Register Allocation
via Graph Coloring

John Cavazos

University of Delaware

UNIVERSITY OF DELAWARE - COMPUTER & INFORMATION SCIENCES DEPARTMENT

The Memory Hierarchy

m Higher = smaller, faster, closer to CPU

registers |8 integer, 8 floating-point; 1-cycle latency
- 8K data & instructions; 2-cycle latency

- 512K; 7-cycle latency
% - 1GB; 100 cycle latency

) | Disk | 40 6B; 38,000,000 cycle latency (1)

UNIVERSITY OF DELAWARE - COMPUTER & INFORMATION SCIENCES DEPARTMENT 2

Managing the Memory Hierarchy

s Programmer view: only two levels of memory

= Main memory (stores & loads)
= Disk (file I/O)

= Two things maintain this abstraction:

= Hardware
= Moves data between memory and caches
= Compiler

= Moves data between memory and registers

UNIVERSITY OF DELAWARE - COMPUTER & INFORMATION SCIENCES DEPARTMENT 3

Overview

= Register Allocation
= Definition
= History
= Interference graphs
= Graph coloring
= Register spilling

UNIVERSITY OF DELAWARE - COMPUTER & INFORMATION SCIENCES DEPARTMENT

Register Allocation: Definition

= Register allocation assigns registers to values
= Candidate values:
= Variables
= Temporaries

= Large constants

= When needed, spill registers to memory

= Important low-level optimization
= Registers are 2x — 7x faster than cache

» Can lead to big performance improvements

UNIVERSITY OF DELAWARE - COMPUTER & INFORMATION SCIENCES DEPARTMENT

Register Allocation Example

= Consider this program with six variables:

a:=c+d
e:=a+b
f:=e-1

with the assumption that a and e die after use
s Variable a can be “reused” aftere:=a + b
s Same with variable e

» Can allocate a, e, and f all to one register (r,):
r =1, t 1y
=1ty

r1::r1—l

UNIVERSITY OF DELAWARE - COMPUTER & INFORMATION SCIENCES DEPARTMENT

Basic Register Allocation Idea

m [ariables t, and t, can share same register
if at any point in the program at most one of t,
ort, is lwe !

UNIVERSITY OF DELAWARE - COMPUTER & INFORMATION SCIENCES DEPARTMENT 7

Algorithm: Part |

= Compute live variables for each point

facfi— | SEbre |
{Cdf}_’ e:=d+f

/{C

{ce}—

+

e
-1

~—{b,c.e f}

(c f}W

b:=f+c

b—’/\

UNIVERSITY OF DELAWARE - COMPUTER & INFORMATION SCIENCES DEPARTMENT

Interference Graph

= Two variables live simultaneously

» Cannot be allocated in the same register

= Construct an interference graph (IG)
= Node for each variable
= Undirected edge between t, and t,

= If live simultaneously at some point in the program

= Two variables can be allocated to same register
it no edge connects them

UNIVERSITY OF DELAWARE - COMPUTER & INFORMATION SCIENCES DEPARTMENT

Interference Graph: Example

= For our example:

{b,cf} h
{a,c,f} f

{c,d f}

{c,de,f}

{ce} c
{b,ce,f}

{c.f} d

{b}

b and c cannot be in the same register
b and d can be in the same register

UNIVERSITY OF DELAWARE - COMPUTER & INFORMATION SCIENCES DEPARTMENT

Graph Coloring

= Graph coloring:

assignment of colors to nodes

= Nodes connected by edge have different colors

= Graph k-colorable =

can be colored with k colors

UNIVERSITY OF DELAWARE - COMPUTER & INFORMATION SCIENCES DEPARTMENT

—Register Allocation

Through Graph Coloring

= In our problem, colors = registers

= We need to assign colors (registers) to graph
nodes (variables)

= Let k = number of machine registers

m [f the IG 1s k-colorable, there’s a register
assignment that uses no more than k
registers

UNIVERSITY OF DELAWARE - COMPUTER & INFORMATION SCIENCES DEPARTMENT

Graph Coloring Example

= Consider the example IG
ar,

br'3

There is no coloring with fewer than 4 colors
There are 4-colorings of this graph

UNIVERSITY OF DELAWARE - COMPUTER & INFORMATION SCIENCES DEPARTMENT

Graph Coloring Example,
Continued

= Under this coloring the code becomes:

r‘2 = r‘ + r'4
ry = -r,
:: + r‘1

=

o

P3i=r3+r,
r=2*r,

r,:=r,-1

r3«=ryp+ry

/\

UNIVERSITY OF DELAWARE - COMPUTER & INFORMATION SCIENCES DEPARTMENT

Computing Graph Colorings

= How do we compute coloring for I1G?
= NP-hard!

= For given # of registers, coloring may not exist

m Solution

s Use heuristics

UNIVERSITY OF DELAWARE - COMPUTER & INFORMATION SCIENCES DEPARTMENT 15

Graph Coloring Algorithm (Chaitin)

while G cannot be k-colored
while graph G has node N with degree less than k
remove N and its edges from G and push N on a stack S
end while
it all nodes removed then graph is k-colorable

while stack S contains node N
add N to graph G and assign it a color from k colors
end while
else graph G cannot be colored with k colors
simplify graph G choosing node N to spill and remove node
(spill nodes chosen based number of definitions and uses)

end while
UNIVERSITY OF DELAWARE ¢+ COMPUTER & INFORMATION SCIENCES DEPARTMENT 16

Graph Coloring Heuristic

= Observation: “degree < k” rule

= Reduce graph:
= Pick node N with < k neighbors in IG
= Eliminate N and its edges from IG

= If the resulting graph has k-coloring,
so does the original graph

s Why?
= Letcy,...,c, be colors assigned to neighbors of t in
reduced graph

= Since n < k, we can pick some color for t different from
those of its neighbors

UNIVERSITY OF DELAWARE - COMPUTER & INFORMATION SCIENCES DEPARTMENT

—/Graph Coloring Heuristic,

Continued

m Heuristic:
= Pick node t with fewer than k neighbors
s Put t on a stack and remove it from the 1G

= Repeat until all nodes have been removed

= Start assigning colors to nodes on the stack
(starting with the last node added)

= At each step, pick color different from those
assigned to already-colored neighbors

UNIVERSITY OF DELAWARE - COMPUTER & INFORMATION SCIENCES DEPARTMENT

Graph Coloring Example (1)

m Start with the IG and with k = 4:

Stack
e L

m Remove 2

UNIVERSITY OF DELAWARE - COMPUTER & INFORMATION SCIENCES DEPARTMENT

Graph Coloring Example (1)

m Start with the IG and with k = 4:

Stack
e L
a

m Remove d

UNIVERSITY OF DELAWARE - COMPUTER & INFORMATION SCIENCES DEPARTMENT

pli}

Graph Coloring Example (2)

= Now all nodes have fewer than 4 neighbors and
can be removed: ¢, b, e, {

f

UNIVERSITY OF DELAWARE - COMPUTER & INFORMATION SCIENCES DEPARTMENT

21

Graph Coloring Example (2)

= Start assigning colors to: f, e, b, ¢, d, a

">

r3

UNIVERSITY OF DELAWARE - COMPUTER & INFORMATION SCIENCES DEPARTMENT

22

What if the Heuristic Fails?

= What if during simplification we get to a
state where all nodes have k or more
neighbors ?

= Example: try to find a 3-coloring of the IG:

UNIVERSITY OF DELAWARE - COMPUTER & INFORMATION SCIENCES DEPARTMENT

23

What if the Heuristic Fails?

= Remove a and get stuck (as shown below)
= Pick a node as a candidate for spilling

= Assume that f is picked

Stack

Eﬁ .

UNIVERSITY OF DELAWARE - COMPUTER & INFORMATION SCIENCES DEPARTMENT

24

What if the Heuristic Fails?

= Remove f and continue the simplification
= Optimistically push on stack

= Simplification now succeeds: b, d, e, c

<t

UNIVERSITY OF DELAWARE - COMPUTER & INFORMATION SCIENCES DEPARTMENT

25

What if the Heuristic Fails?

= During assignment phase, we get to the point when
we have to assign a color to

= Hope: among the 4 neighbors of f,
we use less than 3 colors = optimistic coloring

5 M3

r3

UNIVERSITY OF DELAWARE - COMPUTER & INFORMATION SCIENCES DEPARTMENT

26

Spilling

= Optimistic coloring failed = must spill variable £

= Allocate memory location as home of

= Typically in current stack frame
= Call this address fa

= Before each operation that uses f, insert
f:=load fa

= After each operation that defines f, insert
store f, fa

UNIVERSITY OF DELAWARE - COMPUTER & INFORMATION SCIENCES DEPARTMENT

27

Spilling, Continued

= Additional spills might be required before

coloring 1s found

= Tricky part: deciding what to spill

= Possible heuristics:
= Spill variables with most conflicts
= Spill variables with few definitions and uses
= Avoid spilling in inner loops

s All are “correct”

UNIVERSITY OF DELAWARE - COMPUTER & INFORMATION SCIENCES DEPARTMENT

28

Conclusion

= Register allocation: “must have” optimization
in most compilers:

= Intermediate code uses too many temporaries

= Makes a big difference in performance

= Graph coloring:

= Powertful register allocation scheme

UNIVERSITY OF DELAWARE - COMPUTER & INFORMATION SCIENCES DEPARTMENT 29

