
Register Allocation  
via Graph Coloring 

John Cavazos 
University of Delaware 



2 

The Memory Hierarchy 

  Higher = smaller, faster, closer to CPU 

registers 

L1 cache 

L2 cache 

RAM 

Disk 

8 integer, 8 floating-point; 1-cycle latency 
8K data & instructions; 2-cycle latency 

512K; 7-cycle latency 

1GB; 100 cycle latency 

40 GB; 38,000,000 cycle latency (!) 



3 

Managing the Memory Hierarchy 

  Programmer view: only two levels of memory 
  Main memory (stores & loads) 
  Disk (file I/O) 

  Two things maintain this abstraction: 
  Hardware 

  Moves data between memory and caches 

  Compiler 
  Moves data between memory and registers 



4 

Overview 

  Introduction 
  Register Allocation 

  Definition 
  History 
  Interference graphs 
  Graph coloring 
  Register spilling 



5 

Register Allocation: Definition 

  Register allocation assigns registers to values 
  Candidate values: 

  Variables 
  Temporaries 
  Large constants 

  When needed, spill registers to memory 

  Important low-level optimization 
  Registers are 2x – 7x faster than cache 

  Can lead to big performance improvements 



6 

Register Allocation Example 

  Consider this program with six variables: 
a := c + d 
e := a + b 
f := e - 1 

with the assumption that a and e die after use 
  Variable a can be “reused” after e := a + b 
  Same with variable e 

  Can allocate a, e, and f all to one register (r1): 
r1 := r2 + r3 
r1 := r1 + r4 
r1 := r1 - 1 



7 

Basic Register Allocation Idea 

 Variables t1 and t2 can share same register 
if at any point in the program at most one of t1 
or t2 is live ! 



8 

Algorithm: Part I 

  Compute live variables for each point: 
a := b + c 
d := -a 

e := d + f 

f := 2 * e 
b := d + e 
e := e - 1 

b := f + c 

{b} 

{c,e} 

{b} 

{c,f} {c,f} 

{b,c,e,f} 

{c,d,e,f} 

{b,c,f} 

{c,d,f} 
{a,c,f} 



9 

Interference Graph 

  Two variables live simultaneously 
  Cannot be allocated in the same register 

  Construct an interference graph (IG) 
  Node for each variable 
  Undirected edge between t1 and t2 

  If live simultaneously at some point in the program 

  Two variables can be allocated to same register 
 if no edge connects them 



10 

Interference Graph: Example 

  For our example: 
a 

f 

e 

d 

c 

b 

b and c cannot be in the same register 
b and d can be in the same register 

{b,c,f} 
{a,c,f} 
{c,d,f} 
{c,d,e,f} 
{c,e} 
{b,c,e,f} 
{c,f} 
{b} 



11 

Graph Coloring 

  Graph coloring: 
assignment of colors to nodes 
  Nodes connected by edge have different colors 

  Graph k-colorable = 
can be colored with k colors 



12 

Register Allocation 
Through Graph Coloring 

  In our problem, colors = registers 
  We need to assign colors (registers) to graph 

nodes (variables) 
  Let k = number of machine registers 

  If the IG is k-colorable, there’s a register 
assignment that uses no more than k 
registers 



13 

Graph Coloring Example 

  Consider the example IG 
a 

f 

e 

d 

c 

b 

There is no coloring with fewer than 4 colors 
There are 4-colorings of this graph 

r4 

r1 

r2 

r3 

r2 

r3 



14 

Graph Coloring Example, 
Continued 

  Under this coloring the code becomes: 
r2 := r3 + r4 

r3 := -r2 
r2 := r3 + r1 

r1 := 2 * r2 
r3 := r3 + r2 
r2 := r2 - 1 

r3 := r1 + r4 



15 

Computing Graph Colorings 

  How do we compute coloring for IG? 
  NP-hard! 
  For given # of registers, coloring may not exist 

  Solution 
  Use heuristics 



16 

Graph Coloring Algorithm (Chaitin) 
while G cannot be k-colored 
     while graph G has node N with degree less than k 
           remove N and its edges from G and push N on a stack S 
     end while  
     if all nodes removed then graph is k-colorable  
         while stack S contains node N 
              add N to graph G and assign it a color from k colors 
          end while 
     else graph G cannot be colored with k colors 
         simplify graph G choosing node N to spill and remove node 
        (spill nodes chosen based number of definitions and uses) 
end while 



17 

Graph Coloring Heuristic 

  Observation: “degree < k” rule 
  Reduce graph: 

  Pick node N with < k neighbors in IG 
  Eliminate N and its edges from IG 

  If the resulting graph has k-coloring, 
so does the original graph 

  Why? 
  Let c1,…,cn be colors assigned to neighbors of t in 

reduced graph 
  Since n < k, we can pick some color for t different from 

those of its neighbors 



18 

Graph Coloring Heuristic, 
Continued 

  Heuristic: 
  Pick node t with fewer than k neighbors 
  Put t on a stack and remove it from the IG 
  Repeat until all nodes have been removed 

  Start assigning colors to nodes on the stack 
(starting with the last node added) 
  At each step, pick color different from those 

assigned to already-colored neighbors 



19 

Graph Coloring Example (1) 

  Remove a 

a 

f 

e 

d 

c 

b 
Stack   

  Start with the IG and with k = 4: 



20 

Graph Coloring Example (1) 

  Remove d 

f 

e 

d 

c 

b 
Stack   

  Start with the IG and with k = 4: 

a 



21 

Graph Coloring Example (2) 

  Now all nodes have fewer than 4 neighbors and 
can be removed: c, b, e, f 

f 

e c 

b 
Stack   

a 
d 



22 

Graph Coloring Example (2) 

  Start assigning colors to: f, e, b, c, d, a  

b 
a 

e c r4 

f r1 

r2 

r3 

r2 

r3 

d 



23 

What if the Heuristic Fails? 

  What if during simplification we get to a 
state where all nodes have k or more 
neighbors ? 

  Example: try to find a 3-coloring of the IG: 
a 

f 

e 

d 

c 

b 



24 

What if the Heuristic Fails? 
  Remove a and get stuck (as shown below) 

  Pick a node as a candidate for spilling 
  Assume that f is picked 

f 

e 

d 

c 

b Stack   

a 



25 

What if the Heuristic Fails? 

  Remove f and continue the simplification 
  Optimistically push on stack 
  Simplification now succeeds: b, d, e, c 

e

d

c

b Stack   

a 
f 



26 

What if the Heuristic Fails? 

  During assignment phase, we get to the point when 
we have to assign a color to f 

  Hope: among the 4 neighbors of f, 
we use less than 3 colors ⇒ optimistic coloring  

f 

e 

d 

c 

b r3 

r1 r2 

r3 

? 



27 

Spilling 

  Optimistic coloring failed = must spill variable f 
  Allocate memory location as home of f 

  Typically in current stack frame  
  Call this address fa 

  Before each operation that uses f, insert 
                      f := load fa 

  After each operation that defines f, insert 
                      store f, fa 



28 

Spilling, Continued 

  Additional spills might be required before 
coloring is found 

  Tricky part: deciding what to spill 
  Possible heuristics: 

  Spill variables with most conflicts 
  Spill variables with few definitions and uses 
  Avoid spilling in inner loops 

  All are “correct” 



29 

Conclusion 

  Register allocation: “must have” optimization 
in most compilers: 
  Intermediate code uses too many temporaries 
  Makes a big difference in performance  

  Graph coloring: 
  Powerful register allocation scheme 


