Predictive Modeling in a Polyhedral Optimization Space

Eunjung "EJ" Park¹, Louis-Noël Pouchet², John Cavazos¹, Albert Cohen³, and P. Sadayappan²

¹ University of Delaware
 ² The Ohio State University
 ³ ALCHEMY group, INRIA Saclay - Île-de-France

April 5th, 2011 IEEE/ACM Symposium on Code Generation and Optimization Chamonix, France

Do you want good performance?

- Optimizing loops is crucial!
- Difficulty on finding good loop optimizations
 - Complex interplay between hardware resources
 - Conflicts between optimization strategies
 - Large compiler optimization space
- Any Solutions?
 - Using iterative compilation
 - Using polyhedral framework

Why polyhedral framework?

- Advantages over standard compiler framework
 - Good expressiveness
 - Complex optimization sequences
 - Loop tiling of imperfectly nested loop
- Very large optimization space

Our Solution

Let's take advantages of **Polyhedral Framework** and **Iterative Compilation!**

Contributions of this paper

- Power of three approaches
 - Expressiveness from polyhedral framework
 - Performance prediction by machine learning
 - Iterative compilation
- Build prediction model for polyhedral optimization primitives
- Reduce number of evaluations, achieve good performance

Polyhedral Compiler Framework

Polyhedral Optimizations

Polyhedral Optimization Space

Finding Best Speedup is Hard

Prediction Model

- Model Description
- Building Model
 - Model Construction
 - Model Usage

Speedup Prediction Model


```
Building Model
```

Leave-one-out cross validation

```
for i-th program where i=1 to N
do
```

Train a model on N-1 programs excluding i-th program Test the model on the i-th program left out

done

Collect dynamic behavior for a program •

Performance Counters include total number of

- accesses and misses in all levels of cache and TLB
- stall cycles -
- vector instructions _
- issued instructions _

• Now do this for N-1 programs

• Run transformed programs, and get speedups

• Now do this for N-1 programs

Using Model

Experimental Configuration

- Hardware configuration
 - Nehalem
 - Intel Xeon E5620 2.4GHz, 2 sockets 4 cores, 16 H/W threads, L3 12MB
 - R900/Dunnington
 - Intel Xeon E7450 2.4GHz, 4 sockets 6 cores, 24 H/W threads, L3 12MB
- Software Configuration
 - Backend compiler: ICC
 - Baseline: ICC with –fast, single threaded (no auto-par)
 - Machine learning framework: Weka v3.6.2
 - Linear Regression/SVM (SMOReg)
 - Benchmark: PolyBench 2.0 (28 different kernels and applications)

- Performance of our model
- Our model versus random

- Shot = Evaluating optimization sequence
- Non-iterative fashion (1-shot model)

- Shot = Evaluating optimization sequence
- Non-iterative fashion (1-shot model)
- Iterative fashion
 - 2-shot model
 - 5-shot model

Sorted by Predicted Speedup

- Shot = Evaluating optimization sequence
- Non-iterative fashion (1-shot model)
- Iterative fashion
 - 2-shot model
 - 5-shot model

Sorted by Predicted Speedup

- Shot = Evaluating optimization sequence
- Non-iterative fashion (1-shot model)
- Iterative fashion
 - 2-shot model
 - 5-shot model

Sorted by Predicted Speedup

- Summary
 - With 5 iterations, we reached more than 80% of the space optimal!

	Nehalem		R900/Dunnington	
	LR	SVM	LR	SVM
1-shot	3.16x	3.27x	4.91x	3.77x
2-shot	3.16x	3.43x	4.92x	4.91x
5-shot	3.50x	4.68x	5.82x	6.60x

• Space Best vs. Poly vs. ICC

	Nehalem	R900/Dunnington	
SpaceBest	6.10x	8.04x	
Poly	2.13x	4.48x	
ICC	1.98x	3.38x	

Experiment 1: Nehalem 1-Shot

Experiment 1: Nehalem 2-Shot

Experiment 1: Nehalem 5-shot

Experiment 2: Our Model vs. random

• Random search discovers performance improvement

	Nehalem		R900/Dunnington	
	Random	Our Model	Random	Our Model
1-shot	1.61x	3.27x	2.14x	4.91x
2-shot	2.24x	3.43x	3.19x	4.92x
5-shot	3.32x	4.68x	3.99x	6.60x

• However, our model performs significantly better!

Conclusion

- Power of three approaches
 - Expressiveness from polyhedral framework
 - Performance prediction by machine learning
 - Iterative compilation
- Build prediction model for polyhedral optimization primitives
- Reduce number of evaluations, achieve good performance
 - More than 80% of search space optimal performance in 5 iterations
- Machine-independent algorithm but machine-dependent result (trained specifically on the target machine)
 - Performance portability is achieved

Predictive Modeling in a Polyhedral Optimization Space

Thank You!

