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Summary. A comprehensive overview of data flow frameworks and their charac-
terizing properties is presented, to clarify property definitions and demonstrate
their interrelation. Properties ensuring the existence of a solution are differentiat-
ed from those guaranteeing particular convergence behavior for specific solution
procedures. Examples illustrate the orthogonality of these precision and conver-
gence properties. In addition, several data flow problems are categorized with
respect to these properties.

Contents
Lintroduction . . . . . . . .. . . ... 122
2. Why do data flow analysis? . . , . . e e e e e e, 123
3. Dataflow frameworks . . . . . . .. . .. .. ... .. ... F 124
3.1. An example: reaching definitions . . . . . . . .. .. .. ... ... .. 124
3.2. Data flow frameworks: extensions and refinements . . . . . . . . . . . . . . 126
3.2.1. Abstract interpretation and data flow analysis . . . . . . . . . . . . . 128
4. Solutions and approximations . . . . . . . . .. . ... ... .. ... . 129
4.1 The equation set and solutionmethods . . . . . . . . . . ..., ... .. 129
42 8clutions. . . ... 130
4.3. Safety, acceptability, and approximating lattices . . . . . . . . . . . . . .. 132
S.Solutionprocedures. . . . . . .. ... 133
SLTheflowgraph . . . . . . . ... L 133
S2.Cycles . . L. oL 134
5.3. Iteration solution procedures . . . . . . . . . . ... . . ... ... .. 134
54. Elimination solution procedures . . . . . . . . . . . . . .. ... .. .. 135
5.5. Path algebra solution procedures . . . . . . . . . . .. ... .. ... . 136
56.Otherapproaches . . . . . . . . .. ... 137
56.L Othersolutionmethods . . . . . . . . . .. ... .. ... . ... 137
5.6.2. Data flow problems on derived representations . . . . . . . . . . . .. 138
6. Properties of data flow frameworks . . . . . . . . . . . ... .. ... . .. 139
6L Thesemilattice . . . . . . ... ... ... ... .. ... . ... . 139
62 Thefunctionspace . . . . . . .. .. . .. ... ... .. ... .. . 141
6.3. Other framework properties. . . . . . . . . . . . ... .. ... ... 147
6.3.1. Intraprocedural and interprocedural problems . . . . . . ., . . . . . . 147




122 T.J. Marlowe and B.G. Ryder
7.Complexityresults . . . . .. ... 149
Tl Irreducible flow graphs. . . . . . . .. .. .., ... ] 150
T2MOPand MFP, . . . . .. ... 150

8. Implications among flow framework properties . . . . . ., . .. ... ... . 151
8.1. Independence of algebraic and finiteness properties - examples . . . . . . ., 153
8.2. Algebraic properties and boundedness . . . . . . . ... .. .. . .. 155

9. Summary . ... 158
References. . . . ... .. ... ... ... ... .. 0o 159

1. Introduction

Data flow analysis algorithms gather facts about the use and definition of data,
and information about control and data dependencies in programs [2, 41, 52].
For example, given the program statement

Xw=y+z

o What definitions of y might have set the value of y used here?
® Where will the value of x computed here be used in the program?
® Does z always have the same value at this point in the program?

Each of these questions generalizes to a data Sflow problem asking for similar
information about all instances of all program variables.

Data flow frameworks are algebraic structures used to encode and solve
data flow problems. A data flow framework for a problem involves a flow
graph, a semilattice of values, and a set of functions from the semilattice to
itself. Properties of these components (e.g., reducibility of the flow graph, de-
scending chain condition on the semilattice, or monotonicity of the function
space) affect existence of an exact or approximate solution, applicability of meth-
ods for arriving at that solution, and complexity of the method used.

Our work provides an overview of data flow frameworks and the interrela-
tionships of their properties. Although several papers have discussed such frame-
works [11, 27, 39, 50, 72, 88] and defined or redefined properties, none have
had an overview as a principal aim. The contribution of our overview is to
explain the relationship between properties which have not previously been
compared in the data flow literature. We do so by specifying the model, reviewing
theoretical results and clarifying property definitions. We differentiate between
properties ensuring the existence of a solution and properties guaranteeing particu-
lar convergence criteria for various solution procedures, and give examples to
show that precision and convergence properties are essentially independent.

First, we review data flow frameworks and their properties. In Sect. 2, we
motivate the study of data flow and the use of frameworks. In Sect. 3, we give
a formal definition of a framework and illustrate it for the Reaching Definitions
pr'obllem, Sections 4 and 5 discuss solutions to data flow problems, and the
principal solution procedures: elimination, iteration, and path algebra, Section 6
then discusses properties affecting the existence and precision of a solution or
the speed of convergence. Section 7 reviews complexity results depending on
these properties. In Sect. 8, we present a new classification scheme for framework
properties and give examples.
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2. Why do data flow analysis?

Data flow analysis algorithms [41, 52] take a program’ as input, capture static
information (of a nature dependent on the particular problem), and return de-
rived information as a solution. Such algorithms are used to solve problems
in optimization [2, 9], verification [6, 27], debugging [96], testing [68], and
parallelization [13, 32, 37, 66], vectorization [4], and parallel programming
and environments [19, 36, 61, 80, 84]. They provide information about a pro-
gram or environment without executing the code.?

Naturally, it is impossible to determine the exact output of a program, or
the operation of an environment, without actual execution; this clearly subsun?es
the halting problem. Rather, data flow analysis uses static information to give
approximations, and to obtain only approximate solutions to some of the prob-
lems. Given a problem, a solution can err by overdetermination — allowing strong-
er conclusions that are actually valid, or underdetermination — failing to report
as strong or precise a conclusion as possible; we naturally prefer valid if imprecise
information, and most algorithms in use are guaranteed to generate such infor-
mation. Further, there is a sense in which it is possible to speak about a best
possible static solution (see Sect, 4),

Data flow analysis divides naturally into two domains: intraprocedural and
interprocedural. Other applications are at a still lower (¢.g., statement [27) or
higher (e.g, module, or parallel thread [84]) level. Techniques do not differ
greatly, but the objects manipulated are different, and the types of problems
and the incidence of structural properties may differ. Intraprocedural analysis
deals with the statements or basic blocks [2] of a single procedure and with
transfers of control between them; interprocedural analysis [7, 24] treats the
procedures of a program and their calling relationships.

Flow graphs provide a convenient model in both cases. The flow graph
is a labelled, directed multi-graph, consisting of a set of nodes (the basic blocks,
or the procedures), a set of arcs (transfers of control, or calls of procedure
bodies), and usually a distinguished start vertex p, corresponding to the initial
block of the program, or the procedure main, whose indegree is usually taken
to be zero.>* Nodes are invariably single-entry, and usually single-exit. There
may also be a distinguished terminal vertex. Information is attached as labels
to the nodes and/or arcs of the flow graph, Combining and manipulating infor-
mation requires interpreting the labels as elements of an algebraic structure;
the principal model uses functions on a semilattice.

A data flow solution assigns a value to each node®, which may be a set
of facts, a relation, or a set of assertions. A set of equations relates the assignment
at a given node to the values at other nodes, the labels of the nodes/edges,
additional information specified for the entry or exit node(s), and possibly some
global constants [78]. Labels represent local information, such as preserved
and generated definitions, The nodes u appearing in the equation for the solution

! Or procedure, module, software system, etc.
* Often called compile-time information
> But seen Rosen [43, 72, 73]
¢ Cousot and Cousot [27, 28] also use a flow graph for program verification, where nodes
are statements and edges transfers of control (one target for assignments and two for tests)
Isor proof of program correctness, and still other applications are possible

Or edge
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at a node v are almost invariably a subset of the neighbors of v; usually, they
are either the successors or predecessors of v in the flow graph.®

These systems of equations can be represented by a dependency graph, in
which there is an edge from node u to node v if node appears non-trivially
in the equation for v. Data flow problems can be classified as forward or back-
ward. In a forward problem, information and control (flow graph edges) flow
in the same direction, and the dependency graph and the flow graph are the
same; in a backward problem, information flows in a direction opposite control.
The dependency graph for a backward problem thus corresponds to the converse
graph of G, which is G with all the edges given reversed directions,

Solution methods seek a computable solution to this set of equations, usually
(in some sense) an extreme solution [27, 67].7 When an exact solution cannot
be computed, these methods will return an approximation. The interpretation
which can be given to the assignment returned by the solution method, its
accuracy, the complexity with which it can be found, and even the existence
of a solution or applicability of a method, all depend on properties of the frame-
work. For this reason, this paper presents an overview and codification of frame-
works, solution methods and properties.

3. Data flow frameworks

To facilitate discussion of extreme solutions and speed of convergence, data
flow problems are often formulated in an environment combining flow graph
structure with lattice properties.® This environment, first defined by Kildall [53],
and refined by Kam and Ullman [50, 517 and Graham and Wegman [39],
has the form of Fig, 3-1.

In the literature, D is usually called an instance of a data flow framework
or a data flow problem, and data flow Sframework is reserved for the pair {L, F).
We will use these terms interchangeably, for two reasons: first, because L and
F usually depend parametrically on program structure (the set of definitions
in a procedure, or procedures in a program, etc.), and second, because discussion
of the properties of frameworks requires consideration of G and M as well
as L and F.°

We will call M an edge transition Sunction or label function,

3.1. An example: Reaching definitions

The Reaching Definitions Problem is an intraprocedural data flow problem; a
given variable X may be defined in several basic blocks of the procedure, and
the interesting question is: Which of these definitions reach the entry to some
other basic block? This information could be used to answer the questions:

¢ In some cases, a subset of one or the other [43]

” Manna and Shamir [57, 58], however, give frameworks for which they claim the optimal
fixed point, which can often be computed but in general is not extreme, is the best solution

® For a more thorough review of lattices see [10,27}

® Also note that F may be given by a generating set S, whose closure under meets and
compositions (and closures) specifies F
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D={G,L,F, M), where

G=(V,E, H) is the flow graph,
where H =the entry node set
(usually H=p is the unique entry node
and the indegree of p is zero),

L=(4,0,1, £, A) is a meet semilattice, that is,
A is a set (often a power set),
0 and 1 are distinguished elements of 4,
= is a reflexive partial order,
and A is an operation meet
with the following properties:
A is commutative and associative
asbiffanb=a
ana=a
anbzga
anQ=0
arl=a
F is a class of functions
Fe{f: L—L}=1I"; F contains the identity function 1,
and usually the constant functions U and 1, and
is closed under composition and pointwise meet (that is,
Yf geF:fogeF
(where the notation f* represents iterated composition of
fand fO=y),
and, if h{x)=f(x) A g(x), then he F);
and M: E-F
(or M V- F by ignoring the source (or target) of the edge),
Ifp=(po,pss ..., p) is a pathin G
with e;=(p,.., p),
(if G is a multigraph, then there are source and target maps
s, t: E-» V'x V, and the criterion on e is
(sx g (e)=(pi-1, 0}
then M(A)=1 where 4 is the empty path
and M(p)=M(e,)o M(e,- )o...o M(e,)
for forward problems.
For backward problems the proper definition is
and M(p)=M(e,)s M(e;)o...- M{e,).

Fig. 3-1. Data flow framework definition

Which definitions of X reach a given use of X in an expression? Is X used
anywhere before it is defined?

A definition d of X in block B is downward-exposed if no other definition
of X occurs after d in B. A downward-exposed definition of X in block B’
reaches the entry of block B if there is a path from the exit of B' to B on
which no other definition of X occurs.

This leads to the following set of equations:

Reach(B)== U [Reach(B')n Pres(B)w Gen(B"]

B’'ePreds(B)

Reach(p)=2, 3.0

where Reach(B) is the set of definitions reaching the top of B, Pres(B) is the
set of definitions preserved through B (that is, not superseded by more recent
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definitions), and Gen(B) is the set of downward-exposed definitions generated
in B.

Reaching definitions is a forward problem; the flow graph G and the depen-
dency graph are the same. L is the power set lattice on the set of downward-
exposed definitions in the procedure (with the reversed order, meet is union,
1= and Q=the universal set of all downward-exposed definitions). The reverse
ordering is required to make the mest semilattice model fit, since the lattice
paradigm with meet corresponds naturally to “intersection” problems, in which
facts are falsified and discarded, rather than affirmed and inserted [147. F is
the set of functions {f(X)=X n AU B||4, BeL}; and M is the mapping assigning
to an edge (B, B') the function f(X)=X n Pres(B)u Gen(B).

We will see that it is significant that L is finite, and the functions of F
have certain nice properties: each feF is idempotent (fof =f), and “f distributes
through union”, f(4 U B)=f(4)uf (B). Also, M (e) does not depend on the tar-
get, but only on the source of ¢, so M could be viewed as defined on V alone,'®

3.2. Data flow frameworks: extensions and refinements

Many problems in the literature, like Reaching Definitions, were not originally
phrased as meet problems; we review the translation from join to meet problems.
Also, we consider “initial values” of frameworks, specified for entry or exit
nodes, and the way in which a framework defines a set of equations. Finally,
we consider approximating lattices.

Lartices and semilattices, meets and joins: Meet semilattices are by induction
closed under arbitrary (non-empty) finite meets, but need not be closed under
infinite meets or an empty meet of lattice elements, A% is by definition 1,
s0 a semilattice admits the empty meet if and only if it includes 1. Although
the definition of data flow framework in Sect. 3 included an element 1eL, this
is not required in general. The presence or absence of the 1 will principally
affect complexity. It is frequently possible to add an artificial 1 and retain the
properties of the framework. Also, as Rosen [72] points out, a semilattice with
1, closed under infinite meets, is in fact a lattice (take x v y= A {z:22x and
zzy}).

The use of meet is in some sense arbitrary; by duality [10], everything
could be phrased in terms of join semilattices instead. In a join semilattice,
references to “meet over all paths”, “maximum fixed point”, “greater solution”,
should be replaced respectively by “join over all paths™, “minimum fixed point”,
and “lesser solution”, and so on.

Alternatively, we can constrain the natural join to be the meet in a related
lattice. In a lattice with both 0 and 1, we can consider join as the meet in
the opposite order (X < opp Y iff YSX). Alternatively, in any lattice with a com-
plement-like involution ¢ (¢ is bijective, coc=1 and x<y implies c()) < e(x)),
such as a powerset lattice, one can always replace a join semilattice framework
solving for X by a meet semilattice for ¢(X), and subsequently recover X, For
these reasons, all semilattices henceforward will be meet semilattices unless other-
wise specified. -

'° Note however that if domain M is considered to be Vx V(rather than E), then the target
is used to decide if the value of M (v, w) is as specified (if there is an edge), or 1 (otherwise)
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In [28], Cousot and Cousot classify data flow frameworks by tuples formed
from (meet/join) x (forward/backward) x (max_solution/min_solution). Some al-
gorithms [90, 917 use different combinations of these triples in different phases.

Entry values: For a forward problem, we assign to p an initial value 5, the
facts true on entry to the program (facts true on exit from the exit vertices
if D is a backward problem). Often # will be 0 (no facts are true on entry).!*
If there is no unique start vertex, or the start vertex is on a cycle, the usual
linear programming trick of creating a supersource creates an acceptable p.
The same trick will if necessary create a unique exit vertex p', or sink. Rosen
[43, 72, 73] allows an entry-value function Ent: H — L assigning arbitrary values
on entry to vertices in the entry node set, which he allows to be greater than
just the singleton {p}.'* This simplifies unified treatment of forward and back-
ward problems (since a unique exit is not required in the standard framework),
and may permit more efficient interprocedural or incremental algorithms. How-
ever, since the resulting analysis is more complex, and since previous work
usually considered only single-entry flow graphs, we focus our attention on
that case.

It should also be noted that when H ={p}, there is a reasonable assumption
that all nodes in V are reachable from p. In the more general situation, the
assumption is rather that every node of V is reachable from some node of
the entry set H. Structured programming does not assume, however, that all
execution paths will reach an exit; errors and infinite loops are possible. Corre-
spondingly, not every node need reach an exit.

The equation set of D: We think of the framework as implying a system of
equations Q, parametrized by the nodes of the flow graph, whose terms involve
the values of an unknown function X: V=L and the values of M [78]. The
equations depend on whether the problem is forward or backward, on the initial
value #, and on interpretation, in particular, on whether information is being
evaluated at node entry or node exit. If iteration is used to solve the equations,
we also require an initial guess X,: Vs L. In many cases, the initial guess
will be 1 at non-entry nodes; it must be 7, usually 1 or 0, at p.'® For Reaching
Definitions, the initial guess X, is X ow)=1=g for all ve V. That is, no definition
reaches the entry node, and a definition reaches B only if we find a path on
which it reaches B.

The pair (Q, X,) is implicit in the framework; the set of possible values
for X, is restricted by the problem, and given X,, the system of equations
is determined. We consider the equation set and its relation to data flow probiem
solutions in Sect. 4.1.

Subobjects and approximations: The semilattice L may be contained in another
semilattice K as a subposet: if L=(A, 01,1, S0, AL and K= {B, 0, Ik,
Sk, Ax)then AS B and <, is the restriction of <k to A Then

XALYSXAgY,

so that meets in L approximate those in X, If in addition all K-meets of elements
in L are also in L, then the two meets are equal, and L is a subsemilattice

' Horwitz et al, [45] allow Qor}l
2 Rosen’s notation differs significantly from the notation used here
' More generally, X, o(0)= Ent(v) for all entry nodes v




128 T.J. Marlowe and B.G. Ryder

of K. A restriction to a (well-behaved) subposet or subsemilattice may be neces-
sary, as for type determination in Tenenbaum [91], or for aliasing in the presence
of pointers in Weihl [95]; or may be desirable solely to provide lower complexity
at the cost of a measure of accuracy [28]. In such approximating frameworks,
not only the underlying lattice, but the function space F and the assignment
M may also change [27].

There may be several approximating lattice models for a given problem.
Usually these are all subposets of a single natural (but intractable) semilattice;
occasionally, however, there may be no obvious natural lattice formulation.
In these cases there may seem to be several possible incompatible lattice formula-
tions, or no natural formulation at all, when the lattice itself will seem somewhat
of an artifice, as in Constant Propagation** (a meet semilattice problem) [18,
50, 94]. Cousot and Cousot [30] recover an optimal approximating framework
by formal techniques, which may not however be practicable. They also show
[28] how several data flow problems (including the checking of array bounds,
determining if variable values are positive or negative, and Constant Propaga-
tion) can be secen most naturally expressed as different sublattices of the same
original lattice of program assertions about the possible values of variables
of integer type.

In the same way that less precise information can be achieved more cheaply,
more precise information can sometimes be obtained with a concomitant
increase in complexity. Holley and Rosen [43] refine results for data flow by
combining two lattices on the flow graph; basically, one is the original data
flow problem lattice, and the other a lattice of sets of conditions which affect
when information will be passed along a flow graph edge. They term such
refinements qualified path problems; these obtain finer approximations to execu-
tion-time information flow even for the classical problems, but with a much
larger framework D'. In one of their two algorithms, the flow graph G’ is much
larger than G, in the other the framework (L, F') is larger.

3.2.1. Abstract interpretation and data flow analysis

Data flow frameworks as lattices of assertions: Since a data flow problem seeks
program information, the semilattice L will in general be embeddable as a subpo-
set of the lattice of possible program assertions about a program [28, 30].
The operations on frameworks can then be interpreted as operations on asser-
tions in an abstract semantics for the programming language. In the most general
context, the elements of L are partial (control, memory) states, the functions
of F are partial state transition functions, and a solution will report pravable
partial state information at each vertex of V. The meet in L is logical and'®;
the flow functions (M) will be the standard semantic flow functions.

This is a two-way transformation. We can consider symbolic execution in
a formal semantics as data flow in the lattice of program assertions (or of
(control, memory) states). However, this cannot discover all correct assertions

4 This problem consists of ascertaining for each program point, that set of variables which
have constant value at that point; it can be formulated as an intraprocedural or interprocedural
problem
5 Oror
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about run-time semantics, first, because of issues of computability, and second,
because an unbounded amount of information is needed. However, we can take
an approximating semantics, by “collapsing” or “abstracting” the set of {control,
memory) states into a manageable set of equivalence classes. In [48], for example,
collapsing includes ignoring the addresses of variables in memory, ignoring the
particular integer values stored in a variable, and collapsing multiple levels
of pointer reference.'$

However, the approximating semantics must reflect the underlying formal
semantics !7; this requires the states in the approximating semantics to form
a semilattice, and approximation to be a safe map (that is, approximating a
state and applying a transition function should give an approximate state which
is a safe estimate !® for the actual resulting state).

Determination of program properties by application of approximating
semantics is often called abstract interpretation [1, 56, 64, 75]; this approach
is formally (although not conceptually) equivalent to the algebraic framework
approach presented here.

4. Solutions and approximations
4.1. The equation set and solution methods

Solution procedures appear to divide into three principal classes. Two of these,
elimination and iteration, are based on the solution of the system of equations
Q for f. We briefly explain them here and consider them in greater detail in
Sect. 5.

The set of equations Y =Q(Y) for the values of a typical forward data flow
information function f defined on the nodes ve ¥ has a form similar to

Forward Problem — Information on Node Entry

X()= A {M(e){X(u): e=(u,v)eE}, 4.1

where each equation may also include a constant or node-dependent term
W(v)."® The set of equations for a forward problem with node exit information
is formally identical, save that entry information n and the initial guess X,
may differ.??

The corresponding systems for backward problems are the same as those
for forward problems on the converse graph:

Backward-Problem — Information on Node Exit

Y(uy= A {M{e)(Y(0)): e=(u, v)e E} 4.2)

Iteration is used by Kildall [53], Kam and Uliman [50, 517, Horwitz et al.
[45], Tarjan [86] and others. Iterative procedures begin with a “safe”

6 Somewhat as in [95]

17 Larus [55] notes an example where this does not occur

1% See Sect. 4.3

'® When M is considered a function on the nodes, then M((u, v)) will be equal to M(u) for
forward/entry problems

20 For M a node function, M ({u, v)) will be M (v)
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approximation®! X,, and repeatedly substitute current values into the right
side of each equation, assigning the resulting value ot the variable on the left.
If at some step the output is the same as the input, the algorithm has reached
a fixed point. A solution Y is a fixed point of the set of equations Q if and
only if for all vertices o,

Yo =[2(Y)1(?** 4.3)

A maximum fixed point MFP is a fixed point which is greater than or equal
to any other fixed point. Minimum fixed points can be defined similarly. Iteration
procedures differ in the order in which they evaluate equations, and whether
changed values are propagated immediately or after a group of evaluations.??

Elimination procedures [3, 39, 42, 897 are analogous to Gaussian elimination,
and use flow graph decomposition and reduction to derive ever smaller systems
of equations which can then be solved in a simple way. A survey of elimination
methods, stated for the classical problems, appears in [78]. Elimination methods
differ in the transformations they apply to move from one dependency graph/
equation set to the next, and in the conditions under which the transformations
will be applied. Such methods generally work effectively on a restricted class
of flow graphs.

The third solution method uses path algebra [72, 73, 88, 89]. The solution
procedure is strongly analogous to the procedure for solving for regular expres-
sions between all pairs of nodes in the labelled flow graph [44]. Its approach
is closer to elimination methods than iteration in flavor, but it does not necessari-
ly assume the existence of a lattice framework [88], and does not necessarily
give a solution to a set of equations.

4.2. Solutions

Compile-time solutions to run-time problems can only be precise up to symbolic
execution, that is, they can yield precise results under the assumption that all
paths in the flow graph are executable.2* In general, we will not even be able
to generate the most desirable compile-time information; issues of computability
and efficiency are involved (see Sect. 7). We can however discuss the solution
given by a solution procedure for a set of equations Q.

Solutions assign a value in L to each vertex veV, and are thus |V}-vectors
of semilattice points. For an assignment X: V- L to be valid, another evaluation

2! Namely, one guaranteed to be higher in the semilattice than the desired solution (lower
than for join semilattices)

32 In this definition, fixed points of Q are precisely solutions of the equation X = Q(X)

*3 An alternative formulation replaces equality in Eqs. 4.1 and 4.2 with < (with 2 for join
problems). Because iteration begins above the solution, and iterates to the maximum fixed
point, these two formulations, and a third, given by 5.1, Sect. 5.5, are equivalent for problems
solved in the lattice framework. We use the term fixed point of Q interchangeably for these
concepts '

** This is not quite correct. We may be able at compile time to determine that some paths
will not be executed [43, 941, and adjust the solution accordingly. We cannot, however, expect
to find all non-executable paths; this is equivalent to the halting problem
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of Q cannot result‘in information contradicting that in X, In particular, we
cannot receive new information about X at v from a neighbor, that is,

Y{u,v)eE: X(v)sM ((u, v)) X (u). 4.4)

The optimal solution in a data flow framework will be found if we can
capture precisely the information which would have flowed from p along each
possible path; the meet over all paths solution MOP [50] is given by:

MOP(w)= n {M(p)n|pe Paths(p, v)}

where Paths(p,v) is the set of paths from p to v. Thus a solution is valid,
or safe [397, if it is everywhere less than the MOP solution?$, or equivalently,

Xw)sMp)y (.5)

for every ve V and every path pe Paths(p, v).

For instance, a safe solution for the Available Expressions Problem*$ (a meet
problem) would report a subset of those expressions actually available at a
given flow graph node. A safe solution to the Reaching Definitions Problem
(a join problem) would include every definition in the true solution and possibly
some others. Since reporting that fewer expressions are available, or that more
definitions reach, may make some optimizations impossible but cannot suggest
invalid optimizations, this overestimate will result in fewer optimizations, but
cannot introduce an error. Similarly, for Constant Propagation, reporting fewer
variables constant than actually are may again cause some optimizations not
to be performed, but will not result in using inaccurate information,

However, the MOP solution is not obtainable for every problem [50], and
we can have arbitrarily bad safe solutions. Moreover, as we have indicated,
even if the MOP solution is available, it may be computationally prohibitive
to find. However, reasonable assumptions on a data flow framework will guaran-
tee the existence of ﬁ)ged points of Q; frequently, in fact, an MFP solution

A solutiop X of Q, a system of equations of form 4.3, is acceptable [39]
if and only if Afor all veV and all fixed points ¥ of Q, X (v)2 Y(v). Clearly
any such solution must be at least as large as the MFP solution, if it exists,

is the smallest acceptable solution and the MOP solution is the largest safe
solution. In general, the “larger” or “higher” a safe, acceptable solution is in
the semilattice, the better we will consider the solution (i.e., the more data flow
information it captures).

2 A “safe” initial approximation for iteration will not ordinarily be a safe solution, nor
conversely, For a meet semilattice, a safe approximation wil lie between Top and the MOP
§olution; a safe solution must (be or) lie below the MOP. For join semilattices, the situation
1s reversed. For Reaching Definitions, for example, a safe initial guess is that no definition
rgachgs any node, an underestimate of the solution; a safe solution must be an overestimate

8 This Intraprocedural data flow problem ascertains which binary expressions have the same
value at a program point as when they were last calculated on a path to that point [41]
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4.3. Safety, acceptability, and approximating lattices

Acceptability and safety refer to the current framework, and in particular to
the current F and M. If F or M is changed, and the fixed points of the new
equation set Q' become smaller than those of Q, then smaller, less accurate
assignments become acceptable. Conversely, if M or F is changed and fixed
points become larger, then the new MFP may be a more accurate assignment
than the original MFP. A change in F or M can affect not only the MFP
solution, but also the MOP solution, and the MOP solution is guaranteed to
be the most accurate not for the underlying problem but only for the given
framework D.

The goal in solving a data flow problem is to find a safe, maximal acceptable
approximation to the MOP solution. Ideally, of course, one would like to iterate
to the true solution, which we would like to be the MOP solution for the
semilattice. There are three problems: first, the true solution may not be express-
ible in the semilattice L; second, the true solution may not be a fixed point
of the set of equations; and third, iteration to the true solution may require
too much computation (or even an infinite amount). In Constant Propagation,
for example, the MOP solution is not reachable by iteration (the second case).

In general, even if the MOP solution is available, it need not be an optimal
solution to the original problem; some approximation may already have
occurred in translating into a semilattice framework, either because the original
problem may be impossible to formulate in a semilattice or path algebra frame-
work, or because the lattice or the function space for the original problem
may be difficult or expensive. In Aliasing?” [7, 8, 23, 95] and Type
Determination®® [91], the semilattice and equation set are only approximate.
In fact, no finite lattice can handle type or pointer information precisely; we
can get more accurate information in these cases by choosing a larger L with
finer granularity (more levels of indirection for pointers, in the first case above).

If the framework in which the solution was found was only approximate,
then it may be possible to refine the approximation further by plugging it into
the set of equations, or a derived set, and driving the value upward, toward
the MOP for the exact framework, through a fixed number of iterations2® [28],
or by apparently non-iterative methods [30, 91].

There are also problem transformations which preserve the MOP solution
but give different MFP results. In the two sets of equations for Constant Propa-
gation given in [51], the second mapping M gives a more precise approximation
to the MOP solution; essentially, it gives values on node exit rather than node
entry. In this example, G, L, and F remain the same, but the assignment M
and the entry information » are changed.

Data flow solution procedures ordinarily construct assignments which lie
between the MOP and MFP solutions (possibly for a transformed problem).
Further, taking code optimization as an example, an unsafe assignment will

*7 When two distinct symbols refer to the same storage location simultaneously during program
execution they are termed aliases

8 This data flow problem determines types of variables in implicitly typed programming
languages

0 If the approximation is above the MFP for the set of equations used, iteration with its
solution will not improve the value
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result in semantics-changing “optimizations”, while an unacceptable assignment
will ordinarily result in not performing valid and usually easily discovered opti-
mizations. Thus safety and acceptability seem to be relevant criteria. However,
even though an assignment is safe and acceptable, it has these properties with
respect to the current, not necessarily the original, set of equations; further,
it need not be a fixed point of the current or original system.

5. Solution procedures

Discussion of solution procedures requires consideration of the properties of
flow graphs. Most of the difficulty in solution is caused by the presence of
cycles in the flow graph. We look at how each of these methods achieves its
solution and handles cycles.

5.1. The flow graph

The key properties of flow graphs will be acyclicity, reducibility and nesting
depth. Most models and applications also require a unique start vertex of inde-
gree 0. Solution algorithms, and their analyses and complexities, may use the
depth-first spanning tree (DFST) of the flow graph (rooted at p), or dominators.3°

A reducible flow graph is one which can be reduced by a sequence of transfor-
mations in a particular class to the trivial graph; intuitively, it consits of a
nested set of single entry regions [78]. It can be shown that a rooted, directed
graph G is reducible if and only if the graph of Fig 5-1 is not contained in
G in the following sense: the edges represent node disjoint paths in G and
nodes a, b, ¢ and p are distinct {except that a and p may be the same) [921.
A graph is converse-reducible if its converse graph is reducible. In practice [41},
most program flow graphs are reducible.

O

l
Oa

Fig. 5-1. The canonical irreducible graph

Intuitively, the nesting depth®! of a graph is the program loop-nesting depth
and is a measure of complexity of both the program and its associated data
flow problems and their solutions.** Elimination algorithms in particular rely

3¢ Relative to p, u dominates v if every path from p to v passes through u

3% Or loop-connectivity parameter

32 The nesting depth appears to be bounded by a small constant for intraprocedural flow
graphs [54, 78]
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on a decomposition of the flow graph into intervals [3, 78, 85, 89]. Tarjan
intervals are essentially equivalent to program natural loops [2],%* and define
an interval dependency tree given by interval containment; the nesting depth
of a flow graph is equal to the depth of that tree. Once embedded intervals
are condensed, an interval is a union, not necessarily disjoint, of cycles passing
through the interval head node, which dominates its other nodes. Dominator
information is used more fully by some algorithms [20, 21, 70, 897 rather than
or in addition to the interval tree; the immediate dominator tree can be used
as an alternative to the interval dependency tree.

One other standard assumption for complexity analysis, justified both from
observations of real programs [54, 77, 78] and from structured programming
principles, is that the average out-degree of a flow graph node is constant,
that is, that the edge set has cardinality |E{=O(|V[).>*

5.2. Cycles

If all flow graphs were acyclic, then paths from p to v would form a finite
set of paths of bounded length, and the MOP solution A {M{p) ()| pe Paths(p, )}
could be computed accurately and efficiently, simply by following all such paths
and comparing the information obtained.®*

Once we have cycles, however, the set of paths is in general infinite, and
an exhaustive solution procedure, checking each path separately, has no hope
of success. Algebraic, finiteness, or closure properties must be used to compute,
or at least to estimate, the contribution of a cycle € to the solution; the three
families of solution procedures use these properties together with intelligent
evaluation order. This order is easier to find, and the resulting computations
simpler, when the flow graph is reducible.

The summarizing or approximation of the effect of zero or more passes
through an interval, is strictly analogous to the way in which information is
captured in program verification by loop invariants; this connection is explicit
in [27, 28, 29, 30].

5.3. Iteration solution procedures

For a set of equations Q, iteration toward a fixed point begins with a safe
initial guess, and proceeds by (1) simultaneously evaluating each equation with
the current values, determining new values for each unknown (. simple iteration ),
or (2) evaluating equations in a given order, each evaluation using the most-
recently derived values for each variable.?® The latter approach has scheduling
variants, including non-deterministic, nodelist, round-robin and worklist meth-

33 The outer interval containing p is acyclic

3* In intraprocedural contexts, some models, for example, in [86], explicitly require that no

node have outdegree greater than 2

%5 Even if none of the standard non-exhaustive procedures would find that value (see Sect. 7)

3¢ Cousot and Cousot [27, 29] show that such chaotic or asynchronous iterative algorithms
" behave properly (see also [67]). In [16], iterates are allowed to lie between the old value

(RHS of the equation) and the new (LHS)
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ods [41, 86]. Particularly useful is a round-robin method in which evaluation
order is driven by reverse postorder on the DFST of the flow graph.3?

Horwitz et al. [45] propose a priority queue algorithm, lowering complexity
in situations in which the acyclic outer portion of the flow graph is large. A
second version combines priority queue (topological) order on the strong compo-
nent condensation of the flow graph with round-robin iteration within compo-
nents. Finally, a hybrid algorithm performs at least as well as priority queue,
worklist or round-robin methods, to within a factor of 2, effectively by running
the two known efficient algorithms (round-robin and priority queue) in parallel,

For simultaneous evaluation, the results of the k& evaluation at v express
the effects of all paths of length k or smaller ending at v (beginning at v for
backwards problems). However graphs with cycles contain paths of arbitrary
length. Thus for simple iteration to succeed in ¢ steps there must be some way
to discount the effects of paths longer than ¢.38

3.4. Elimination solution procedures

Elimination algorithms are based on representing the solutions X (v), for some
subset of nodes, on values at a small number of other nodes, whose equations
are then transformed so as not to depend, even indirectly, on values for the
original set of nodes. Intuitively, this reduces the set of equations into two
smaller sets, one for the remaining nodes, in a form similar to the original
equations, the other, for the subset represented, involving only back substitution
once the solution for the smaller subset is known. The process can be driven
(and motivated) by Gaussian elimination using interval structure, dominators,
or graph transformations.

An elimination method is specified by the preconditions under which its
reductions hold, and the expansions which specify how the solutions for the
reduced graph and the intervals - the induced subgraphs, possibly with some
representative edges used to save needed information [21, 817 — should be
combined.? Some algorithms have variants specified (in the preconditions) by
the priority assigned to applicable transformations. A particular elimination
algorithm will succeed on the class of graphs it reduces to the trivial one-node
graph. For many elimination algorithms, this class is precisely the set of reducible
(and converse reducible) flow graphs,*°

A complementary view appears in [43]. A reduction summarizes the effect
of a set of paths from here to there by a label on a single (representative)
edge from here to there. The sets of paths to be summarized and the order
in which the reductions are performed are guided by the motivating structure
imposed on the problem. One such reduction or part of some reduction must
be able to summarize the contribution of one or more passes around a cycle
or through an interval. Once a solution is obtained for the final trivial graph,
the expansions then indicate how to derive the solutions for all nodes from
the solution for that final node,

31
8
4
40

Since reverse postorder is closely related to the interval structure of the flow graph
Chaotic iteration will also need such a mechanism

Note that these implicitly also encode the decomposition

Graham-Wegman elimination can accommodate irreducible graphs [39]

w W
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5.5. Path algebra solution procedures

Path algebra solution procedures are closely related to elimination and to regular
expression solution procedures. They also use a framework of graph, semilattice,
function space, assignment, and entry values, but in not quite the same way
as iteration or elimination methods. The difference is that not every path
(sequence of function applications) need contribute to the path algebra solution.
Because of this distinction, we will use the term context for the framework
of a path algebra problem.

One can thus pose problems in a given context which would not necessarily
be solvable by other methods in the equivalent framework; Tarjan [88] gives
an example due to Fong [38]. In the classical problems, a definition, expression
or use will be generated, preserved or killed in a node. Since killed can usually
be expressed in terms of generated and preserved, the classical problems can
be expressed neatly in terms of an equation set, as in Sect. 3.1, With set-valued
variables, however, it may be cheaper to reuse an expression even after an
incremental redefinition of one of its variables. Following Tarjan's terminology,
we call an expression injured if a subsequent use requires only a small modifica-
tion. Fong’s Incrementally Available Expressions Problem for a parameter n,
allows an expression to be available if it requires n or fewer incremental changes.
The path algebra solution is straightforward, but the problem apparently cannot
be posed naturally as a (semilattice) data flow framework, although it can be
posed in the formalism of Holley and Rosen [43] or Cousot and Cousot [30]
as a qualified path problem, or as a problem with a larger, more costly and
less natural framework.

Intuitively, path algebra procedures solve for the regular expression repre-
senting an appropriate set of paths, replacing at each stage the regular expression
values and operations

{4, edge e, concatenation, union, Kleene-star)
by
{1, M (e), composition (in reverse order), lattice meet, closure),

where closure handles cycles/intervals, essentially by taking the reflexive transit-
ive closure of the function on the cycle/interval (see Sect. 6.2).

For example, in solving Reaching Definitions by path algebra, we solve
for summary flow functions as for regular expressions, but we replace A by
the identity function i, preserving all definitions, e by the function defined by
the Pres and Gen labelling edge ¢, meet by union, and closure also by the
identity, since Reaching Definitions is rapid (see Sect. 6.2). For Bound Set, 4,
concatenation, and meet have similar definitions; e is replaced by the “lozenge”
operation with local bindings 4, M(e)(X)=X+A4uU A, and Kleene star (of a
sum of closed paths), by reflexive transitive closure of the corresponding binding
relation.

Rosen [73] shows that any data flow problem can be reduced to a path
algebra solution of a canonical context on the given graph. This context leads
to the Flow Cover Problem: find regular expressions representing the set of
paths between each pair of vertices in the graph.*! In the solution for Flow

*! For Flow Covers, iteration to the MOP solution may require infinite work, the third case
mentioned in Sect. 4.3
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Covers, one can then instantiate the values and operations for the particular
data flow problem, as compared to instantiating at each opportunity. One then
obtains a safe and acceptable approximation for the solution of the given prob-
lem. The Flow Cover Problem is thus a universal object for distributive data
flow.4?

Rosen’s data flow analysis algorithm uses these contexts and a graph decom-
position related to intervals. Tarjan’s general path algebra algorithm [89] is
an elimination-like algorithm which computes path expressions for the irreduc-
ible components of a flow graph — which are trivial if G or G” is reducible
~and combines these by applying reduction operators similar to those of Hecht
and Ullman {42] or Graham and Wegman [39].

Path algebra can handle some problems whose solution cannot be expressed
as the solution to a set of equations, because when not all paths are used,
paths of length (n+1) are not necessarily generated from paths of length n
by adding edges in a uniform manner. In these cases we cannot think of path
generation as iteration with a fixed function, and we cannot assume a unique
maximal fixed point which is also the solution of a set of equations, Thus,
fixed points are often defined*® by inequalities rather than equalities [43, 72,
881.4* ¥ will be a fixed point if it satisfies the inequalities

Y()sM(e) Y(w)
Y(h)S Ent(h)
forall heH and e=(uy,v)eE. 5.1)

5.6. Other approaches
5.6.1. Other solution methods

Reif and Tarjan [70] give an algorithm more like path algebra than iteration
or elimination, using dominators. It solves the classical problems with birth-
points, which capture summary information using auxiliary data values (such
as pseudo-assignments [82], additional defs and uses of the form x=x, which
allow information along multiple paths to be captured by a single (artificial)
piece of data at their junction), so that every programmer-specified use is reached
by exactly one definition of the given variable. Effectively, we obtain greater
information by extending the lattice (to include auxiliary information) and pro-
pagating this information. The algorithm is efficient but more imprecise than
path algebra algorithms. A number of subsequent articles (for example, [5, 33,
34, 69, 74, 94]) use birthpoints or related constructions in data flow algorithms,
for improved accuracy or efficiency. The solution procedure, once such data
structures have been introduced, may vary, but is often a variant of iteration,

2 Flow Covers is distributive, and for non-distributive problems will give a best distributive
approximation, For MFP solutions, however, the universal problem for non-distributive prob-
lems is Program Assertions [59]

#* As noted in Sect. 4.1, this definition of fixed point is compatible with the alternative defini-
tions in that section when a maximum fixed point is sought

** This definition also appears in the earlier literature, for example, in [39]
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In [79], a method is proposed for data flow using general attribute grammars;
itis related to both iteration and elimination, and may also need a loop-breaking
or closure transformation [67, 78]. Other general attribute grammar algorithms
(see for example [93]), using techniques similar to interval analysis or iteration,
can also be used for solution of data flow problems.

Finally, the PVT technique of Zadeck [97, 981, which uses graph and problem
information to bypass some evaluations (see Sect. 6.3) is applicable to a restricted
class of problems.

5.6.2. Data flow problems on derived representations

Not all data flow analysis is performed on the flow graph; various related graph
structures have been proposed to facilitate representation, computation and
use of data flow information. These include the binding graph {25, 26], the
program summary graph (PSG) [17, 40], and the program dependence graph (PDG)
[37, 46, 47, 65] and the interprocedural system dependence graph [497]. Such
structures are particularly useful in interprocedural analysis, parallelization, and
incremental data flow analysis.*> These structures are usually related to the
standard flow graph in well-understood ways:

L. Creation uses data flow information determined on the flow graph. The PSG
uses the call graph and intraprocedural reaching information. The PDG and
variants use ud and du chains [2]. Both rely on prior solution of the Alias
problem.

2. The structure breaks some edges or loops of the flow graph, where the depen-
dence is only apparent or can be summarized, or splits nodes. The binding
graph is constructed analogously to the flow graph, but a vertex representing
a procedure is split into vertices for each parameter, so that (immediate or
transitive) dependence between distinet formal parameters of a single procedure
will not report spurious loops. Zadeck’s construction also splits vertices. The
PDG breaks successor edges between statements which are neither control-
nor data-dependent. The PSG expands the-call graph, but replaces each (inter-
procedural) node with a highly condensed copy of the corresponding intraproce-
dural flow graph.

3, Conversely, other edges are added to summarize data flow on sequences
of edges. The PSG summarizes def-clear paths with edges. The PDG includes
data dependence edges, and the system dependence graph uses summary edges
like the characteristic edges of [71]. A similar construction is used on the PSG
by [401.46 The edges in the structure are classified. In the PDG, edges represent
either control- or data-dependence, and the data-dependence edges are typically
classified (for example, as true, anti, output, and as loop-carried or loop-indepen-
dent, and as forward or backward), and annotated (with direction, or loop-name,
etc.). The interprocedural edges and the summary edges in the system dependence
graph form two other classes. In the PSG, there are call and return edges,
as well as edges representing def-clear paths, and in [40], summary edges.

Once a structure has been constructed, properties and solution procedures are
analogous to those for the flow graph. Additional data flow information can

4% Zadeck’s PVT method can be viewed in a similar light
*¢ Compare also the representative edges of [21]
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be extracted by standard methods on the new graph. The advantage in uging
the derived structures arises because the split of nodes, and the deletion, addition,
and classification of edges, allow some data flow problems to be formulatffd,
initialized, or computed more efficiently, or allow inference of certain properties
(as for the binding graph or for Zadeck).

Other frameworks exist in which the lattice, rather than the flow graph,
is modified. These include the qualified flow problems of [43, 94] and the hybrid
algorithms of [60].

6. Properties of data flow frameworks

We have already indicated that not all data flow problems always can be solved
precisely and efficiently. Various properties of the framework, not just the flow
graph properties we mentioned in Sect. 5.1, will affect the existence and accuracy
of a solution, and the methods by which it can be obtained and their complexity.
Many such properties have been proposed, but definitions often vary, with both
different terms used for the same property, and the same term used for several,
often just slightly different, but sometimes completely independent, properties.
Further, although many of these properties have been discussed, nowhere are
the distinctions and implications clearly set down, with their effects on data
flow solution procedure complexity reviewed. Also, it is not always immediately
clear in the literature whether the properties being discussed are properties of
the semilattice or the function space (or the assignment, initial values or flow
graph). This section addresses these issues.

6.1. The semilattice

Just as the most easily handled flow graphs are those in which every path
is finite, the easiest semilattices are finite. Finite semilattices are closed under
arbitrary (non-empty) meets, but infinite semilattices need only be closed under
finite meets; we will say a semilattice L is closed®” if it is closed under arbitrary
non-empty meets, including infinite meets.

“Local finiteness” conditions will imply not only that L is closed, but that
every infinite meet is equal to a meet of only finitely many of its arguments.
We say a semilattice has the descending chain condition d.c.c. [10] if any descend-
ing chain*® of semilattice elements

X >Xy>
is finite.*® If L satisfies the d.c.c, then every meet A v, of elements of L is

% o %EA
equivalent to the meet of a finite subset. { A u,} forms a non-increasing
ful k=3

*7 Other terms in the literature are well-founded [35] and complete [88]; however, both of
these terms are also used for other properties

8 1e. a linear order

* There is an analogous ascending chain condition




140 T.J. Marlowe and B.G. Ryder

j r
chain; if A v, is not equal to the infinite meet, then there is a v, so that A
i=1 i=1
is strictly smaller. But by d.c.c., this process must eventually halt.

If, in addition, the length of chains with x, =5 is bounded by some function
of b, we say that L has finite height [417;%° if it is bounded by some constant
k independent of x,, then we say it has strictly finite height, and has height
k for the given value of k. For a semilattice with 1, L has finite height if and
only if it has strictly finite height; however, the natural numbers N (with less
than or equal to, <) form a semilattice with finite height which does not have
strictly finite height, and any larger ordinal, such as w+1=Nu {w}, is a semilat-
tice with d.c.c. but not finite height [10].

Closed Closed under arbitrary meets.

de.c. All descending chains are finite.

Height k Length of a descending chain is at most k.

Finite Height Length bounded by function of first element.

Strictly finite height Height k for some k.

Complete (With respect to a function space F): Evaluation takes F x  onto
L.

Fig. 6-1. Summary of notation for Sect. 6.1

Finally, we say that a lattice L is complete [50] with respect to a function
space F if and only if every element of L is f(0) for some feF. Graham and
Wegman [39] remark that, given G, F and M, L can always be taken to be
only the values actually reachable from 0; we can restrict to L, the set of points
expressible as /\ [M(p)](0), for finite sets of indices A, where each p, is a path

ied
in G starting at p. This subsemilattice is always closed under finite meets, but
need not be closed for infinite meets. In particular, some infinite sequence of
function iterates may not have a lower bound. Let C be a cycle and consider,
as usual, the set of paths corresponding to zero or more passes around C,

de.ec.

finite height
height k strictly finite height
height k-1

Fig, 6-2. Lattice local finiteness properties
59 Or is well-founded [11}
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{1, M(C), M(C|C), M(C|C|C), ...}. The meet of this infinite set of iterates need
not be in L even if it was in L. Similarly, F need not be closed, that is, the
meet of an infinite set of functions need not be in F. There is a tension between
the closure and completeness of L which corresponds to the tension between
the descriptive power and the ease of representation of functions in F. If L
has d.c.c., then all meets are finite, and these problems do not occur,

6.2. The function space

Most interesting properties are properties of F. The semilattice structure on
L induces a semilattice structure on F:

fSrg ifand onlyifforall xeL, f(x)S,g(x), and
h=fAg ifandonlyif h=max{j|j(x)Sf(x)Ag(x)VxeL}.

Thus the meet of f and g in F is always no larger than the pointwise meet
of f and g in L; our earlier definition and most applications require the meet
in F to be the pointwise meet. Further, we insist that F contain the identity
function 1, and the constant functions 0 and, if there is a 1L, T.

However, approximating semilattices and function spaces may not have
meets in F equal to pointwise meets. If the function space F is ap;)roximated
by a smaller space F', F' may not be closed under pointwise meet.’! But then
it is at least possible that some sequence of meets of iterates of a function
fare no longer be expressible in F’.

There are two main classes of function space properties. Most such properties
P are defined for individual functions feF; we will say F has P if each feF
does. Algebraic properties are morphism properties of F as a space of functions
on L considered as a poset, semilattice or closed semilattice.’* F is also closed
under composition, and meets of sequences of iterates of functions are particular-

w0
ly important, intuitively since if f=M(C) for a cycle C, A\ f! represents
i=0

“M(C*)”. Properties of meets of iterates divide into local finiteness and closure
properties. Local finiteness properties allow replacement of the infinite meet
of function iterates by a finite initial segment; closure properties allow capture
of summary information by an exact or approximate function even when the
meet of iterates does not necessarily truncate.

Algebraic properties
A function f is monotone if it is a poset morphism of L, that is, if
VfeFVx, yeL: xsy—f(x)sf (),

%! There are two separable issues here, F may be closed under pointwise meet but be repre-
sented by a generating set which is not. Rosen [72] claims that the sets of functions usually
specified for classical monotone data flow frameworks are not necessarily closed under pointwise
meet. Horwitz et al. [45] show that there may be efficiently expressible functions whose compo-
sition is not efficiently expressible, and thus that it may be more efficient not to compute
function compositions, but use only iterated application. Thus the functions explicitly specified
in a problem ~ which together with the lattice form the algebraic context - need not be
all the functions implicitly associated with the data flow framework

2 That is, maps in F preserve algebraic structure in L
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and anti-monotone if
VfeFVx, yeL: xSy-f(x)zf ()
Monotonicity is equivalent [41, 50] to

VieFYx, yeL: f(x ANSS(X)AS().
[ is distributive if

VfeFVx, yeL: f(x Ay)=Ff(x) A f(¥),

and continuous if f is a morphism of closed semilattices, that is, L is closed
under arbitrary (non-empty) meets and

VfeFY non-empty sets {x};.;SL: SIAX)= A fx)
iel

il

That is, monotone functions take chains in the domain to chains of images,
distributive functions take finite meets to meets, and continuous functions take
arbitrary meets to meets.>® Every continuous function is distributive, and every
distributive function is monotone, but not conversely.>* If each feF is monotone
(distributive, continuous), then so are the function space F and the data flow
problem D. Data flow problems with non-monotone function classes are not
usually considered.®*

monotone

distributive

continuous

Fig. 6-3. Algebraic properties of function spaces

I L is a lattice, we can also define anti-distributive and anti-continuous functions, which
take meets to joins

4 Howevqr, if F or L is finite, then distributive implies continuous, and if L is a chain,
monotone implies distributive
5 But see [15, 16], where anti-montone functions are considered at length

Properties of data flow frameworks 143

Local finiteness properties

Local finiteness properties of L imply pointwise finiteness for a function feF,
but not in general any uniform property [83]. If L has d.c.c,® then for each
k

feF and xeL, the sequence A\ fi(x) stabilizes at some iterate n(x), but the
=0 k
set of n(x) need not be bounded, in which case the sequence A S will not
stabilize. Thus F need not have d.c.c. =0 _
Conversely, even if L does not have d.c.c, F may be sufficiently restricted
that chains of iterates behave nicely. For feF, define

v
i=0

We say that F is bounded if for any feF the chain {f%} is finite, k-bounded
if the length of that chain is at most k (independent of f), and k-semibounded
for individual functions if for all x, yeL and rz k

1)z M) A f*).

k-boundedness is defined for functions in general; for monotone functions it
is equivalent to
fref;

k-boundedness implies k-semiboundedness which in turn implies (k+ I)-boun-
dedness [86, 88]. Call F uniformly bounded if it is k-bounded for some k. Semi-
boundedness (except for I-semiboundedness) does not appear to be important
in solving “unrestricted” problems, but Tarjan [88] shows it occurs naturally
in qualified path problems.

If L has height k, then F will be k-bounded, but the converse need not
hold. In particular, if L is a product lattice,

L=L;xLyx..xL,,
and F is a product of functions on the components,
F=F xFx..xF,

then the length of chains {f™} is bounded by the effective height of L=max
{height L,} [72]. If the L; and the F, are repeated identical factors, and each
of height r, then L will have height rp, but F will have height =the height
of L, =r=the effective height of L.

Fastness and rapidity: 2-boundedness and 1-semiboundedness are historically
important in data flow analysis. f is fast [39] if it is 2-bounded, that is, for
monotone functions, if

fefzfay

fastness is clearly related to idempotence, fof =, or weak idempotence, fofzf
Idempotence is a property of the functions in each of the four classical intraproce-
dural data flow problems: Reaching Definitions, Live Uses, Available and Very
Busy Expressions [11, 81]. Fastness justifies a “drop the term” loop-breaking
rule for elimination algorithms [67, 78].

*¢ Or even if L has finite height but does not have a 1 *
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J is (Kam-Ullman) rapid [50] if it is 1-semibounded; for monotone functions,
this is equivalent to

Vx, yeL: f()zyax A f(x).
Kam and Ullman’s original definition required
VS geFVxel: fg@zg(Q) A fMx);

- the two definitions are equivalent for complete lattices. If L has a 1 and F
is monotone, rapidity is equivalent to

vyel: fO)zyAf D)
k-boundedness implies that all contributions to the MFP occur prior to
the k-th iterate; k-semiboundedness that the contribution of that k-th iterate
is constant. Thus fastness implies that one pass around a cycle will summarize
its contribution; rapidity that the contribution of the cycle is independent of
the value at the cycle entry node.

Closure properties

Even if the chain {f™} is infinite, there may exist a computable meet, or a
good lower bound estimating the meet. Even the chain is finite, there may
exist a quicker method for computing the meet, or at least an approximation.

Fastness closures: For feF, f a1 is monotone, decreasing, and less than f, we
can use meets of its iterates to bound meets of iterates of f. Define f® =(f A 1)~ 1.
If F is monotone, f¥ <7, and if F is distributive they are equal. Graham
and Wegman [39] define the fastness closure Fow of f to be the last term £
in the decreasing chain {f"}. fiy is idempotent and therefore fast. If F is
uniformly bounded by k, then g exists (with no greater k), but Jow may exist
even if { /%} is infinite.

A different definition, essentially the following, is given by Rosen [72]. fx
is the first term f* less than all terms in the sequence {f™}; that is, f*Z ¥
for all k2 r. Again, for monotone F, it is sufficient that 72 £, 7; is not guaran-

T

rapidity idem.
Iastness
{k-1)-boundedness
(k-1)-semiboundedness
k-boundedness

uniform boundedness
boundedness

Fig. 6-4, Finiteness properties for function spaces
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teed to be fast, but exists whenever gy does, and the last “exponent” r for
Jx is no greater than that for fg. When f is distributive, they are equal. Hence-
forward, we will use f for fgy, and identify Rosen’s fastness closure by Jx.
Many of the results nonetheless hold for both fastness closures.

If f is monotone, then f A1, and therefore the fastness closure, has the same
fixed points as f. However, fastness closure is not a map of function spaces;
it does not distribute through meet or composition. Even though (feg) A 1=(f A
1}o(g A7), it will not in general be true that (fag)at=(fA1)A(g A1), nor that

- (fogl=s*og" the fastness closure of fog will not necessarily be fog, nor will

the closure of fAg be fag Thus the equivalence of fixed points buys less
than first appears, since successive or multiple cycles may not be handled precise-
ly. Also, there are data flow problems for which F does not have fastness clo-
sures; Cooper [23] gives a distributive (in fact, continuous) framework for Alias-
ing for which in general there are no fastness closures,

w o

Infinite limits: Let f*= A {f*}= A {f"} (by analogy with regular expressions),
i=0 i=0

if it exists. If the semilattice is not closed, or F is not continuous, f* need

not exist in F. f* is essentially the (reflexive) transitive closure of f. We could

also define an extension of the fastness closure, fz= /A {/®}. Since the £ and
i=0

the f® form descending chains, f* and f; are really limits of sequences of iterates

when they exist. If f* exists for all fe F, then so will fz=(f A 1)*, but the converse

need not hold. If f*= U1, then f* can be evaluated with O(r) meets and composi-

tions; if fg= =, then f can be computed with O(log, r) operations.

f* The k-th iterate of £
fw The meet of the first k—1 iterates of f; k/\l It
o

Al The (k—1)-st iterate of f A1, (f A ™!
T=Tew (The fastness closure) the finite limit of the descending chain f*
Te {The extended fastness closure) The limit, not necessarily finite, of £
Tr (The Rosen fastness closure)

The first term in {/™} which is a lower bound for {f},
r* (The reflexive transitive closure) The limit, not necessarily finite, of £
fe (A pseudotransitive closure}

An approximation to f* with certain nice properties
tg The Rosen rapidity parameter
k-bounded Iterates of f from k on don't change f!
k-semibounded Intuitively, f%* 112 f¥ A constant
Bounded Each feF is bounded for some k

Uniformly bounded Each feF is bounded for the same k

Fig, 6-5. Summary of notation for Sect. 6.2
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Approximations: A lower approximation S@ to f* is called a pseudotransitive
closure [72, 73, 88, 897 of fif

() f@(x)Sf (x)VxeL, i20, and

(i) if xe L is such that x < f(x) then XZf®(x).
Jz satisfies the definition, as does 7*, whenever they exist in F. In fact, f*is
the maximum such function.

Closures and approximating lattices: Fastness closures and pseudotransitive clo-
sures give ways of replacing the data flow problem D by another, D', frequently
with lower accuracy but better time complexity. In general, L and F are
unchanged, but M (and G) may be modified - this view treats closures as elimina-
tion operators. The solution for M may not have been obtainable in finite
time; M’ is guaranteed to be tractable.

A function £ is Rosen rapid with a parameter ¢4 if there is a pseudotransitive
closure of f computable with at most tq elementary operations (usually meets
and compositions) [72].°7 Again, F and% have transitive (f*) or pseudotransit-
ive (/@) closure, if the property holds for all feF. F and D are Rosen rapid
if each fin F is Rosen rapid for some single parameter . Data flow problems
with fastness closures give an example of a Rosen rapid framework, If the frame-
work is k-bounded, then J'=f® apnd tg=0(log, k); if f is distributive, then
J agrees with £* If f is fast, then T=fA1and tg=1

reflexive transitive closure
Ve

1
i
i
i

Graham-Wegman i
fastness closure i

"] " Rosen rapid

Rosen fastness closure i

extended fastness closure

pseudotransitive closure

Fig. 6-6. Closure properties for function spaces

Cousot and Cousot [27, 28] have an alternative approach. The effect of
cyclic flow in an interval is summarized and approximated by replacing flow
functions on some of its edges by widened flow functions, A widening operator
¥, a binary operator like Rosen’s spiral, @, is guaranteed to replace arbitrary

7 Rosen’s definitions of @ and rapidity differ slightly from, and are slightly more general
than, those given here. Rosen’s spiral operator @ is binary, where S @g approximates the
effect of zero or more cycles in the interval with function 8, followed by f
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descending chains of meets with finite chains, At least one edge of every cycle
must be widened. For reducible intervals, the flow functions on edges out of
interval head nodes are widened; otherwise, a cut set of the interval is chosen
at random. Since any sufficiently long path in an interval must use some simple
cycle more than any given number of times, the sequence of meets of values
seen at that point must stabilize, and so eventually must the flow within the
interval. We will not consider this approach further in this paper.

6.3. Other framework properties

Other framework properties relate to the representability or locality of the solu-
tion. A data flow problem is said to be bitvector [41] if L can be naturally
imbedded in a power set lattice (for example, the power set of definitions for
Reaching Definitions), so that each S in F operates separately on each element
of the underlying set. Bitvector problem lattices can be represented as lattices
on bit strings, and functions as standard boolean operations. The four classical
problems are usually presenied as bitvector problems,

A problem is partitionable [97, 98] if L is a product lattice and F acts
on L by acting meet-linearly on each factor separately (that is, on a given
factor, every function is constant, or a meet with a constant), In a partitionable
problem, graphs can be constructed for each factor problem in which the fixed
point can be computed in a single topological order graph traversal (however,
graph construction can be costly, and the number of factor problems can be
large).

The terms flow sensitive and Slow insensitive are often used to distinguish
among data flow problems; flow sensitive problems, intuitively, return results
which depend more heavily on the paths along which the information could
have come. One possible distinction for interprocedural problems is between
those affected by intraprocedural changes, and those not affected [12]. However,
there is no consensus as to the meaning of the terms, and most of the definitions
encountered in the literature appear to apply only to subclasses of problems,

6.3.1. Intraprocedural and interprocedural problems

Most data flow problems can be viewed either as set-theoretic problems, involv-
ing solution of a set-linear System of equations, or else as closure problems,
where the solution is a qualified closure of a relation. The classical problems,
and many other intraprocedural problems, are set-theoretic, while the standard
interprocedural problems, including Bound Set and Alias, are essentially closure
problems, but there are intraprocedural closure problems and interprocedural
set-theoretic problems, In general, interprocedural problems are harder than

lems, Interprocedural problems not only have to summarize intraprocedural
information, but their flow graphs can have parallel edges, corresponding to
multiple calls to the same procedure, and multiple-exit (but single-entry) nodes,
corresponding to different call sites within the calling procedure. Non-trivial
self-loops are also more common, Closure problems have more difficulty with
cycles, and usually need to maintain more information.
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Problems which cannot easily be expressed as either set-theoretic or closure
problems, such as Constant Propagation, tend to be even harder. Moreover,
the interprocedural form of any data flow problem is typically harder to solve
than the intraprocedural version of the same problem.

6.4. Framework properties of known problems

Reaching (the set of flow graph vertices reachable on paths from p), and its
converse, are graph connectivity problems definable in terms of the flow graph
alone (independent of the associated code); they are distributive and rapid. The
four classical intraprocedural problems do depend on the code, but are also
distributive and rapid. The semilattice in each case is a cross-product of power
sets, and the functions are set functions defined using union and intersection.

Reflexive Transitive Closure is closely, related to Reaching, but is not a union-
intersection problem [76]. The (Forward) Transitive Closure Problem assigns
to vertex v the set of all transitive closure edges ending at o. It is distributive
and fast but not rapid. A combination of the forward and backward problems,
followed by a single iteration “in place”, would then capture at v the set of
edges resulting from paths through o.

The Faint Variable Problem [45] is a set-valued problem; a definition
“d=(variable x, program point p)” is faint if it is never used or is used only
by faint definitions. This problem is distributive but not fast; in any given
instance it is k-bounded, where k depends on the loop structure and the length
of definition chains. Partially Available Expressions [62] is another set-valued
problem which is apparently not fast and possibly not distributive.

Constant Propagation is monotone but not distributive, and is fast.

Regular Expression Computation is definable in a framework. It is distributive
but not bounded, since it requires a closure (Kleene-*). The Flow Cover or
Path Expressions Problem for a given graph G is essentially equivalent to finding
Regular Expressions for the set of paths between each pair of vertices which
define the paths in the graph.

The interprocedural Bound Set Problem [11] is likewise distributive,’® In
a given instance it is k-bounded, where k depends on the length of the longest
simple calling chain and on orders of permutations of formal parameters induced
by a cyclic sequence of calls. Aliasing subsumes the Bound Set Problem. May-
Modify and Must-Preserve are interprocedural variants of Reaching; their com-
plexity is at least that of Bound Sets. Must-Be-Defined [7] on the other hand,
is (in the original sense of Banning [7]) flow-sensitive, and is monotone but
not distributive. Must-Be-Defined uses Bound Set implicitly, and must be at
least as complex.

Type Inference [91] and Aliasing With Pointers [22, 31, 95] are defined on
semilattices of infinite height, but solved on approximating lattices of finite
height; Type Inference is also not distributive. The Program Assertion ( Loop
Invariant) Problem [27] cannot be either bounded or distributive, since it sub-
sumes all data flow problems (on monotone frameworks), but is monotone,
since the stronger the precondition of a statement, the stronger the postcondition,

%8 In the absence of pointers, dynamic storage, and procedure variables. Larus [55] shows
that precise intraprocedural aliasing on dynamic structures with pointers, in which instances
of the same structure are distinguished, need not even be monotone!
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Conditional Constant Propagation [94] and Incrementally Available Expres-

" sions [38, 88] can be posed as Qualified Path Expression Problems, but are

not easily expressed as problems on the obvious framework [43, 88], Incremen-
tally Available Expressions is n-bounded, where # is the parameter in the defini-
tion.

Data flow problems not bounded a priori by a fixed k can have instances
with arbitrarily bad complexity. Myers [63] shows that May-Be-Modified is
NP-complete, and Interprocedural Available Expressions is co-NP-complete, in
the presence of aliasing, even without pointers of recursion, Weihl [95] shows
that solution of Procedure Parameters, that is, the actual procedures bound
to procedure variables by a sequence of calls, is P-space hard, even without
aliasing, procedure nesting, or “significant control flow™.

7. Complexity results

Algorithms for data flow problems may find an acceptable assignment X in
either of two distinct ways: either by working with flow functions, finding a
summary flow function which expresses the solution, and then applying it to
the given G and/or 7 to find the assignment, or by computing intermediate
values in L for the vertices of G and combining them to find X, Call the former
group function-based and the latter value-based [83]. Most iterative methods
are value-based, whereas Rosen's Flow Cover method [73] is function-based,
and path algebra methods in general are almost entirely function-based. Elimina-
tion methods can appear value-based for simple problems, although with some
function-based aspects; for more complicated problems, or when used incremen-
tally [21], their essentially function-based nature becomes clear.

Given a data flow problem in which L has the d.cc, or F is bounded,
value-based algorithms often find a suitable X in finite time, while function-based
algorithms may need stronger local finiteness properties on L or F. Further,
complexity arguments will require such properties.

Kildall [53] showed that if F is distributive and L has the d.c.c. (or if each
J&F is bounded), and the set of equations has form of 4.1, then iteration initia-
lized at a suitable point (0 at points without predecessors and 1 elsewhere)
converges in finite time to the MFP solution, which agrees with the MOP solu-
tion. In a semilattice without a 1, Kildall’s and subsequent results are still valid
if computation can be initialized at an upper bound [76].

Kam and Ullman [50] showed that in a distributive data flow framework
with Kam-Ullman rapid F, iteration using DFST evaluation requires at most
d+2 passes if L contains a 1, and at most d+3 passes otherwise (the extra
pass is used to construct an initial overestimate to the solution), where d is
the maximum number of DFST back edges on an acyclic path in G (essentially
the nesting depth of G).

If L has infinite chains, then distributivity is insufficient; Tarjan [88] shows
that continuity of F, or an essentially equivalent condition on chains of {1,
is required; if in addition F is k-bounded, the MOP solution can be computed
in time O(log, k).

Tarjan [78, 89] gives what essentially is an elimination algorithm for data
flow on a reducible flow graph with n nodes and m edges, using a stratified
path-compressed tree data structure [87] whose complexity is O(ma(m,n)
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(where « is the functional inverse of Ackermann’s function), given that a closure
operator /* (possibly the f@ of [88]) is available at cost O(1).

Wegman and Zadeck [947 give a set of algorithms for Constant Propagation,
with solutions of increasing precision, using ever more precise estimates of com-
pile-time path reachability, and constant values found by previous algorithms.
Most data flow problems, especially the more complex problems, have similar
families of algorithms of increasing precision and cost.

7.1. Irreducible flow graphs

Tarjan’s algorithm can be extended to cover irreducible graphs as follows, We
construct the immediate dominator tree, construct a derived graph using the
original flow graph and the tree, and find strong components in the derived
graph. These strong components capture irreducibility. The non-trivial strong
components are solved as regular expressions, and are represented by vertices
in a reduced and reducible graph, which is then solved by the previous algorithm.
The complexity is O(ma(m, n)-+b), where b is the sum of the lengths of the
path expressions for the irreducible components,

There are other methods for handling irreducible flow graphs. If iteration
works in a given function space, it will work regardless of whether the flow
graph is irreducible; only the applicability of particular efficient schemes and
the complexity of obtaining the answer may differ. Some elimination algorithms
[39] work for irreducible graphs, but with modifications which affect complexity.
Others [11, 81] use iteration on improper regions, minimal single-entry but not
necessarily strongly connected regions which contain the irreducible region. This
introduces a factor of r=the number of regions (intervals and improper regions)
into the complexity of computing the intervals, with additional cost for iteration,

When the set of equations Q admits a Gaussian-elimination-type solution,
this method will handle arbitrary flow graphs, although efficient schemes for
solution may no longer be applicable, One could also try to replace the frame-
work by an equivalent framework in which the flow graph was reducible. Node
splitting [417] does this, with a possibly substantial increase in the graph size,
and therefore complexity.

7.2. MOP and MFP

Kam and Ullman [50, 51] showed that iteration with an appropriate X, applied
to a monotone framework, will converge to the MFP solution.
They further showed

1. that different choices of M and # may have different MFP solutions, even
with the same MOP solution and, in fact, that different algorithms may find
the MOP solution for different classes of frameworks (compare Sect, 4.3); how-
ever,

2. that no algorithm will compute the MOP for all monotone data flow frame-
works (that is, for any algorithm, there is a flow graph for which the MOP
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solution is strictly greater than the MFP solution for the equation set);%° and,
further,
3. that finding the MOP is an undecidable problem.

Also, some choices of M' and may lead to MFP solutions less accurate than
that for M, but perhaps easier to compute. Pseudotransitive closures deal with
this problem. If L is not closed, a sequence of iterates need not have a greatest
lower bound, and f* may not be in F, However, an approximation for the
equation set may exist for which the sequence of iterates does have a MFP,
Further, even when F contains f*, use of an approximating f® may improve
the complexity of finding the MFP.

Frequently, f@ can be taken to be the closure S* in an approximating
data flow problem (with appropriate approximating semilattice I' or function
space F', or assignment M"); if M and 5 have not been changed, then f@ will
be less than or equal to the original S* [91]. Iteration (possibly using closures)
will reach f®, which will still give an acceptable solution for the original
problem.5° Use of 1@ will not always yield a fixed point, but the resulting
assignment will still be less than the original MOP solution, and usually less
than the original MFP solution as well.

Although algorithms such as Graham-Wegman elimination can easily find
the MFP for fast, monotone frameworks, neither iterative nor elimination algo-
rithms on data flow frameworks, nor path algebra without an oracle for the
closure relation, can solve exactly even every data flow problem, since by the
results of Kam and Ullman above, there are non-distributive frameworks which
for any algorithm have instances which either cannot be solved by that algo-
rithm, or yield an MFP strictly less than the MOP solution.! Thus no alternative
to data flow frameworks and path algebra will always give precise solutions.

8. Implications among flow framework properties

We extend the Venn diagram of Fig. 6-3 for algebraic properties in Fig. 8-1.
In Fig. 8-2, we give an implication diagram for finiteness and local closure prop-
erties. We have merged the lattice and function space finiteness diagrams; proper-
ties in italics are lattice properties, those in bold are function space properties.
We also show part of the interaction between algebraic and finiteness/closure
properties in Fig. 8-5, and summarize our problem classification results in Ta-
ble 8-1.

d.c.c. and algebraic properties: d.c.c. in L is sufficient to guarantee that distributi-
vity implies continuity in F, since every meet of values in L is equivalent to
a finite meet. Boundedness of F together with distributivity will also give exact
results for the MOP solution, at least for reducible flow graphs. (This can be
seen by considering elimination. The only infinite meets involve sequences of
iterates of functions representing flow around intervals, but these are equivalent
to finite meets by boundedness.)

*® 1f G has only a finite set of paths we can do better (see Sect. 5.2)

% Note that f* is like a reflexive transitive closure, so is an MFP of sorts. f@ can often
be considered the MFP in an approximation

! Note that such an algorithm would determine sharp loop invariants!
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monotone
distributive
: distributive =
continuous continuous

L or F has a finiteness
property

No finiteness property

Fig. 8-1. Algebraic properties of function spaces 2

Finiteness and closure properties: Since f* and fp are valid pseudotransitive
closures, f© will exist for a given feF if either of these does. When closures
J* exist for all feF, then so will the extended fastness closures fj, since these
are closures of f A 1. By definition, Rosen rapidity implies that /@ exists.

Boundedness implies f* exists, and the existence of fastness closures.
Existence of fastness closure fimplies f; exists. Graham-Wegman fastness closure
implies Rosen fastness closure, which in turn implies Rosen rapidity for the
given f.

Strictly finite height in L will imply uniform boundedness, since chains of
function values cannot be longer than arbitrary chains in L; in fact, height
k in L implies k-boundedness in F. As discussed above, (k— 1)-boundedness
implies (k— 1)-semiboundedness implies k-boundedness implies boundedness;
fastness is 2-boundedness, rapidity is 1-semiboundedness; and idempotence
implies fastness,

Thus the only finiteness and closure properties which can be independent
of the existence of a pseudotransitive closure operator are d.c.c. or finite height
in L. However, if value-based iteration is used to solve a framework in which
the lattice has d.c.c. (and the flow graph is finite), it reaches the MFP in finite
time, even though a pseudotransitive closure operator may not exist for all
of F. Let simultaneous iteration be applied to a safe initial guess X,. By induc-
tion, given a vertex v, the sequence of values X, (v) seen at a given vertex v
will be non-increasing. Further, until the MFP has been reached, some compo-
nent of X will change in each iteration. But since the value at v can decrease
only a finite number of times.

In Sect. 8.1, we give examples to show that there is no universal relationship
between algebraic and finiteness/closure properties. In fact, although non-mono-
tone functions are rarely of interest, the strongest of the finiteness properties,
rapidity, is no guarantee of the weakest of algebraic properties, monotonicity.
We show that given any pair of properties (in {rapid, fast, neither} x {distributive,
monotone, neither}, there is a small data flow framework with exactly that
pair of properties. Our examples are frameworks where L is a lattice with a
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1, and F contains functions 0, T, and the identity 1, and is closed under composi-
tion and pointwise meet. Since all of these lattices are finite, we have also shown
the same result for continuous function spaces.

Finally, we show that k—1 and k boundedness are distinct in each of the
algebraic classifications. Undoubtedly, similar examples could show (k—1)-
boundedness, (k- 1)-semiboundedness and k-boundedness are distinct in each
case, Figure 8-5 summarizes our conclusions.

8.1. Independence of algebraic and finiteness properties-examples

Examples of fast monotone and rapid distributive functions occur throughout
the literature, as do examples of monotone frameworks which are not fast.
The Flow Cover framework is continuous and therefore distributive, but not
bounded; in fact, the underlying lattice does not have the d.c.c. If F=the space
of all set maps from L to L for a sufficiently large lattice L, the resulting frame-
work will be neither monotone nor bounded.

We give examples of the other four possibilities below, with the following
conventions. We distinguish lattice elements Q and 1 from constant functions
by omitting underscores on the former and using overscores on the latter, and
we write a function f which takes a to b and ¢ to d as f(a, b)=(c,d). The
lattices and function space lattices are illustrated in Fig. 8-3.

Ex. 8.1: A rapid but non-monotone framework:

Let Ly={0,a,1} and F, ={1,0,T, (0,4, 1)=(1, 0, 1)}.
Then F, is rapid but f is not monotone.

Ex. 8.2: A fast but non-monotone framework:
Let L,={0,a,b,1} with a<b, and

F2= {1» 63 Lf(oy a, b, 1)=(0) b,a, 1)3
g(0,a,b,1)=(0, a,a, 1), h(0,a,b,1)=(0, b, b, 1)}

Then F, is fast but not rapid, and f is not monotone.
Ex. 8.3: A rapid and monotone, but not distributive, framework:
Let Ly={0, 4,b, 1}, with a and b in comparable, and

Fy={1,0,1,f(0,a,b,1)=(0,b,b,b),
g(0,a,b,1)=(0,4,a,a)}.

Then F, is rapid and monotone, but f{a A b)==1(a) Af (b), so F; is not distribu-
tive.
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height k-] mpidity\ / idempotence
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stricily finite heigh (k-1)-boundedness
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uniform boundedness
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reflexive transitive . -
closwre ~ (F*) fastness c!osur\(f )
Rosen fastnesgs ( f )
- closure \ R
extended fastness closures (fE) f Rosen rapid

pseudotransitive closure (f @)
Fig. 8-2, Finiteness and closure properties lattices and function spaces implication digraph

Except for Rosen rapidity and uniform boundedness, properties of F are
stated in terms of properties of feF. In general, f has a given property if F
does, and F has the property if every feF does. However, for Rosen rapidity,
the constant ¢, may not be global and uniform boundedness is a property
only of F.

L1 - L2 .1
. a > b

.0 . a

L)

L3 o1 L4 *1
/1IN

N AN

Y

Fig. 8-3. Lattices for Sect. 8.1
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Ex. 8.4: A fast and distributive, but not rapid, framework:
Let Ly={0,4,b,¢, 1}, with a, b and ¢ incomparable, and

F={1,0,1,7(0,4,b,c,1)=(0,b,¢,a, 1),
fr=fof,and g0, a,b, ¢, 1)=(0,0,0,0, 1)}.

Then F, is distributive and fast, but f(a) is not greater than or equal to aA 1,
so F, is not rapid.

The distinctions involving continuity cannot of course be illustrated with
finite lattices; we offer some easy infinite examples.

Ex. 8.5: Some examples from product lattices:

@K
a. In an infinite product lattice framework, with L= H L;, L will not have
i=1
d.ce. even if the factors are as simple as L;={0, 1} for all i; but F=the
set of all componentwise monotone functions on L (with factor lattice {0,1h)
will be rapid and continuous.

b. If F is restricted to F’ =(the functions T and 1 together with) the set of functions
which take any point with an infinite number of components 0 to 0, then
F' will be distributive but not continuous,

c. Similarly, if < L consists of elements of L which are almost everywhere
constant (only a finite number of 0 components, or only a finite number
of 1's), then I will not be closed, so that the set of all distributive functions
on L will not be continuous.

d. Letting L, be the lattice of Example 8.3, and I the elements of L which
are almost everywhere 0 or almost everywhere 1, the set of all distributive
functions is 2-bounded and not continuous. Further, there is a proper subset
of this class, spanned by the component functions

F={1,0,1,7(0,4,b,1)=(0,b,4,1),
8(0,a,b, 1)=(0,0,0, 1)},

which is fast but not rapid.

¢. Further, there are small lattices K so that the infinite product lattice all
of whose factors are K will have the space of monotone and the space of
distributive functions distinct.52

8.2. Algebraic properties and boundedness

We now give examples of small frameworks which are (k-+1)-bounded but not
-bounded; the lattices for these examples are illustrated in Fig. 8-4.

Ex. 8.6: Distributive, (k +2)-bounded but not (k1) bounded:

Given kz 1, let Ly ={0,x,,x,, .ovs X, 1}, with the linear ordering given by x;

- £X;41, and let F; be the space of monotone functions on L.

¢ Lattices in which meet does not distributive over join (and vice-versa), K can have as
few as five elements [10]
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Note f(0, %, x;, )=(0,0, %, 1, x,)e F; . Fy is distributive (since L, is a linear
order) and (k+2)-bounded since any (decreasing) chain {f%} of length k+2
reaches O or a fixed point, but f7* 1i(1)==x; £0=1*"1(1).

Ex. 8.7: Monotone, (k +2)-bounded but not (k +1) bounded:

L1 L2

Xk [ » yk * Zk
* Xy L ‘~2 E‘EYH‘ Z' %4
i

Fig. 8-4. Lattices for Sect. 8.2

Given k21, let L= {0, x;, v, 21, 1}¥=y, With ;. =y, A 2,, and likewise cycli-
cally.

Again take F, to be the space of all monotone functions on L,. Again,
F, is (k+2)-bounded and not (k+ 1)-bounded. Also, g(0, x,, ¥, 2;, Xi, Vi Zis 1)
=(0, X141, Vit 1> Z141> 1, 1, 1, 1) is in Fy, but is not distributive, since g(x; A yi)
=g(z,- )=z F 1 =g(x) A g(yy). (For k=1, non-distributivity still holds, but the
proof is different.)

Ex. 8.8: Non-monotene, (k + 2)-bounded but not (k + 1)-bounded:

Let Ly={0,xy, ..., x;, 1}, again with the linear order, and let F; be generated
by {1,0,T,8(0, %, %, )=(1,0,x;,_{, x)}. F; is not monotone. For each feF;
and xeLs, the set {f'(x)}i=o is invariant for rzk-+1, and thus F; is (k+2)-
bounded. However, gF* 1 (1)=0%x, = g** 1(1), so g is not (k+ 1)-bounded.
Although the properties of non-monotone functions are in general uninterest-
ing, the following may be useful. If / is anti-monotone and f ? is k-bounded,
then f will be 2k-bounded, since every iterate of £ will be larger than (f A 1) (f %)
For instance, the set-valued function (for X°=the complement of X) f(X)
=X‘nBuChas f?(X)=X ~BuC,and is 4-bounded without being monotone.

Reaches through problem: Most uniformly bounded problems in the data flow
literature are either fast, or are k-bounded for some k determined by the code.
We now give a problem, naturally expressible in a lattice framework, n-bounded
independent of code or flow graph. The (Forward) Reaches Through Problem
with parameter n returns for a vertex v the set of all paths of length at most
n ending at v, together with the set of all length n+1 subsequences of paths
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end@ng at v; _that is, each path of length greater than n will be represented
by its endpoints and each set of n—1 intermediate vertices. A definition of
RT, follows:

RT(v)=4 yo=p
=4u( |J M(eRT(W)
e , otherwise

where
M) X =eu {(w,u, v}: (w, W)e X} {(x, y,v), (x, 4, 0), (v, 4, 0): (x, y, W)EX}.

Note that RT, is a set, and not a multiset. We show RT, is distributive,
and is 3-bounded, but not 2-bounded.

For simplicity, consider a flow graph G with a unique cycle C through
a vertex v. {v,0,0)€RT;, and can only be a subsequence of a path containing
C|C. Thus two passes around C are needed to capture some information, so
RT; cannot be 2-bounded. On the other hand, given any element (w, u, v)e RT3 (1),
there must be some simple path (or simple cycle) from w to u, and likewise
from u and v. Thus every element of RT;(v) is a subsequence of some path
in G with no more than two cycles. Thus RT, is 3-bounded. Likewise, RT,
is n+ I-bounded, but not n-bounded.

Table 8-1 gives an overview of problems in our property classification,

manoione
distributive
continuous

rapid

fast
(k-1)-bounded
k-bounded

bounded

Fig. 8-5. Interaction of algebraic and local/finiteness/closure properties
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k-bounded  unif. bounded

rapid fast (k fixed) (k varies) unbounded
8.8
on- All Set Maps | All Set Maps
menotone 8.1 8.2 (if L has (L without
Complements| d.¢.c.) de.c)
Example
Conditional
8.7 Constant Lolgpadﬂms
Constant 85 Propagation i
monotong 8.3 Propagation .5e pavai
T{pe va Tylpe
infarence (k) Must Define inference
., 8.5¢
tAvail (i)
distributive 8.5b 8.5d Aliasing w/ Faint Vars Aliasing w!
Pointers (k) Pointers
interprocedural
Classical 8.4 8.6 Bound Set | Path
Problems Aliash Expressions
i AT May._FPres.
continuous AT 0 May Fres,
Reach 852 .

References in BOLD type are fo exampiles in Sects. 8.1 and 8.2;
those in  ftalics are to problems mentioned in Sect, 6.4.

Where a problem can be parametrized, (k? signifes the parameter;
where none Is given, the parameter is Infinite.

Table 8-1. Overview of problem classification

9. Summary

Semilattice frameworks are a general setting for the formulation and solut‘;on
of data flow problems, The framework is a 4-tuple: a flow graph, a semilatpce,
a class of functions, and a choice of particular defining equations (i.e., the assign-
ment map M). We have seen how properties of each of the tque el;ments
may affect the solution to the data flow problem defined in terms of its existence,
accuracy and cost. These solution factors may also be affected by the algorithm
chosen and/or by the approximation method/framework/closure selected.

To understand data flow analysis solution procedures, it is necessary to
understand clearly the formulation of these frameworks and the deﬁnition_ of
their properties. We have surveyed frameworks, solutioq methods and properties,
to provide a clear general overview of their interrelation. By comparing these
using a single underlying model of a data flow problem, we can understapd
the necessary interrelations of certain semilattice and function space properties
and distinguish between those assuring convergence and those guaranteeing
some complexity criteria. We have demonstrated through examples that there
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are several essentially independent dimensions of framework properties, a con-
clusion unachievable by mere inspection of previous results.

This study provides a solid foundation for further theoretical and practical
investigations of iteration and elimination as solution procedures; it is specifi-
cally directed at design of incremental update algorithms for fixed point iteration
{14, 76].
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