
CISC 849 : CyberAnalytics 

John Cavazos
Dept of Computer & Information Sciences

University of Delaware

“Cyber Analytics”
Malware and Static Analysis

Lecture 4



CISC 849 : CyberAnalytics 

What’s Malware 
•  Malware=Malicious software 
•  Software with malicious intent 

•  Different from software with bugs 



CISC 849 : CyberAnalytics 

Viruses 

•  Programs that attach themselves to another 
program to gain access to your machine 
•  Insertion phase is inserting itself into file 
•  Execution phase is performing some 

(possibly null) action 
•  May do nothing on your machine or may 

destroy all your files 
•  Seek to use your machine as a launching 

point to infect other machines 
 



CISC 849 : CyberAnalytics 

Worms 

•  Like a virus but they are self-contained 
programs (they don’t need a host) 

•  Copy themselves from from machine-to-
machine  

•  Scan for other vulnerable machines 



CISC 849 : CyberAnalytics 

Trojan Horse 
•  Program with an overt purpose (known to the 

user) and a covert purpose (not known to 
user)  
•  Often called a Trojan 

 



CISC 849 : CyberAnalytics 

Adware 

•  Some programs are “free” but they support 
their costs by sending ads to your machines 
•  E.g., Kazaa 



CISC 849 : CyberAnalytics 

Spyware (example) 

•  You download a music player 
•  The music player includes another program 

that is installed and running continuously 
•  This program records the websites you visit 

and send them to a database 



CISC 849 : CyberAnalytics 

How Bad is The Threat? (BAD!) 

•  Internet Security Emerging Threats List 
•  Hackers use Instant Messaging to Spread 

Viruses And Worms 
•  Phishing fraud is prevalent and 

sophisticated 
•  Viruses attack any mobile device 
•  Hackers target online banking accounts 
•  Internet crimes continue to go unreported 



CISC 849 : CyberAnalytics 

What is Malware Analysis? 

•  Taking malware apart to study it 
•  Static analysis  

•  Looking at malware internals 
•  NOT running 

•  Dynamic analysis 
•  Looking at malware behavior 
•  Running it and capture behavior 



CISC 849 : CyberAnalytics 

Program Analysis 
•  Given an executable, how do we find 

out what it does? 
•  Try to find the program online 

•  Analyze source code to find clues 
•  Search for the name of the program 

•  Perform source code review 
•  Execute the program in a sandbox 

•  Some programs can break out of a sandbox / 
jail 



CISC 849 : CyberAnalytics 

Program Compilation 

•  Compiler 
•  Translates HLL code to Assembly / ILL 

•  Assembler 
•  Translates Assembly code to machine language 

•  Linker 
•  Creates object code out of several modules 
•  A program usually makes library calls (stdio) 



CISC 849 : CyberAnalytics 

•  Statically Linked: All library code is part of the 
object code 

•  Dynamically Linked: Program calls library functions. 
(DLL) 

•  Stripping: Removes all human-readable symbols 
from object code. 
•  Combats reverse engineering. 

•  Packing with UPX, etc. 
•  upx.sourceforge.net 
•  Compresses source code (achieves ratios of 20% - 40%) 

Program Compilation 



CISC 849 : CyberAnalytics 

•  Static Analysis: 
•  Determine the type of executable 

•  ELF file in Unix 
•  Exe-type in Windows 

•  Symbol Extraction: 
•  Use a program like “strings” to find symbols 

left in object code 
•  Names give hints on program 
•  Will not work for stripped files 

Program Analysis 



CISC 849 : CyberAnalytics 

Static Program Analysis 
strings /bin/mkdir 
@(#) Copyright (c) 1983, 1992, 1993 

The Regents of the University of California.  All rights reserved. 

$FreeBSD: src/bin/mkdir/mkdir.c,v 1.26 2002/06/30 05:13:54 obrien 
Exp $ 

@(#)PROGRAM:mkdir  PROJECT:file_cmds-251 

m:pv 

invalid file mode: %s 

mkdir: created directory '%s' 

usage: mkdir [-pv] [-m mode] directory ... 



CISC 849 : CyberAnalytics 

Static Program Analysis 

•  Investigate source code 
•  Use Reversing Tools: 

•  Disassembler: 
•  Decodes binary machine code into a 

readable assembly language text 
•  IDA-Pro 
•  ILDasm (Microsoft .Net IL disassembler) 
•  RADARE2 



CISC 849 : CyberAnalytics 

Decompilers 
•  Attempt to produce a high-level 

language source-code-like 
representation from a binary 

•  Never completely possible because  
•  The compiler removes some 

information 
•  The compiler optimizes the code 

 

Static Program Analysis 



CISC 849 : CyberAnalytics 

•  Artifacts to look for: 
•  Names of functions  

•  Especially API functions 

•  Data strings 
•  Names of constant strings 
•  Names of directories 
•  Identification of compiler 

Static Program Analysis 



CISC 849 : CyberAnalytics 

Static Program Analysis 
•  Compilers generate different types of code for 

the same high-level language features 
•  Function Calls: 

•  Order in which parameters are pushed on stack 
•  Use of certain registers to pass variables 
•  Use of stack / registers to return a value 
•  Division of labor between callee and caller 



CISC 849 : CyberAnalytics 

Static Program Analysis 
•  This allows us to recognize the compiler 

with which an executable was created 
•  Programmers using assembly will not 

follow the same standards throughout 
the code  
•  Hence, we can recognize assembly writers 

as well 



CISC 849 : CyberAnalytics 

Break 



CISC 849 : CyberAnalytics 

Program Analysis 
•  Using disassembly: 



CISC 849 : CyberAnalytics 

Program Analysis 

•  Malware writers can use anti-reversing 
techniques 
•  Eliminate symbolic information 
•  Encrypt code 
•  Code obfuscation 

•  Make high level constructs difficult to 
understand 



CISC 849 : CyberAnalytics 

Program Analysis 
•  Anti-debugger Methods: 

•  Use the IsDebuggerPresent API to protect against 
user-level debuggers 

•  Use the NTQuerySystemInformation API to 
determine if a kernel debugger is attached to the 
system 

•  Set a trap flag and check whether it is still there 

•  A debugger would “swallow” it 
•  Put in bogus bytes over which the code jumps 

•  Does not work for all disassemblers 



CISC 849 : CyberAnalytics 

Anti-debugging using traps 
•  Set a trap flag and check whether it is still there 

•  A debugger would “swallow” it 
 

Note: A good explanation of what this means is found here (
http://leons.im/posts/anti-debug-with-trap-flag-register/).  Briefly, this means is that an 
application can set up a “trap” (also known as an “exception”) that must be handled 
during the execution of the program.  “An exception is an event that occurs during the 
execution of a program, and requires execution of code outside the normal flow of 
control.”[1]   

During normal execution, the exception can be set up to be “handled” in a way that 
execution of the code continues along one path of the code, allowing the program to 
proceed.  However during debug mode, “exceptions” or “traps” will not be “handled” 
and therefore execution will go down a different path of the code.  A malware writer 
can write their program so that it exits when execution goes down this different path.  
Thus, executing the program during normal versus debug mode can take two different 
paths and the malware writer can cause the program to exit when execution goes 
down the different debug path. 

[1] https://msdn.microsoft.com/en-us/library/windows/desktop/ms680657(v=vs.85).aspx 



CISC 849 : CyberAnalytics 

Packers 

Malware Infected host 
Executable 

Packer 

Payload 



CISC 849 : CyberAnalytics 

Packer functionalities 

•  Compress  
•  Encrypt (custom) 
•  Randomize (polymorphism) 
•  Anti-debug technique (fake jmps) 
•  Add junk code 
•  Anti-VM (next week!) 



CISC 849 : CyberAnalytics 

RADARE2 Tutorial 


