

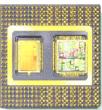
Register Allocation via Graph Coloring

John Cavazos

University of Delaware

The Memory Hierarchy

Higher = smaller, faster, closer to CPU



registers

8 integer, 8 floating-point; 1-cycle latency

L1 cache

8K data & instructions; 2-cycle latency

L2 cache

512K; 7-cycle latency

RAM

1GB; 100 cycle latency

Disk

40 GB; 38,000,000 cycle latency (!)

Managing the Memory Hierarchy

- Programmer view: only two levels of memory
 - Main memory (stores & loads)
 - Disk (file I/O)
- Two things maintain this abstraction:
 - Hardware
 - Moves data between memory and caches
 - Compiler
 - Moves data between memory and registers

Overview

- Introduction
- Register Allocation
 - Definition
 - History
 - Interference graphs
 - Graph coloring
 - Register spilling

Register Allocation: Definition

- Register allocation assigns registers to values
 - Candidate values:
 - Variables
 - Temporaries
 - Large constants
 - When needed, **spill** registers to memory
- Important low-level optimization
 - Registers are 2x 7x faster than cache
 - > Can lead to big performance improvements

Register Allocation Example

Consider this program with six variables:

$$a := c + d$$

 $e := a + b$
 $f := e - 1$

with the assumption that a and e die after use

- Variable a can be "reused" after e := a + b
- Same with variable e
- > Can allocate a, e, and f all to one register (r_1) :

$$r_1 := r_2 + r_3$$

 $r_1 := r_1 + r_4$
 $r_1 := r_1 - 1$

Basic Register Allocation Idea

■ Variables t₁ and t₂ can share same register if at any point in the program at most one of t₁ or t₂ is live!

Algorithm: Part I

Compute live variables for each point:

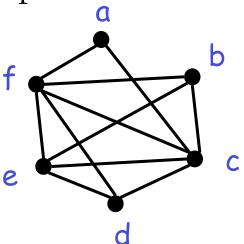


Interference Graph

- Two variables live simultaneously
 - Cannot be allocated in the same register
- Construct an interference graph (IG)
 - Node for each variable
 - Undirected edge between t₁ and t₂
 - If live simultaneously at some point in the program
- Two variables can be allocated to same register if no edge connects them

Interference Graph: Example

• For our example:



b and c cannot be in the same register
b and d can be in the same register

Graph Coloring

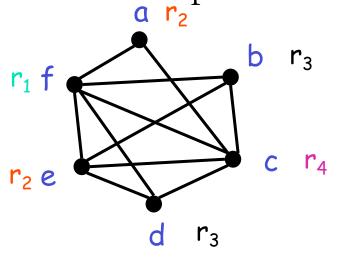
- Graph coloring:
 assignment of colors to nodes
 - Nodes connected by edge have different colors
- Graph k-colorable =
 can be colored with k colors

Register Allocation Through Graph Coloring

- In our problem, colors = registers
 - We need to assign colors (registers) to graph nodes (variables)
 - Let k = number of machine registers
- If the IG is k-colorable, there's a register assignment that uses no more than k registers

Graph Coloring Example

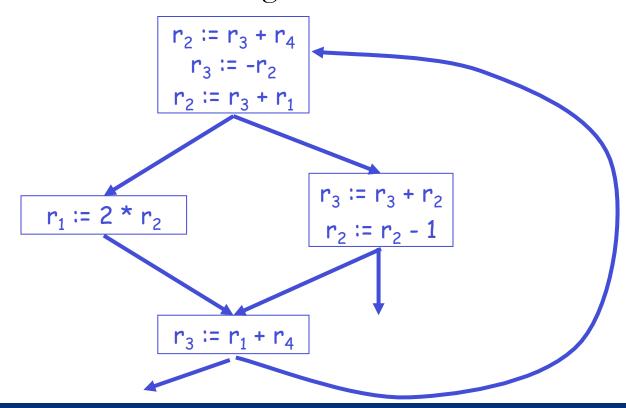
• Consider the example IG



There is no coloring with fewer than 4 colors
There are 4-colorings of this graph

Graph Coloring Example, Continued

• Under this coloring the code becomes:



Computing Graph Colorings

- How do we compute coloring for IG?
 - NP-hard!
 - For given # of registers, coloring may not exist
- Solution
 - Use heuristics

Graph Coloring Algorithm (Chaitin)

while G cannot be k-colored while graph G has node N with degree less than k remove N and its edges from G and push N on a stack S end while if all nodes removed then graph is k-colorable while stack S contains node N add N to graph G and assign it a color from k colors end while else graph G cannot be colored with k colors simplify graph G choosing node N to spill and remove node (spill nodes chosen based number of definitions and uses) end while

Graph Coloring Heuristic

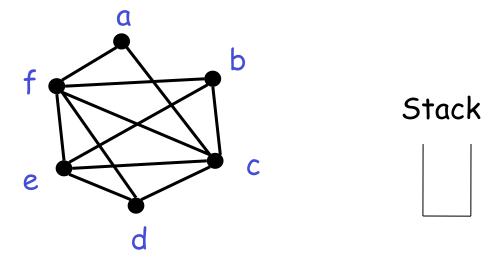
- Observation: "degree < k" rule
 - Reduce graph:
 - Pick node N with < k neighbors in IG
 - Eliminate N and its edges from IG
 - If the resulting graph has k-coloring, so does the original graph
- Why?
 - Let c₁,...,c_n be colors assigned to neighbors of t in reduced graph
 - Since n < k, we can pick some color for t different from those of its neighbors

Graph Coloring Heuristic, Continued

- Heuristic:
 - Pick node t with fewer than k neighbors
 - Put t on a stack and remove it from the IG
 - Repeat until all nodes have been removed
- Start assigning colors to nodes on the stack (starting with the last node added)
 - At each step, pick color different from those assigned to already-colored neighbors

Graph Coloring Example (I)

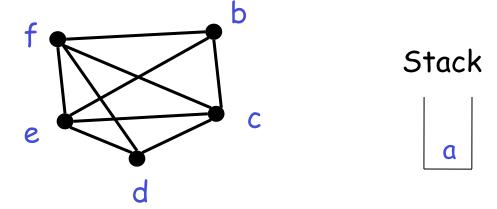
• Start with the IG and with k = 4:



Remove a

Graph Coloring Example (I)

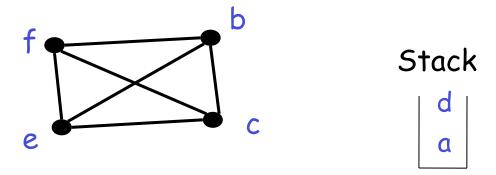
• Start with the IG and with k = 4:



Remove d

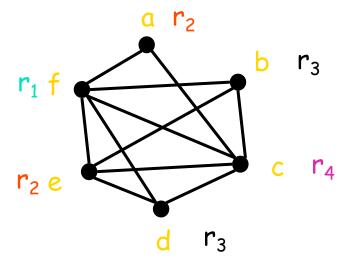
Graph Coloring Example (2)

Now all nodes have fewer than 4 neighbors and can be removed: c, b, e, f

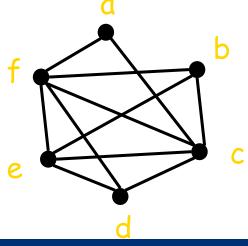


Graph Coloring Example (2)

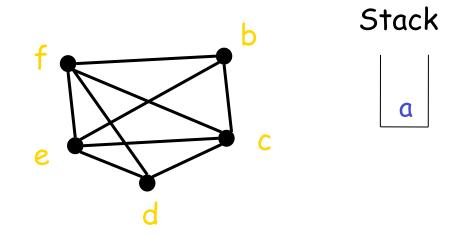
Start assigning colors to: f, e, b, c, d, a



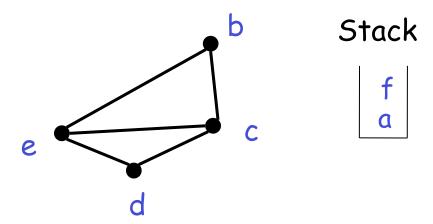
- What if during simplification we get to a state where all nodes have k or more neighbors?
- Example: try to find a 3-coloring of the IG:



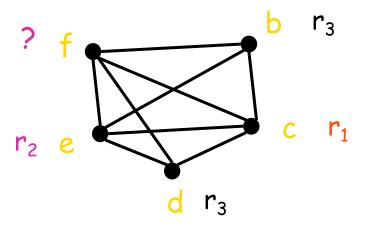
- Remove a and get stuck (as shown below)
 - Pick a node as a candidate for spilling
 - Assume that f is picked



- Remove f and continue the simplification
 - Optimistically push on stack
 - Simplification now succeeds: b, d, e, c



- During assignment phase, we get to the point when we have to assign a color to f
- Hope: among the 4 neighbors of f, we use less than 3 colors \Rightarrow **optimistic coloring**



Spilling

- Optimistic coloring failed = must spill variable f
- Allocate memory location as home of f
 - Typically in current stack frame
 - Call this address fa
- Before each operation that uses f, insert f := load fa
- After each operation that defines f, insert store f, fa

Spilling, Continued

- Additional spills might be required before coloring is found
- Tricky part: deciding what to spill
 - Possible heuristics:
 - Spill variables with most conflicts
 - Spill variables with few definitions and uses
 - Avoid spilling in inner loops
 - All are "correct"

Conclusion

- Register allocation: "must have" optimization in most compilers:
 - Intermediate code uses too many temporaries
 - Makes a big difference in performance
- Graph coloring:
 - Powerful register allocation scheme