
Introduction to Optimization

John Cavazos
University of Delaware

Lecture Overview

  Motivation
  Loop Transformations

Why study compiler optimizations?

Moore’s Law
  Chip density doubles every 18 months
  Reflected in CPU performance doubling every 18

months

Proebsting’s Law
  Compilers double CPU performance every 18 years
  4% improvement per year because of optimizations!

Why study compiler optimizations?

Corollary
  1 year of code optimization research = 1 month of

hardware improvements
  No need for compiler research… Just wait a few

months!

Free Lunch is over

Moore’s Law
•  Chip density doubles every 18 months

Corollary
•  Cores will become simpler
•  Just wait a few months… Your code might get slower!
•  Many optimizations now being done by hand! (autotuning)

Optimizations: The Big Picture
What are our goals?
  Simple Goal: Make execution time as small as

possible

Which leads to:
  Achieve execution of many (all, in the best case)

instructions in parallel
  Find independent instructions

Dependences
  We will concentrate on data dependences
  Simple example of data dependence:

 S1 PI = 3.14

 S2 R = 5.0
 S3 AREA = PI * R ** 2

  Statement S3 cannot be moved before either
S1 or S2 without compromising correct results

S1 S2

S3

Dependences

  Formally:
Data dependence from S1 to S2 (S2 depends on S1) if:
1. Both statements access same memory location and

one of them stores onto it, and
2. There is a feasible execution path from S1 to S2

Load Store Classification

  Dependences classified in terms of load-store order:
1. True dependence (RAW hazard)
2. Antidependence (WAR hazard)
3. Output dependence (WAW hazard)

Dependence in Loops

  Let us look at two different loops:
 DO I = 1, N

S1 A(I+1) = A(I)+ B(I)
 ENDDO

 DO I = 1, N
S1 A(I+2) = A(I)+B(I)
 ENDDO

•  In both cases, statement S1 depends on itself

Transformations

  We call a transformation safe if the transformed
program has the same "meaning" as the original
program

  But, what is the "meaning" of a program?

For our purposes:
  Two programs are equivalent if, on the same inputs:

  They produce the same outputs in the same order

Loop Transformations

  Compilers have always focused on loops
  Higher execution counts
  Repeated, related operations

  Much of real work takes place in loops

Several effects to attack
  Overhead

  Decrease control-structure cost per iteration

  Locality
  Spatial locality ⇒ use of co-resident data
  Temporal locality ⇒ reuse of same data

  Parallelism
  Execute independent iterations of loop in parallel

Eliminating Overhead

Loop unrolling (the oldest trick in the book)
  To reduce overhead, replicate the loop body

Sources of Improvement
  Less overhead per useful operation
  Longer basic blocks for local optimization

do i = 1 to 100 by 1
 a(i) = a(i) + b(i)
end

do i = 1 to 100 by 4
 a(i) = a(i) + b(i)
 a(i+1) = a(i+1) + b(i+1)
 a(i+2) = a(i+2) + b(i+2)
 a(i+3) = a(i+3) + b(i+3)
end

becomes

(unroll by 4)

Loop Fusion
  Two loops over same iteration space ⇒ one loop
  Safe if does not change the values used or defined by any

statement in either loop (i.e., does not violate dependences)

do i = 1 to n
 c(i) = a(i) + b(i)
end

do j = 1 to n
 d(j) = a(j) * e(j)
end

becomes

(fuse)

do i = 1 to n
 c(i) = a(i) + b(i)
 d(i) = a(i) * e(i)
 end

For big arrays, a(i) may not be in
the cache a(i) will be found in the cache

Loop Fusion Advantages
  Enhance temporal locality
  Reduce control overhead

  Longer blocks for local optimization & scheduling
  Can convert inter-loop reuse to intra-loop reuse

Loop Fusion of Parallel Loops
  Parallel loop fusion legal if dependences loop

independent
  Source and target of flow dependence map to same

loop iteration

  Each iteration can execute in parallel

Loop distribution (fission)
  Single loop with independent statements ⇒ multiple loops
  Starts by constructing statement level dependence graph
  Safe to perform distribution if:

  No cycles in the dependence graph
  Statements forming cycle in dependence graph put in same loop

Loop distribution (fission)

Has the
following

dependence
graph

(1) for I = 1 to N do

(2) A[I] = A[i] + B[i-1]

(3) B[I] = C[I-1]*X+C

(4) C[I] = 1/B[I]

(5) D[I] = sqrt(C[I])

(6) endfor

Loop distribution (fission)

becomes

(fission)

(1) for I = 1 to N do

(2) A[I] = A[i] + B[i-1]

(3) B[I] = C[I-1]*X+C

(4) C[I] = 1/B[I]

(5) D[I] = sqrt(C[I])

(6) endfor

(1) for I = 1 to N do

(2)  A[I] = A[i] + B[i-1]

(3) endfor

(4) for

(5)  B[I] = C[I-1]*X+C

(6)  C[I] = 1/B[I]

(7)  endfor

(8)  for

(9)  D[I] = sqrt(C[I])

(10)   endfor

21

Loop Fission Advantages

  Enables other transformations
  E.g., Vectorization

  Resulting loops have smaller cache footprints
  More reuse hits in the cache

Loop Tiling (blocking)

Want to exploit temporal locality
in loop nest.

Loop Tiling (blocking)

Loop Tiling (blocking)

Loop Tiling (blocking)

Loop Tiling (blocking)

27

Loop Tiling Effects

  Reduces volume of data between reuses
  Works on one “tile” at a time (tile size is B by B)

  Choice of tile size is crucial

Scalar Replacement

  Allocators never keep c(i) in a register
  We can trick the allocator by rewriting the references

The plan
  Locate patterns of consistent reuse
  Make loads and stores use temporary scalar variable
  Replace references with temporary’s name

29

Scalar Replacement

do i = 1 to n
 do j = 1 to n
 a(i) = a(i) + b(j)
 end
end

do i = 1 to n
 t = a(i)
 do j = 1 to n
 t = t + b(j)
 end
 a(i) = t
end

becomes

(scalar replacement)

Almost any register allocator
can get t into a register

30

Scalar Replacement Effects

  Decreases number of loads and stores
  Keeps reused values in names that can be

allocated to registers
  In essence, this exposes the reuse of a(i) to

subsequent passes

