Instruction Selection
and Scheduling



The Problem

Writing a compiler is a lot of work
* Would like to reuse components whenever possible
* Would like to automate construction of components

Front End Middle End Back End TOdC(yIS ICCTUI"@'

— A Automating
Instruction
A Selection and

Infrastructure \\\Sched ul ing
———/

* Front end construction is largely automated

* Middle is largely hand crafted
* (Parts of ) back end can be automated



Definitions

Instruction selection

* Mapping IR into assembly code

* Assumes a fixed storage mapping & code shape
* Combining operations, using address modes

Instruction scheduling

* Reordering operations to hide latencies

* Assumes a fixed program (set of operations)
* Changes demand for registers

Register allocation

* Deciding which values will reside in registers

* Changes the storage mapping, may add false sharing

* Concerns about placement of data & memory operations



The Problem

Modern computers (still) have many ways to do anything

Consider register-to-register copy in ILOC
* Obvious operationis i2i r; = r,
* Many others exist

addl r;,0 = r; |subIl r;,0 = r, |1lshiftI r;,0 = r,

multl r;,1 = r; |divI r;,1 = ry |rshiftl r,,0 = r,

orI r;,0 = r; [xorlI r;,0 = r, .. and others ...

* Human would ignore all of these

* Algorithm must look at all of them & find low-cost encoding
— Take context into account (busy functional unit?)



The Goal

Want to automate generation of instruction selectors

Front End Middle End Back End

i \
Infrastructure / \
/

Machine | Back-end s Tables
description a Generator 0| '9pe oy
P 5  Description-based
Pattern retargeting
Matching
Engine
7

Machine description should also help with scheduling & allocation



The Big Picture

Need pattern matching techniques
* Must produce good code (some metric for good)
* Must run quickly

A treewalk code generator runs quickly
How good was the code?

Tree Treewalk Code Desired Code
X loadI 4 =r;
loadAO ry.,.rs=>r¢ loadAT ry.,4 =r5
:Oagio 8 =r, loadAT r,.,.8 =r¢
oa r...r r
IDENT IDENT mult r‘a"l)" 7:> Z? 8 mult rs.rg = P>
<a,ARP,4>  <b,ARP,8> 6:''8 9



The Big Picture

Need pattern matching techniques
* Must produce good code (some metric for good)
* Must run quickly

A treewalk code generator runs quickly
How good was the code?

Tree Treewalk Code Desired Code

X loadI 4 = Iy

loadAO r'a,«p, 5= e [ > loadAL ry,4 =rs

loadT = ry Ve loadAT r,.,.8 =r¢
mult  rgrg =g

IDENT
<a,ARP,4>

IDENT
<b,ARP,8>

Pretty easy to fix. See 15
digression in Ch. 7 (pg 317)




How do we perform this kind of matching ?

Tree-oriented IR suggests pattern matching on frees

* Tree-patterns as input, matcher as output

* Each pattern maps to a target-machine instruction sequence
* Use bottom-up rewrite systems

Linear IR suggests using some sort of string matching

* Strings as input, matcher as output

* Each string maps to a target-machine instruction sequence
* Use text matching or peephole matching

In practice, both work well; matchers are quite different



Peephole Matching

* PBasic idea

* Compiler can discover local improvements locally
— Look at a small set of adjacent operations
— Move a "peephole” over code & search for improvement

* Classic example: store followed by load

Original code Improved code

storeAIr; =r 8

G,.p,8 storeAIr, = Parps
loadAI r

ar‘pl8 = r'15 |2| r'l = r'15



Peephole Matching

* PBasic idea

* Compiler can discover local improvements locally
— Look at a small set of adjacent operations
— Move a "peephole” over code & search for improvement

* Classic example: store followed by load
* Simple algebraic identities

Original code Improved code

addI  r,0 =r,

| =
mUH' rq,r7 = po mult Fa.l"2 10



Peephole Matching

* PBasic idea

* Compiler can discover local improvements locally
— Look at a small set of adjacent operations
— Move a "peephole” over code & search for improvement

* Classic example: store followed by load

* Simple algebraic identities
e Jump to a jump

Original code Improved code

jumpl  — Ly

Ligt jumpl — Ly Lot jumpl — Ly



Peephole Matching

Implementing it
* Early systems used limited set of hand-coded patterns
* Window size ensured quick processing

Modern peephole instruction selectors
* Break problem into three tasks

IR

Expander
IR—LLIR

LLIR

Simplifier
LLIR—LLIR

LLIR

\ 4

Matcher
LLIR—ASM

ASM




Peephole Matching

Expander

* Turns IR code into a low-level IR (LLIR)

* Operation-by-operation, template-driven rewriting
 LLIR form includes all direct effects (e.g., setting cc)
* Significant, albeit constant, expansion of size

IR | Expander | LLIR |Simplifier| LLIR | Matcher | ASM
IR-LLIR LLIR—LLIR LLIR—>ASM




Peephole Matching

Simplifier
* Looks at LLIR through window and rewrites is

* Uses forward substitution, algebraic simplification, local
constant propagation, and dead-effect elimination

* Performs local optimization within window

IR | Expander | LLIR | Simplifier | LLIR | Matcher | ASM
IR-LLIR LLIR—LLIR LLIR—>ASM

* This is the heart of the peephole system

— Benefit of peephole optimization shows up in this step



Peephole Matching

Matcher

* Compares simplified LLIR against a library of patterns

* Picks low-cost pattern that captures effects

* Must preserve LLIR effects, may add new ones (e.g., set cc)
* Generates the assembly code output

IR | Expander | LLIR | Simplifier | LLIR | Matcher | ASM
IR-LLIR LLIR—LLIR LLIR—>ASM




Example

LLIR Code
ro < 2
ry < @y

P12 <= Farp ¥ 11

Original IR Code

OP Arg; | Arg, |Result Expand :13:/:‘/\9‘:\((:12)
14 < o X 3

mult 2 y t, ri5 < @X
P16 <= Parp * 15
riz < MEM(ry)

sub X 1 w

rig<—ri7 - ra

r'19 < @W

P20 <= Farp * 19
t,= M4 MEM(r,o) < g
W = r'zo



Example

LLIR Code
Mo <= 2
ry < @y
P12 <= Parp ¥ 11

ris < MEM(Pp,) LLIR Code
P4 <= o X '3

Simplify riz < MEM(r,+ @y)
r'15 — @x

Py <=2 Xr3
Mg <= rl;cl:\rp +( r'15) ?7 i r/-V\ EME.r'a,ﬁp " @)
ry < EM ry 18 17 114
Pio < ° MEM(r' + @W) < I'ig
18< 7 -l arp
r'19 < @W
P20 <= FParp * 19

MEM(r,o) < g




Example

LLIR Code TLoc (Assembly) Code
3 MEM(r'a,,p @y) Match  loadAT r..,@y = r;

r'14 < X r'13 leH'.T. 2 X r'13 = r'14
< Mem(r,, + @x) loadAT rg.,@x =ri;
"'18 <= Pz -l sub ry7 - P4 ="rg

MEM(r,., + @W) < g storeAI rig = rg,@w

* TIntroduced all memory operations & temporary names
* Turned out pretty good code



Making It All Work
Details

LLIR is largely machine independent
Target machine described as LLIR — ASM pattern

Actual pattern matching
— Use a hand-coded pattern matcher (gcc)

Several important compilers use this technology
It seems to produce good portable instruction selectors

Key strength appears to be late low-level optimization




Definitions

Instruction selection

* Mapping IR into assembly code

* Assumes a fixed storage mapping & code shape
* Combining operations, using address modes

Instruction scheduling

* Reordering operations to hide latencies

* Assumes a fixed program (set of operations)
* Changes demand for registers

Register allocation

* Deciding which values will reside in registers

* Changes the storage mapping, may add false sharing

* Concerns about placement of data & memory operations



What Makes Code Run Fast?

* Many operations have non-zero latencies
* Modern machines can issue several operations per cycle
* Execution time is order-dependent  (and has been since the 60's)

Assumed latencies (conservative)

Operation Cycles

load 3

store 3 * Loads & stores may or may not block
loadl 1 > Non-blocking =fill those issue slots
add 1 * Branch costs vary with path taken

mult 2 * Scheduler should hide the latencies
fadd 1

fmult 2

shift 1

branch Oto8




Example

W—w*2*x *y*z

Cycles Simple schedule Cycles Schedule loads early
1 loadAl rn,@ew =r1 1 loadAl rn,@ew =r1
4 add r1,r =1 2 loadAl r0,@x =>r2
5 loadAl r0,@x =r2 3 loadAl @y =r3
8 mult r1,r2 =1 4 add r1,r =1
9 loadAl @y =r2 5 mult Mr2 =r
12 mult r1,r2 = r1 6 loadAl @z =r2
13 loadAl @z =r2 7 mult r11,r3 =1
16 mult r1,r2 = r1 9 mult r1,r2 =1
18 storeAl r1 = r0,@w 11 storeAl r1 = r0,@w
21 rlis free 14 r1is free
2 registers, 20 3 registers, 13
cycles cycles

Reordering operations to improve some metric is called instruction scheduling



Instruction Scheduling (Engineer’s View)

The Problem

Given a code fragment for some target machine and the
latencies for each individual operation, reorder the operations
to minimize execution time

* Produce correct code
Machine description * Minimize wasted cycles

* Avoid spilling registers

slow Scheduler fasl'

* Operate efficiently
code code




Instruction Scheduling (The Abstract View)

To capture properties of the code, build a dependence graph &
* Nodes ne & are operations with type(n) and delay(n)
* Anedge e = (h,n,) € Gif &only if n,uses the result of n,

e me e T

loadAl r0,@w
add 1,r1
loadAl r0,@x
mult r1,r2
loadAl r0,@y
mult r1,r2
loadAl r0,@z
mult r1,r2
storeAl "1
The Code

=1
=1
=> I2
=1
=> I2
=1
=> I2
=1

= r0,@w

|
N e
N
N
i

C

The Dependence
Graph



Instruction Scheduling (What's so difficult?)

Critical Points

* All operands must be available

* Multiple operations can be ready

* Moving operations can lengthen register lifetimes

* Placing uses near definitions can shorten register lifetimes

* Operands can have multiple predecessors

Together, these issues make scheduling hard (NP-complete)

Local scheduling is the simple case
* Restricted to straight-line code
* Consistent and predictable latencies



Instruction Scheduling

The big picture
1. Build a dependence graph, P
2. Compute a priority function over the nodes in P
3. Use list scheduling to construct a schedule, one cycle at a time
a. Use a queue of operations that are ready
b. At each cycle
I. Choose a ready operation and schedule it
IT. Update the ready queue

Local list scheduling
* The dominant algorithm for twenty years
* A greedy, heuristic, local technique



Local List Scheduling

Cycle <— 1 /| Removal in priority order

Ready < leaves of P

Active < @

while (Ready U Active = @)
if (Ready = @) then

remove an op from Ready
S(op) <— Cycle op has completed execution

Active <— Active U op

Cycle < Cycle +1

for each op € Active
if (S(op) + delay(op) < Cycle) then
remove op from Active /‘ If successor's operands

for each successor s of oAmn/ are ready, put it on Ready
if (s is ready) then

Ready <— Ready U s




Scheduling Example
1. Build the dependence graph

a: loadAl rn,@w =r1 a
b: add 1,r1 =1
c: loadAl r0,@x =r2 l c
d: mult Mmr2 =ri b\ /
e: loadAl @y =r2 d e
f:  mult r1,r2 =1 AW /
g: loadAl 0,@z =r2 f\ / g
h: mult rMr2 =rf h
i storeAl r1 = r0,@w li
The Code The Dependence

Graph



Scheduling Example

1. Build the dependence graph
2. Determine priorities: longest latency-weighted path

a: loadAl rn,@w =r1 a 14
b: add 1,r1 =1
c: loadAl  r0,@x =>r2 l 12
d: mult r1,r2 =1 11 b ¢
’ NS 10

e: loadAl @y =r2 gd e
f:  mult Mr2 =rf AW / 8
g: loadAl 0,@z =r2 7 f\5 / g
h: mult rMr2 =rf h
i storeAl r1 = r0,@w li 3

The Code The Dependence

Graph



Scheduling Example

1. Build the dependence graph
2. Determine priorities: longest latency-weighted path
3. Perform list scheduling

New register name

used

1) a: loadAl  r0,@w = ri 3
2) c: loadAl r0,@x =r2
3) e: loadAl r0,@y =13 l 12
4) b: add M = 105, % 10
5) d: mult r1nr2 =rri 9 d e
6) g: loadAl  r0,@z =r2 N 8
7) f: mult M3 =rf 7f.5 /9
9) h: mult Mr2 =rl h
11)i: storeAl r1 = 10,@w li 3

The Code The Dependence

Graph



More List Scheduling

List scheduling breaks down into two distinct classes

Forward list scheduling Backward list scheduling
* Start with available operations || © Start with no successors

* Work forward in time * Work backward in time

* Ready = all operands available || ©* Ready = result >= all uses




