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What’s Malware 
•  Malware=Malicious software 
•  Software with malicious intent 

•  Different from software with bugs 
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Viruses 

•  Programs that attach themselves to another 
program to gain access to your machine 
•  Insertion phase is inserting itself into file 
•  Execution phase is performing some 

(possibly null) action 
•  May do nothing on your machine or may 

destroy all your files 
•  Seek to use your machine as a launching 

point to infect other machines 
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Worms 

•  Like a virus but they are self-contained 
programs (they don’t need a host) 

•  Copy themselves from from machine-to-
machine  

•  Scan for other vulnerable machines 
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Trojan Horse 
•  Program with an overt purpose (known to the 

user) and a covert purpose (not known to 
user)  
•  Often called a Trojan 
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Adware 

•  Some programs are “free” but they support 
their costs by sending ads to your machines 
•  E.g., Kazaa 
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Spyware (example) 

•  You download a music player 
•  The music player includes another program 

that is installed and running continuously 
•  This program records the websites you visit 

and send them to a database 
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How Bad is The Threat? (BAD!) 

•  Internet Security Emerging Threats List 
•  Hackers use Instant Messaging to Spread 

Viruses And Worms 
•  Phishing fraud is prevalent and 

sophisticated 
•  Viruses attack any mobile device 
•  Hackers target online banking accounts 
•  Internet crimes continue to go unreported 
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What is Malware Analysis? 

•  Taking malware apart to study it 
•  Static analysis  

•  Looking at malware internals 
•  NOT running 

•  Dynamic analysis 
•  Looking at malware behavior 
•  Running it and capture behavior 
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Program Analysis 
•  Given an executable, how do we find 

out what it does? 
•  Try to find the program online 

•  Analyze source code to find clues 
•  Search for the name of the program 

•  Perform source code review 
•  Execute the program in a sandbox 

•  Some programs can break out of a sandbox / 
jail 
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Program Compilation 

•  Compiler 
•  Translates HLL code to Assembly / ILL 

•  Assembler 
•  Translates Assembly code to machine language 

•  Linker 
•  Creates object code out of several modules 
•  A program usually makes library calls (stdio) 
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•  Statically Linked: All library code is part of the 
object code 

•  Dynamically Linked: Program calls library functions. 
(DLL) 

•  Stripping: Removes all human-readable symbols 
from object code. 
•  Combats reverse engineering. 

•  Packing with UPX, etc. 
•  upx.sourceforge.net 
•  Compresses source code (achieves ratios of 20% - 40%) 

Program Compilation 
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•  Static Analysis: 
•  Determine the type of executable 

•  ELF file in Unix 
•  Exe-type in Windows 

•  Symbol Extraction: 
•  Use a program like “strings” to find symbols 

left in object code 
•  Names give hints on program 
•  Will not work for stripped files 

Program Analysis 



CISC 849 : CyberAnalytics 

Static Program Analysis 
strings /bin/mkdir 
@(#) Copyright (c) 1983, 1992, 1993 

The Regents of the University of California.  All rights reserved. 

$FreeBSD: src/bin/mkdir/mkdir.c,v 1.26 2002/06/30 05:13:54 obrien 
Exp $ 

@(#)PROGRAM:mkdir  PROJECT:file_cmds-251 

m:pv 

invalid file mode: %s 

mkdir: created directory '%s' 

usage: mkdir [-pv] [-m mode] directory ... 
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Static Program Analysis 

•  Investigate source code 
•  Use Reversing Tools: 

•  Disassembler: 
•  Decodes binary machine code into a 

readable assembly language text 
•  IDA-Pro 
•  ILDasm (Microsoft .Net IL disassembler) 
•  RADARE2 
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Decompilers 
•  Attempt to produce a high-level 

language source-code-like 
representation from a binary 

•  Never completely possible because  
•  The compiler removes some 

information 
•  The compiler optimizes the code 

 

Static Program Analysis 
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•  Artifacts to look for: 
•  Names of functions  

•  Especially API functions 

•  Data strings 
•  Names of constant strings 
•  Names of directories 
•  Identification of compiler 

Static Program Analysis 
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Static Program Analysis 
•  Compilers generate different types of code for 

the same high-level language features 
•  Function Calls: 

•  Order in which parameters are pushed on stack 
•  Use of certain registers to pass variables 
•  Use of stack / registers to return a value 
•  Division of labor between callee and caller 
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Static Program Analysis 
•  This allows us to recognize the compiler 

with which an executable was created 
•  Programmers using assembly will not 

follow the same standards throughout 
the code  
•  Hence, we can recognize assembly writers 

as well 
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Break 
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Program Analysis 
•  Using disassembly: 
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Program Analysis 

•  Malware writers can use anti-reversing 
techniques 
•  Eliminate symbolic information 
•  Encrypt code 
•  Code obfuscation 

•  Make high level constructs difficult to 
understand 
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Program Analysis 
•  Anti-debugger Methods: 

•  Use the IsDebuggerPresent API to protect against 
user-level debuggers 

•  Use the NTQuerySystemInformation API to 
determine if a kernel debugger is attached to the 
system 

•  Set a trap flag and check whether it is still there 

•  A debugger would “swallow” it 
•  Put in bogus bytes over which the code jumps 

•  Does not work for all disassemblers 
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Anti-debugging using traps 
•  Set a trap flag and check whether it is still there 

•  A debugger would “swallow” it 
 

Note: A good explanation of what this means is found here (
http://leons.im/posts/anti-debug-with-trap-flag-register/).  Briefly, this means is that an 
application can set up a “trap” (also known as an “exception”) that must be handled 
during the execution of the program.  “An exception is an event that occurs during the 
execution of a program, and requires execution of code outside the normal flow of 
control.”[1]   

During normal execution, the exception can be set up to be “handled” in a way that 
execution of the code continues along one path of the code, allowing the program to 
proceed.  However during debug mode, “exceptions” or “traps” will not be “handled” 
and therefore execution will go down a different path of the code.  A malware writer 
can write their program so that it exits when execution goes down this different path.  
Thus, executing the program during normal versus debug mode can take two different 
paths and the malware writer can cause the program to exit when execution goes 
down the different debug path. 

[1] https://msdn.microsoft.com/en-us/library/windows/desktop/ms680657(v=vs.85).aspx 
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Packers 

Malware Infected host 
Executable 

Packer 

Payload 
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Packer functionalities 

•  Compress  
•  Encrypt (custom) 
•  Randomize (polymorphism) 
•  Anti-debug technique (fake jmps) 
•  Add junk code 
•  Anti-VM (next week!) 
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RADARE2 Tutorial 


