Introduction to Optimization

John Cavazos

University of Delaware

UNIVERSITY OF DELAWARE - COMPUTER & INFORMATION SCIENCES DEPARTMENT

Lecture Overview

s Motivation

= Loop Transformations

UNIVERSITY OF DELAWARE - COMPUTER & INFORMATION SCIENCES DEPARTMENT

Why study compiler optimizations?

Mootre’s Law
= Chip density doubles every 18 months
= Reflected in CPU performance doubling every 18

months

Proebsting’s Law

= Compilers double CPU performance every 18 years

= 4% improvement per year because of optimizations!

Why study compiler optimizations?

Corollary

=] year of code optimization research = 1 month of
hardware improvements

= No need for compiler research... Just wait a few
months!

UNIVERSITY OF DELAWARE - COMPUTER & INFORMATION SCIENCES DEPARTMENT

Free Lunch is over

Moore’s Law

Chip density doubles every 18 months
o PAST : Reflecte

- CURRENT: Density doub]mg reflected in motre cores on chlpl

Corollary
Cores will become simpler
- Just wait a few months... Your code might get slower!

Many optimizations now being done by hand! (autotuning)

UNIVERSITY OF DELAWARE - COMPUTER & INFORMATION SCIENCES DEPARTMENT

Optimizations: The Big Picture

What are our goals?

= Simple Goal: Make execution time as small as
possible

Which leads to:

= Achieve execution of many (all, in the best case)
instructions in parallel

= IFind independent instructions

UNIVERSITY OF DELAWARE - COMPUTER & INFORMATION SCIENCES DEPARTMENT

Dependences

= We will concentrate on data dependences

= Simple example of data dependence:

S, PI 3.14 @ @

S, R=5.0
S; AREA = PI * R ** 2 @

= Statement S; cannot be moved before either

S, ot S, without compromising correct results

UNIVERSITY OF DELAWARE - COMPUTER & INFORMATION SCIENCES DEPARTMENT

Dependences

= Formally:
Data dependence from S, to S, (S, depends on §,) if:

1. Both statements access same memory location and
one of them stores onto it, and

2. There 1s a feasible execution path from S, to S,

UNIVERSITY OF DELAWARE - COMPUTER & INFORMATION SCIENCES DEPARTMENT

Load Store Classification

= Dependences classified in terms of load-store order:

1. True dependence (RAW hazard)
2. Antidependence (WAR hazard)

3. Output dependence (WAW hazard)

UNIVERSITY OF DELAWARE - COMPUTER & INFORMATION SCIENCES DEPARTMENT

Dependence in Loops

= Let us look at two different loops:

DOI =1, N DOI =1, N
S, A(I+l) = A(I)+ B(I)| |S; A(I+2) = A(I)+B(I)
ENDDO ENDDO

- In both cases, statement S, depends on itself

UNIVERSITY OF DELAWARE - COMPUTER & INFORMATION SCIENCES DEPARTMENT

Transformations

s We call a transformation safe if the transformed
program has the same "meaning" as the original
program

= But, what is the "meaning" of a program?

For our purposes:

= Two programs are equivalent if, on the same inputs:

= They produce the same outputs in the same order

UNIVERSITY OF DELAWARE - COMPUTER & INFORMATION SCIENCES DEPARTMENT

Loop Transformations

= Compilers have always focused on loops
= Higher execution counts

= Repeated, related operations

m Much of real work takes place in loops

UNIVERSITY OF DELAWARE - COMPUTER & INFORMATION SCIENCES DEPARTMENT

Several effects to attack

m Overhead

s Decrease control-structure cost per 1teration

m Locality
= Spatial locality = use of co-resident data

= Temporal locality = reuse of same data

m Parallelism

= Execute independent iterations of loop 1n parallel

UNIVERSITY OF DELAWARE - COMPUTER & INFORMATION SCIENCES DEPARTMENT

Eliminating Overhead

Loop unrolling (the oldest trick in the book)
= To reduce overhead, replicate the loop body
doi=1to 100 by 4

doi=1to100 by 1 becomes a(i) =a(i) + b(i)
a(i) = a(i) + bl(i) a(i+1) = a(i+1) + b(i+1)
end (unroll by 4) a(i+2) = a(i+2) + b(i+2)
a(i+3) = a(i+3) + b(i+3)

Sources of Improvement end

m Less overhead per useful operation

= Longer basic blocks for local optimization

UNIVERSITY OF DELAWARE - COMPUTER & INFORMATION SCIENCES DEPARTMENT

Loop Fusion

= Two loops over same iteration space = one loop

= Safe if does not change the values used or defined by any
statement in either loop (i.e., does not violate dependences)

doi=1ton -

AL S ” efi)=ali) + bii)

doj=1ton (fuse) engi(i) = a(i) * e(i)
d(j) = a(j) * e(j)

end

For big arrays, a(i) may not be in —)
the cache a(i) will be found in the cache

UNIVERSITY OF DELAWARE - COMPUTER & INFORMATION SCIENCES DEPARTMENT

Loop Fusion Advantages

= Enhance temporal locality
m Reduce control overhead
» Longer blocks for local optimization & scheduling

= Can convert inter-loop reuse to intra-loop reuse

UNIVERSITY OF DELAWARE - COMPUTER & INFORMATION SCIENCES DEPARTMENT

Loop Fusion of Parallel Loops

= Parallel loop fusion legal if dependences loop
independent

= Source and target of flow dependence map to same
loop iteration

= Each iteration can execute in parallel

UNIVERSITY OF DELAWARE - COMPUTER & INFORMATION SCIENCES DEPARTMENT

Loop distribution (fission)

= Single loop with independent statements = multiple loops
= Starts by constructing statement level dependence graph

= Safe to perform distribution if:
= No cycles in the dependence graph

= Statements forming cycle in dependence graph put in same loop

UNIVERSITY OF DELAWARE - COMPUTER & INFORMATION SCIENCES DEPARTMENT

Loop distribution (fission)

(1) for1=1to N do
(2) A[l] =A[i] * B[i-1]

Has the
(3) B[] =C[I-]*X+C following
(4) C[l] = 1/B[]] dependence
(5) DI =sqrt(ClN) graph
(6) endfor

ofololo

UNIVERSITY OF DELAWARE - COMPUTER & INFORMATION SCIENCES DEPARTMENT

Loop distribution (fission)

(1) for1=1to N do
(1) for1=1to N do (2) A[l] = A[i] + BJ[i-1]

(2) A[l]=Ali] +B[i-1] becomes (3) endfor
(3) BI[l]=C[I-1]"X+C (fission) (4) for
(4) C[l]=1/B[] (5) B[l = C[I-]*X+C
(5) D[] =sqrt(C[l]) (6) C[I]=1/B[l]
(6) endfor (7) endfor
(8) for
(9) D[] =sqrt(C[1])
(10) endfor

UNIVERSITY OF DELAWARE - COMPUTER & INFORMATION SCIENCES DEPARTMENT

Loop Fission Advantages

s Enables other transformations

= E.g., Vectorization

= Resulting loops have smaller cache footprints

s More reuse hits in the cache

UNIVERSITY OF DELAWARE - COMPUTER & INFORMATION SCIENCES DEPARTMENT

Loop Tiling (blocking)

Eeasaacs—— eaaoe
dot= 1,T — e e
doi=1,n m
doj=1,n BRASSEESS s B

e A(L]) . v rsesteaacee

end do T P
end do —— T - - - - e
end do o e — — o

Want to exploit temporal locality
in loop nest.

UNIVERSITY OF DELAWARE - COMPUTER & INFORMATION SCIENCES DEPARTMENT

doic=1,n, B ’\S control loops
dojc=1,n,B
dot=1,T
doi = ic, min(n,ic+B-1), 1
doj =jc, min(n, jc+B-1), 1
.a(i,j) ...
end do
end do

end do
end do

end do

ic=1

B: Block Size
UNIVERSITY OF DELAWARE ¢+ COMPUTER & INFORMATION SCIENCES DEPARTMENT

Loop Tiling (blocking)

doic=1,n, B control loops eeeoe
dojc=1,n,B oo ona
dot=1T 3433
do i = ic, min(n,ic+B-1), 1 e
do j = jc, min(n, jc+B-1), 1 ceeee
-+ A1) ...
end do eecccceccccccoce
end do cecessssssssesss
enddo L BN R BN BN BN BN BN BN BN BN BN BN BN BN BN J
end do
end do

B: Block Size

UNIVERSITY OF DELAWARE - COMPUTER & INFORMATION SCIENCES DEPARTMENT

Loop Tiling (blocking)

doic=1,n,B ¢ controlloops Toriiiiiiiiiiie
dojc=1,n, B Trrssiiiiiiiie:
dot=1,T Trriisiiiiiiiie:
do i = ic, min(n,ic+B-1), 1 ceEtiiiiiiies
doj =jc, min(n, jc+B-1), 1 seeeceee
oo A1) soiiieis
enddo lc:B 00000 00
end do R
enddo 0000 0 00
end do B
end do

B: Block Size

UNIVERSITY OF DELAWARE - COMPUTER & INFORMATION SCIENCES DEPARTMENT

Loop Tiling (blocking)

doac=1,n,s’\5 Fontrol faope il
dojc=1,n,B cececssssesssees
dot=1T ceesessssssesses
do i = ic, min(n,ic+B-1), 1 cecesdeqdedE=BL
doj = jc, min(n, jc+B-1), 1 S
... a(i,j) ... seccode
end do =B,
end do cecesde
enddo o0 000 Q
end do
end do

B: Block Size
When is this legal?

UNIVERSITY OF DELAWARE - COMPUTER & INFORMATION SCIENCES DEPARTMENT

Loop Tiling Effects

m Reduces volume of data between reuses

= Works on one “tile” at a time (z‘z'/e size s B by B)

m Choice of tile size 1s crucial

UNIVERSITY OF DELAWARE - COMPUTER & INFORMATION SCIENCES DEPARTMENT

Scalar Replacement

= Allocators never keep c(1) in a register

= We can trick the allocator by rewriting the references

The plan

= Locate patterns of consistent reuse

= Make loads and stores use temporary scalar variable

= Replace references with temporary’s name

UNIVERSITY OF DELAWARE - COMPUTER & INFORMATION SCIENCES DEPARTMENT

Scalar Replacement

. doi=1ton
doi=1ton t = a(i)
doj=1ton becomes doj=1ton
a(i)=ai) +b() (scqlar replacement) t= 1+b(j)
end end
end a(i)=t
end

Almost any register allocator
can get tinfo a register

UNIVERSITY OF DELAWARE - COMPUTER & INFORMATION SCIENCES DEPARTMENT

Scalar Replacement Effects

m Decreases number of loads and stores

= Keeps reused values in names that can be
allocated to registers

= In essence, this exposes the reuse of a(l) to
subsequent passes

UNIVERSITY OF DELAWARE - COMPUTER & INFORMATION SCIENCES DEPARTMENT

