Cyber Analytics Service Constraints and Solutions

Tristan Vanderbruggen

CISC850 Cyber Analytics

Range of Internet Services

Monolithic

Until early 2000s Scaling: Larger computer Not reliable Weekly update => Debugging Hell

Java EE

Micro-services

Serverless Scales Low down time Emergence

What the really large players do:

<u>What I Wish I Had Known Before</u> <u>Scaling Uber to 1000 Services</u>

<u>Mastering Chaos - A Netflix</u> <u>Guide to Microservices</u>

CISC850 **Cyber Analytics** Middle Ground Solution **Edge Services** Platform (dispatch) (compute intensive) Web-based **User Interface Persistence Layer**

WebUI

- Static:
 - HTML
 - JavaScript
 - CSS
- Content:
 - REST API: edge services
 - Media: persistence layer
- Short lifecycle

Edge

- Implement: transaction logic
 - **REST API**
- Micro-services
 - Serverless: AWS Lambda
 - Lightweight: AWS Elastic Beanstalk
 - WSGI application (Flask)
- Short Lifecycle

Platform

- Compute hungry
 - Actual application
 - Independent tasks
 - Embarrassingly parallel
- Somewhat monolithic
 - Large code base
 - Many dependencies
- Long lifecycle

Persistence Layer

- Your data!
 - Relational Database
 - NoSQL Database
 - Key-value stores
 - Storage: AWS S3
 - Database: AWS DynamDB

Introduction to NoSQL - Martin Fowler

CISC850 **Cyber Analytics** Middle Ground Solution **Edge Services** Platform (dispatch) (compute intensive) Web-based **User Interface Persistence Layer**

CISC850 Cyber Analytics Cyber 20/20 Analytics Service **MySQL** AMP (homemade) **FCAS Backend FCAS Frontend** (EBS + Flask) (Electron) DynamoDB + S3

10

File Capture and Analysis Service

- Tightly coupled frontend and backend
 - Web-based UI: Electron
 - Presents analysis and prediction results
 - Use D3 to provide visual insights
 - REST server: Flask + MySQL
 - Dispatch analysis and prediction workload
 - Gather results in relational DB

FCAS Frontend

- Constraints
 - Controlled Environment
 - Visually Appealing

- Solutions
 - Electron
 - D3js

FCAS Backend

- Constraints
 - Deploy and Scale
 - Complex Queries
 - Short Lifecycle

- Solutions
 - Elastic Beanstalk
 - Relational Database
 - Python + Flask

Analysis and Machine Learning Platform

- Analyses files
 - Basic: crypto hash, strings, PE, ...
 - Bytes-Entropy Histograms
 - Reverse Engineering with Radare2
- Make predictions
 - DNN applied to various analysis results
 - DNN ensemble for consensus

=> Lots of dependencies <=

Analysis and Machine Learning Platform

- Analysis Tools
 - Independent
 - Lots of dependencies (Radare2, ssdeep, pefile, scipy, ...)
- Machine Learning (Theano + Scikit Learn)
 - Handle big data (training)
 - Fast inception (predictions)
- Glue code
 - receive workload
 - dispatch to subprocesses

Analysis and Machine Learning Platform

- Constraints
 - Highly scalable
 - Cheap
 - Reliable
 - Low latency

- Solutions
 - ASG + S3 + DynamoDB
 - SPOT instances
 - Simple Queue Service
 - Hard work !!!

