data.
Stealthy attacks attempt to hide perpetrator’s
actions from someone who is monitoring the
system, or the intrusion detectionsystem. Some
duplicate attack sessions of the types eject and
warezclient were skipped and not included in the
test data set. When a process is categorized as
abnormal, the session that the process is
associated with is classified as an attack session.
The intrusion detection accuracy iscalculated as
the rate of detected attacks. Each attacks counts
as one detection, even with multiple sessions.
Unlike the groups who participated in the 1998
DARPA Intrusion Detection Evaluation

Use of K-Nearest Neighbor Classifier for Intrusion Detection

443

Yihua Liao and V. Rao Vemuri

Table 2: List of 50 distinct system calls that appear in the training data set.

access audit auditon chdir chmod chown close creat

execve exit fchdir fchown fcntl fork fork1 getaudit

getmsg ioctl kill link login logout lstat memcntl

mkdir mmap munmap nice open pathdonf pipe putmsg

readlink rename rmdir setaudit setegid seteuid setgid setgroups

setpgrp setrlimit setuid stat statvfs su sysinfo unlink

utime vfork

Figure 1: Pseudo code for the kNN classifier algorithm for
anomaly detection.

program [15], we define our false positive
probability as the rate of mis-classified
processes, instead of mis-classified sessions.

The performance of the kNN classifier
algorithm also depends on the value of k, the
number of nearest neighbors of the test process.
Usually the optimal value of k is empirically
determined.We varied k’s value from 5 to 25.
Figure 2 shows the ROC curves for 3 different k
values when the processes are transformed with
the tf•idf weighting method. For this particular
data set, k=10 is a better choice than other
values in that the attack detection rate reaches
100% faster. For k=10,the kNN classifier
algorithm can detect 10 of the 35 attacks with
zero false positive rate. And the detection rate
reaches 100% rapidly when the threshold is
raised to 0.72 and the false positive rate remains
as low as 0.44% (23 false alarms out of 5285
normal processes) for the whole simulation day.

We also employed the frequency weighting
method to transform the processes of the same
training and test data sets. Similarly, for the
frequency weighting method, k=15 provides the
lowest false positive rate 0.87% (46 false alarms
out of 5285 normal processes) when the attack

detection rate reaches 100% with the threshold
value of 0.99. The reason for the high threshold
value is that some attack instances are very
similar to the normal processes with the
frequency weight. A comparison of two
different weighting methods is shown in Figure
3. while the frequency weighting method offers
a desirable high attack detection rate (86%) at
zero false positives,the tf•idf weighting method
provides lower false positive rate at 100% attack
detection rate. It appears that the tf•idf
weighting can make process vectors of two
classes more distinguishable than the frequency
weighting. Therefore, a lower threshold value is
needed, and better false positive rate can be
achieved with the tf•idf weighting method.

4.3 Anomaly Detection Combined
with Signature Verification

We have just shown that the kNN classifier
algorithm can be implemented for effective
abnormality detection. The overall running
time of the kNN method is O(N), where N is
the number of processes in the training data set
(usually k is a small constant). When N is large,
this method could still be computationally
expensive for some real-time intrusion
detection systems. In order to detect attacks
more effectively, the kNN anomaly detection
can be easily integrated with signature
verification. The malicious program behavior
can be encoded into the training set of the
classifier. After carefully studying the 35 attack
instances within the seven-week DARPA
training data, we generated a data set of 19
intrusive processes. This intrusion data set
covers most attack types of the DARPA
training data. It includes the most clearly
malicious processes, including ejectexploit,
formatexploit, ffbexploit [16] and so on.

For the improved kNN algorithm, the training
data set includes 606 normal processes as well as
the 19 aforementioned intrusive processes. The
606 normal processes are the same as the ones in
subsection 4.2. Each new test process is

444

Use of K-Nearest Neighbor Classifier for Intrusion Detection

Yihua Liao and V. Rao Vemuri

Figure 2: Performance of the kNN classifier method expressed in ROC curves for the tf•idf weighting method.
False positive rate vs attack detection rate for k=5, 10 and 25.

compared to intrusive processes first. Whenever
there is a perfect match, i.e., the cosine
similarity is equal to 1.0, the new process is
labeled as intrusive behavior (one could also
check for near matches). Otherwise, the
abnormal detection procedure in Figure 1 is
performed. Due to the small amount of the
intrusive processes in the training data set, this
modification of the algorithm only causes minor
additional calculation for normal testing
processes.

The performance of the improved kNN
classifier algorithm was evaluated with 24
attacks within the two-week DARPA testing
audit data. The DARPA testing data contains
some known attacks as well as novel ones.
Some duplicate instances of the eject attack
were not included in the test data set. The false
positive rate was evaluated with the same 5285
testing normal processes as described in Section
4.2. Table 3 presents the the attack detection
accuracy for the tf•idf weighting (k=10 and
threshold = 0.8) and the frequency weighting
(k=15 and threshold = 0.99). For the tf•idf
weighting method, the false positive rate is
0.59% (31 false alarms) when the threshold is
adjustedto 0.8. For the frequency weighting, the
false positive rate remains at 0.87% with the
threshold of 0.99.

The two missed attack instances were a new
denial of service attack, called process table.They
matched with one of training normal processes
exactly, which made it impossible for the kNN
algorithm to detect. The process table attack was
implemented by establishing connections to the
telnet port of the victim machine every 4
seconds and exhausting its process table so that
no new process could be launched [16]. Since
this attack consists of abuse of a perfectly legal
action, it didn’t show any abnormality when we
analyzed individual processes. Characterized by
an unusually large number of connections
active on a particular port, this denial of service
attack, however, could be easily identified by
other intrusion detection methods. Among the

other 22 detected attacks, eight were captured
with signature verification for the tf•idf
weighting and two for the frequency weighting.

5. Discussion

The RSTCORP group [7] gave good
performance during the evaluation of the 1998
DARPABSM data [15]. A neural network was
trained for each program. Their Elman
recurrent neural networks were able to detect
77.3% of all intrusions with no false positives,
and 100% of all attacks with about 10% miss-
classified normal sessions. which means 40 to 50
false positive alarms for a typical simulation day
with 500 sessions. Their test data consisted of
139 normal sessions and 22 intrusive sessions.
Since different test data sets were used, it is
difficult to compare the performance of our
kNN classifier with that of the Elman networks.

Use of K-Nearest Neighbor Classifier for Intrusion Detection

445

Yihua Liao and V. Rao Vemuri

Figure 3: ROC curves for tf•idf weighting (k=10) and frequency weighting (k=15).

Table 3: Attack detection rate for DARPA testing data when anomaly detection is combined with signature
verification.

Attack Instances Detected Detection rate

Known attacks 16 16 100%

Novel attacks 8 6 75%

Total 24 22 91.7%

In spite of that, the kNN classifier avoids the
time-consuming training process, and, more
importantly, bypasses the need to learn
individual program profiles separately. Thus the
cost of learning program behavior is
significantly decreased.

Unlike the tf•idf weighting, the frequency-
weighting method assigns the number of
occurrences of a system call during the process
execution to a vector entry. Each process vector
does not carry any information on other
processes. A new training process could be
easily added to the training data set without
changing the weights of the existing training
samples. Therefore the frequency-weighting
method makes the kNN classifier method more
suitable for dynamic environments that requires
frequent updates of the training data.

In our current implementation, we used all the
system calls to represent program behavior. The
dimension of process vectors, and hence the
classification cost, can be further reduced by
only using the most influential system calls.

Our approach is predicated on the following
properties: the frequencies of system calls issued
by a program appear consistently across its
normal executions and unseen system calls will
beexecuted or unusual frequencies of the
invoked system calls will appear when the
program is exploited. We believe these
properties hold true for many programs.
However, if an intrusion does not reveal any
anomaly in the frequencies of system calls, our
method would miss it. For example, attacks that
consist of abuse of perfectly normal processes
such as process table would not be identified by
the kNN classifier.

With the kNN classifier method, each process is
classified when it terminates. We point out that
it could still be suitable for real-time intrusion
detection. Each intrusive attack is usually
conducted within one or more sessions, and
every session contains several processes. Since
the kNN classifier method monitors the

execution of each process, it is very likely that
an attack can be detected while it is in
operation. However, it is possible that an
attacker can avoid being detected by not letting
the process exit. Nonetheless, the kNN classifier
could be integrated with other methods [18] that
utilize the ordering information of system calls
for performance enhancement.

6. Conclusion

In this paper we have proposed a new algorithm
based on the k-Nearest Neighbor classifier
method for modeling program behavior in
intrusion detection. Our preliminary
experiments withthe 1998 DARPA BSM audit
data have shown that this approach is able to
effectively detect intrusive program behavior.
Compared to other methods using short system
call sequences, the kNN classifier doesn’t have
to build separate profiles of short system call
sequences for different programs, thus the
calculation involved with classifying new
program behavior is largely reduced. Our results
also show that the a low false positive rate can
be achieved. While this result may not hold
against a more sophisticated data set, text
categorization techniques appear to be well
applicable to the domain of intrusion detection.

Further research is in progress to investigate the
reliability and scaling properties of the kNN
classifier method. In particular, we are studying
the methods of selecting the most relevant
system calls for classification, and conducting
quantitative comparison between the kNN
classifier andother machine learning methods.
In addition, mixed modeling of program
behavior using both local ordering of system
calls and system call frequencies is another
direction of our future work.

7. Acknowledgment

We thank Dr. Marc Zissman of Lincoln
Laboratory at MIT for providing us the DARPA
training and testing data. This work is

446

Use of K-Nearest Neighbor Classifier for Intrusion Detection

Yihua Liao and V. Rao Vemuri

supported in part by the AFOSR grant F49620-
01-1-0327 to the Center for Digital Security of
the University of California, Davis.

Appendix

Text Categorization and K-Nearest
Neighbor Classifier

Text categorization is the process of grouping
text documents into one or more predefined
categories based on their content. A number of
statistical classification and machine learning
techniques have been applied to text
categorization, including regression models,
Bayesian classifiers, decision trees, nearest
neighbor classifiers, neural networks, and
support vector machines [12].

The first step in text categorization is to
transform documents, which typically are strings
of characters, into a representation suitable for
the learning algorithm and the classification
task. The most commonly used document
representation is the so-called vector space
model. In this model, each document is
represented by a vector of words. A word-by-
document matrix A is used for a collection of
documents, where each entry represents the
occurrence of a word in a document, i.e., A =
(ai j), where ai j is the weight of word i in
document j. There are several ways of
determining the weight ai j. Let fi j be the
frequency of word i in document j, N the
number of documents in the collection, M the
number of distinct words in the collection, and
ni the total number of times word i occurs in
the whole collection. The simplest approach is
Boolean weighting, which sets the weight ai j to
1 if the word occurs in the document and 0
otherwise. Another simple approach, frequency
weighting, uses the frequency of the word in the
document:

ai j = fi j (1)

A more common weighting approach is the so-
called tf•idf (term frequency - inverse document

frequency) weighting [17], which takes into
account the frequency of the word throughout
all documents in the collection along with the
fact that documents may be of different lengths:

(2)

For matrix A, the number of rows corresponds
to the number of words M in the document
collection. There could be hundreds of
thousands of different words. In order to reduce
the high dimensionality, stop-word (frequent
word that carries no information) removal,
word stemming (suffix removal) and additional
dimensionality reduction techniques, feature
selection or re-parameterization [12], are usually
employed.

To classify a class-unknown document vector X,
the k-Nearest Neighbor classifier algorithm
ranks the document’s neighbors among the
training document vectors, and uses the class
labels of the k most similar neighbors to predict
the class of the new document. The classes of
these neighbors are weighted using the
similarity of each neighbor to X, where
similarity is measuredby Euclidean distance or
the cosine value between two document
vectors. The cosine similarity is defined as
follows:

(3)

where X is the test document; Dj is the jth
training document; ti is a word shared by X and
Dj ; xi is the weight of word ti in X; di j is the
weight of word ti in document Dj ; =

is the norm of
X, and is the norm of Dj. A cutoff
threshold is needed to assign the new document
to a known class.

The kNN classifier is based on the assumption
that the classification of an instance is most
similar to the classification of other instances
that are nearby in the vector space. Compared

Use of K-Nearest Neighbor Classifier for Intrusion Detection

447

Yihua Liao and V. Rao Vemuri

to other text categorization methods such as
Bayesian classifier, kNN doesn’t rely on prior
probabilities, and it is computationally efficient.
The main computation is the sorting of training
documents in order to find the k nearest
neighbors for the test document. More
importantly, in a dynamic environment that
requires frequent additions to the training
document collection, incorporating newt
raining documents is easy for the kNN classifier.

References
[1] S. Axelsson, “Intrusion Detection Systems: A Survey and

Taxonomy”,
http://citeseer.nj.nec.com/axelsson00intrusion.html, 2000.

[2] V. N. P. Dao and V. R. Vemuri, “Computer Network
Intrusion Detection: A Comparison of Neural Networks
Methods”, Differential Equations and Dynamical Systems,
(Special Issue on Neural Networks, Part-2), vol.10, No.
1&2, 2002.

[3] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Logstaff,
“A Sense of Self for Unix process”, Proceedings of 1996
IEEE Symposium on Computer Security and Privacy, 120-
128, 1996.

[4] S. Forrest, S. A. Hofmeyr and A. Somayaji, “Computer
Immunology”, Communications of the ACM, Vol. 40, 88-
96, 1997.

[5] W. Lee, S. J. Stolfo and P. K. Chan, “Learning Patterns from
Unix Process Execution Traces for Intrusion Detection”,
Proceedings of AAAI97 Workshop on AI Methods in Fraud
and Risk Management, 50-56, 1997.

[6] C. Warrender, S. Forrest and B. Pearlmutter, “Detecting
Intrusions Using System Calls: Alternative Data Models”,
Proceedings of 1999 IEEE Symposium on Security and
Privacy, 133-145, 1999.

[7] A. K. Ghosh, A. Schwartzbard and A. M. Shatz, “Learning
Program Behavior Profiles for Intrusion Detection”,
Proceedings of 1st USENIX Workshop on Intrusion

Detection and Network Monitoring, Santa Clara, CA, April
1999.

[8] Y. Yang, “Expert Network: Effective and Efficient Learning
from Human Decisions in Text Categorization and
Retrieval”, Proceedings of 17th Annual International ACM
SIGIR Conference on Research and Development in
Information Retrieval (SIGIR’94), 13-22, 1994.

[9] C. Ko, G. Fink and K. Levitt, “Automated Detection of
Vulnerabilities in Privileged Programs by Execution
Monitoring”, Proceedings of 10th Annual Computer
Security Applications Conference, Orlando, FL, Dec, 134-
144, 1994.

[10] M. Asaka, T. Onabuta, T. Inoue, S. Okazawa and S. Goto,
“A New Intrusion Detection Method Based on
Discriminant Analysis”, IEEE TRANS. INF. & SYST., Vol.
E84-D, No. 5, 570-577, 2001.

[11] N. Ye, X. Li, Q. Chen S. M. Emran and M. Xu, “Probabilistic
Techniques for Intrusion Detection Based on Computer
Audit Data”, IEEE Trans. SMC-A, Vol. 31, No. 4, 266-274,
2001.

[12] K. Aas and L. Eikvil, Text Categorisation: A Survey,
http://citeseer.nj.nec.com/aas99text.html, 1999.

[13] MIT Lincoln Laboratory, http://www.ll.mit.edu/IST/ideval/.

[14] Sun Microsystems, SunShield Basic Security Module
Guide, 1995.

[15] R. Lippmann, D. Fried, I. Graf, J. Haines, K. Kendall, D.
McClung, D. Webber, S. Webster, D. Wyschograd, R.
Cunninghan and M. Zissan, “Evaluating Intrusion
Detection Systems: the 1998 DARPA off-line Intrusion
Detection Evaluation”, Proceedings of the DARPA
Information Survivability Conference and Exposition, IEEE
Computer SocietyPress, Los Alamitos, CA, 12-26, 2000.

[16] K. Kendall, “A Database of Computer Attacks for the
Evaluation of Intrusion Detection Systems”, Master’s
Thesis, Massachusetts Institute of Technology, 1998.

[17] J. T.-Y. Kwok, “Automatic Text Categorization Using
Support Vector Machine”, Proceedings of International
Conference on Neural Information Processing, 347-351,
1998.

[18] M. Damashek, “Gauging Similarity with n-Grams:
Language-Independent Categorization of Text”, Science,
Vol. 267, 843-848, Feb. 1995.

448

Use of K-Nearest Neighbor Classifier for Intrusion Detection

Yihua Liao and V. Rao Vemuri

