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Lecture Overview 

  Motivation 
  Loop Transformations 



Why study compiler optimizations? 

Moore’s Law 
  Chip density doubles every 18 months 
  Reflected in CPU performance doubling every 18 

months 

Proebsting’s Law 
  Compilers double CPU performance every 18 years 
  4% improvement per year because of optimizations! 



Why study compiler optimizations? 

Corollary 
  1 year of code optimization research = 1 month of 

hardware improvements 
  No need for compiler research… Just wait a few 

months! 



Free Lunch is over 

Moore’s Law 
•  Chip density doubles every 18 months 

Corollary 
•  Cores will become simpler 
•  Just wait a few months… Your code might get slower! 
•  Many optimizations now being done by hand! (autotuning) 



Optimizations: The Big Picture 
What are our goals? 
   Simple Goal: Make execution time as small as 

possible 

Which leads to: 
  Achieve execution of many (all, in the best case) 

instructions  in parallel 
  Find independent instructions  



Dependences 
  We will concentrate on data dependences 
  Simple example of data dependence: 

   S1  PI = 3.14 

   S2  R = 5.0 
   S3  AREA = PI * R ** 2 

  Statement S3 cannot be moved before either 
S1 or S2 without compromising correct results 

S1 S2 

S3 



Dependences 

  Formally: 
Data dependence from S1 to S2 (S2 depends on S1) if:   
1. Both statements access same memory location and 

one of them stores onto it, and 
2. There is a feasible execution path from S1 to S2 



Load Store Classification 

  Dependences classified in terms of load-store order: 
1. True dependence (RAW hazard)  
2. Antidependence (WAR hazard) 
3. Output dependence (WAW hazard) 



Dependence in Loops 

  Let us look at two different loops: 
 DO I = 1, N 

S1   A(I+1) = A(I)+ B(I) 
 ENDDO 

 DO I = 1, N 
S1   A(I+2) = A(I)+B(I) 
 ENDDO 

•  In both cases, statement S1 depends on itself  



Transformations 

  We call a transformation safe if the transformed 
program has the same "meaning" as the original 
program 

  But, what is the "meaning" of a program? 

For our purposes: 
  Two programs are equivalent if, on the same inputs: 

  They produce the same outputs in the same order 



Loop Transformations 

  Compilers have always focused on loops 
  Higher execution counts 
  Repeated, related operations 

  Much of real work takes place in loops 



Several effects to attack 
  Overhead 

  Decrease control-structure cost per iteration  

  Locality  
  Spatial locality ⇒ use of co-resident data 
  Temporal locality ⇒ reuse of same data 

  Parallelism 
  Execute independent iterations of loop in parallel 



Eliminating Overhead 

Loop unrolling (the oldest trick in the book)  
  To reduce overhead, replicate the loop body 

Sources of Improvement 
  Less overhead per useful operation 
  Longer basic blocks for local optimization 

do i = 1 to 100 by 1 
    a(i) = a(i) + b(i) 
end 

do i = 1 to 100 by 4 
    a(i)     = a(i) + b(i) 
    a(i+1) = a(i+1) + b(i+1) 
    a(i+2) = a(i+2) + b(i+2) 
    a(i+3) = a(i+3) + b(i+3) 
end 

becomes  

(unroll by 4) 



Loop Fusion 
  Two loops over same iteration space ⇒ one loop 
  Safe if does not change the values used or defined by any 

statement in either loop (i.e., does not violate dependences) 

do i = 1 to n 
    c(i) = a(i) + b(i) 
end 

do j = 1 to n 
    d(j) = a(j) * e(j) 
end 

becomes  

(fuse) 

do i = 1 to n 
     c(i) = a(i) + b(i) 
     d(i) = a(i) * e(i) 
 end 

For big arrays, a(i) may not be in 
the cache a(i) will be found in the cache 



Loop Fusion Advantages 
  Enhance temporal locality 
  Reduce control overhead 

  Longer blocks for local optimization & scheduling 
  Can convert inter-loop reuse to intra-loop reuse 



Loop Fusion of Parallel Loops 
  Parallel loop fusion legal if dependences loop 

independent 
  Source and target of flow dependence map to same 

loop iteration 

  Each iteration can execute in parallel 



Loop distribution (fission) 
  Single loop with independent statements ⇒ multiple loops 
  Starts by constructing statement level dependence graph 
  Safe to perform distribution if: 

  No cycles in the dependence graph 
  Statements forming cycle in dependence graph put in same loop 



Loop distribution (fission) 

Has the 
following 

dependence 
graph 

(1) for I = 1 to N do 

(2)    A[I] = A[i] + B[i-1] 

(3)    B[I] = C[I-1]*X+C 

(4)    C[I] = 1/B[I] 

(5)    D[I] = sqrt(C[I]) 

(6) endfor 



Loop distribution (fission) 

becomes 

(fission) 

(1) for I = 1 to N do 

(2)    A[I] = A[i] + B[i-1] 

(3)    B[I] = C[I-1]*X+C 

(4)    C[I] = 1/B[I] 

(5)    D[I] = sqrt(C[I]) 

(6) endfor 

(1) for I = 1 to N do 

(2)    A[I] = A[i] + B[i-1] 

(3) endfor 

(4) for 

(5)      B[I] = C[I-1]*X+C 

(6)      C[I] = 1/B[I] 

(7)  endfor 

(8)   for 

(9)       D[I] = sqrt(C[I]) 

(10)   endfor 
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Loop Fission Advantages 

  Enables other transformations    
  E.g., Vectorization 

  Resulting loops have smaller cache footprints  
  More reuse hits in the cache 



Loop Tiling (blocking) 

Want to exploit temporal locality 
in loop nest. 



Loop Tiling (blocking) 



Loop Tiling (blocking) 



Loop Tiling (blocking) 



Loop Tiling (blocking) 
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Loop Tiling Effects 

  Reduces volume of data between reuses 
  Works on one “tile” at a time  (tile size is B by  B) 

  Choice of tile size is crucial 



Scalar Replacement 

  Allocators never keep c(i) in a register 
  We can trick the allocator by rewriting the references 

The plan 
  Locate patterns of consistent reuse 
  Make loads and stores use temporary scalar variable 
  Replace references with temporary’s name 
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Scalar Replacement 

do i = 1 to n 
    do j = 1 to n    
       a(i) = a(i) + b(j) 
    end 
end 

do i = 1 to n 
    t = a(i) 
    do j = 1 to n    
         t =  t + b(j) 
    end 
    a(i) = t 
end 

becomes  

(scalar replacement) 

Almost any register allocator 
can get  t into a register 
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Scalar Replacement Effects 

  Decreases number of loads and stores 
  Keeps reused values in names that can be 

allocated to registers 
  In essence, this exposes the reuse of a(i) to 

subsequent passes 


