
Code Shape II
Procedure Calls, Dispatch,

Booleans, Relationals, & Control flow

Procedure Linkages
Standard procedure linkage

procedure p

prolog

epilog

pre-call

post-return

procedure q

prolog

epilog

Procedure has
•  standard prolog
•  standard epilog
Each call involves a
•  pre-call sequence
•  post-return sequence
These are completely
predictable from the
call site ⇒ depend on
the number & type of
the actual parameters

Implementing Procedure Calls
If p calls q, one of them must
•  Preserve register values (caller-saves versus callee saves)

→  Caller-saves registers stored/restored by p in p ‘s AR
→  Callee-saves registers stored/restored by q in q ‘s AR

•  Allocate the AR
→  Heap allocation ⇒ callee allocates its own AR
→  Stack allocation ⇒ caller & callee cooperate to allocate AR

Space tradeoff
•  Pre-call & post-return occur on every call
•  Prolog & epilog occur once per procedure
•  More calls than procedures

→  Moving operations into prolog/epilog saves space

Implementing Procedure Calls
If p calls q, one of them must
•  Preserve register values (caller-saves versus callee saves)

If space is an issue
•  Moving code to prolog & epilog saves space
•  As register sets grow, save/restore code does, too

→  Each saved register costs 2 operations
→  Can use a library routine to save/restore

♦  Pass it a mask to determine actions & pointer to space
♦  Hardware support for save/restore or storeM/loadM

Can decouple who saves from what is saved

Implementing Procedure Calls
Evaluating parameters
•  Call by reference ⇒ evaluate parameter to an lvalue
•  Call by value ⇒ evaluate parameter to an rvalue & store it

Aggregates (structs), arrays, & strings are usually c-b-r
•  Language definition issues
•  Alternatives

→  Small structures can be passed in registers
→  Can pass large c-b-v objects c-b-r and copy on modification

Procedure-valued parameters
•  Must pass starting address of procedure

Implementing Procedure Calls
What about arrays as actual parameters?
Whole arrays, as call-by-reference parameters
•  Callee needs dimension information

→  Builds a descriptor called a dope vector
•  Store the values in the calling sequence
•  Pass the address of the dope vector in the parameter slot
•  Generate complete address polynomial at each reference
 dope vector

@A

low1

high1

low2

high2

Implementing Procedure Calls
What about A[12] as an actual parameter?

If corresponding parameter is a scalar, it’s easy
•  Pass the address or value, as needed

What if corresponding parameter is an array?
•  See previous slide

Implementing Procedure Calls
What about a string-valued argument?
•  Call by reference ⇒ pass a pointer to the start of the string

→  Works with either length/contents or null-terminated string
•  Call by value ⇒ copy the string & pass it

→  Can store it in caller’s AR or callee’s AR
→  Can pass by reference & have callee copy it if necessary …

Pointer of string serves as “descriptor” for the string, stored
in the appropriate location (register or slot in the AR)

Implementing Procedure Calls
What about a structure-valued parameter?
•  Again, pass a handle
•  Call by reference ⇒ descriptor (pointer) refers to original
•  Call by value ⇒ create copy & pass its descriptor

→  Can allocate it in either caller’s AR or callee’s AR
→  Can pass by reference & have callee copy it if necessary …

If it is actually an array of structures, then use a dope vector

What About Calls in an OOL (Dispatch)?
In an OOL, most calls are indirect calls
•  Compiled code does not contain address of callee

→  Finds it by indirection through class’ method table
→  Required to make subclass calls find right methods
→  Code compiled in class C cannot know of subclass methods that

override methods in C and C ‘s superclasses
•  In the general case, need dynamic dispatch

→  Map method name to a search key
→  Perform a run-time search through hierarchy

♦  Start with object’s class, search for 1st occurrence of key
♦  This can be expensive

→  Use a method cache to speed search
♦  Cache holds < key,class,method pointer >

How big?
Bigger ⇒ more hits & longer search
Smaller ⇒ fewer hits, faster search

What About Calls in an OOL (Dispatch)?
Improvements are possible in special cases
•  If class has no subclasses, can generate direct call

→  Class structure must be static or class must be FINAL
•  If class structure is static

→  Can generate complete method table for each class
→  Single indirection through class pointer (1 or 2 operations)
→  Keeps overhead at a low level

•  If class structure changes infrequently
→  Build complete method tables at run time
→  Initialization & any time class structure changes

What About Calls in an OOL (Dispatch)?
Unusual issues in OOL call
•  Need to pass receiver’s object record as (1st) parameter

→  Becomes self or this
•  Method needs access to its class

→  Object record has static pointer to superclass, and so on …
•  Method is a full-fledged procedure

→  It still needs an AR …
→  Can often stack allocate them (HotSpot does …)

Boolean & Relational Values
How should the compiler represent them?
•  Answer depends on the target machine

Two classic approaches
•  Numerical representation
•  Positional (implicit) representation
Correct choice depends on both context and ISA

Boolean & Relational Values
Numerical representation
•  Assign values to TRUE and FALSE
•  Use hardware AND, OR, and NOT operations
•  Use comparison to get a boolean from a relational expression

Examples

x < y becomes cmp_LT rx,ry ⇒r1

if (x < y)
 then stmt1 becomes
 else stmt2

cmp_LT rx,ry ⇒r1

cbr r1→_stmt1,_stmt2

Boolean & Relational Values
What if the ISA uses a condition code?
•  Must use a conditional branch to interpret result of compare
•  Necessitates branches in the evaluation

Example:

This “positional representation” is much more complex

cmp rx, ry⇒cc1

cbr_LT cc1→LT,LF

x < y becomes LT: loadI 1 ⇒ r2

br →LE

LF: loadI 0 ⇒ r2

LE: …other stmts…

Boolean & Relational Values
What if the ISA uses a condition code?
•  Must use a conditional branch to interpret result of compare
•  Necessitates branches in the evaluation

Example:

This “positional representation” is much more complex

cmp rx, ry⇒cc1

cbr_LT cc1→LT,LF

x < y becomes LT: loadI 1 ⇒ r2

br →LE

LF: loadI 0 ⇒ r2

LE: …other stmts…

Condition codes

•  are an architect’s hack
•  allow ISA to avoid some
 comparisons
•  complicates code for
 simple cases

Boolean & Relational Values
The last example actually encodes result in the PC
If result is used to control an operation, this may be enough

Condition code version does not directly produce (x < y)
Boolean version does
Still, there is no significant difference in the code produced

VARIATIONS ON THE ILOC BRANCH STRUCTURE
Straight Condition Codes Boolean Compares

 comp rx,ry⇒cc1 cmp_LT rx,ry⇒r1
 cbr_LT cc1 →L1,L2 cbr r1 →L1,L2

L1: add rc,rd⇒ra L1: add rc,rd⇒ra
 br →LOUT br →LOUT

L2: add re,rf ⇒ra L2: add re,rf ⇒ra
 br →LOUT br →LOUT

LOUT: nop LOUT: nop

if (x < y)
 then a ← c + d
 else a ← e + f

Example

Boolean & Relational Values
Conditional move & predication both simplify this code

Both versions avoid the branches
Both are shorter than CCs or Boolean-valued compare
Are they better?

OTHER ARCHITECTURAL VARIATIONS

Conditional Move Predicated Execution

comp rx,ry⇒cc1 cmp_LT rx,ry⇒r1

add rc,rd⇒r1 (r1)? add rc,rd⇒ra

add re,rf ⇒r2 (¬r1)? add re,rf ⇒ra

i2i_< cc1,r1,r2⇒ra

if (x < y)
 then a ← c + d
 else a ← e + f

Example

Boolean & Relational Values
Consider the assignment x ← a < b ∧ c < d

Here, the boolean compare produces much better code

VARIATIONS ON THE ILOC BRANCH STRUCTURE

Straight Condition Codes Boolean Compare
comp ra,rb⇒cc1 cmp_LT ra,rb⇒r1

cbr_LT cc1 →L1,L2 cmp_LT rc,rd⇒r2

L1: comp rc,rd⇒cc2 and r1,r2⇒rx

cbr_LT cc2 →L3,L2

L2: loadI 0 ⇒ rx

br →LOUT

L3: loadI 1 ⇒ rx

br →LOUT

LOUT: nop

Boolean & Relational Values
Conditional move & predication help here, too

Conditional move is worse than Boolean compares
Predication is identical to Boolean compares

Context & hardware determine the appropriate choice

OTHER ARCHITECTURAL VARIATIONS

Conditional Move Predicated Execution
comp ra,rb ⇒cc1 cmp_LT ra,rb⇒r1

i2i_< cc1,rT,rF ⇒r1 cmp_LT rc,rd⇒r2

comp rc,rd ⇒cc2 and r1,r2⇒rx

i2i_< cc2,rT,rF ⇒r2

and r1,r2 ⇒rx

x ← a < b ∧ c < d

Control Flow
If-then-else
•  Follow model for evaluating relationals & booleans with

branches

Branching versus predication (e.g., IA-64)
•  Frequency of execution

→  Uneven distribution ⇒ do what it takes to speed common case
•  Amount of code in each case

→  Unequal amounts means predication may waste issue slots
•  Control flow inside the construct

→  Any branching activity within the case base complicates the
predicates and makes branches attractive

Control Flow
Loops
•  Evaluate condition before loop (if needed)
•  Evaluate condition after loop
•  Branch back to the top (if needed)
Merges test with last block of loop body

while, for, do, & until all fit this basic model

Pre-test

Loop body

Post-test

Next block

Loop Implementation Code

 loadI 1 ⇒ r1
loadI 1 ⇒ r2
loadI 100 ⇒ r3
cmp_GE r1, r3 ⇒ r4
cbr r4 ⇒ L2, L1

L1: body

 add r1, r2 ⇒ r1
 cmp_LT r1, r3 ⇒ r5
 cbr r5 ⇒ L1, L2

L2: next statement

for (i = 1; i< 100; i++) { body }
 next statement

Pre-test

Post-test

Initialization

Break statements
Many modern programming languages include a break
•  Exits from the innermost control-flow statement

→  Out of the innermost loop
→  Out of a case statement

Translates into a jump
•  Targets statement outside control-

 flow construct
•  Creates multiple-exit construct
•  Skip in loop goes to next iteration

Only make sense if loop has > 1 block

Pre-test

Loop head

Post-test

Next block

B 1 B 2 Break
in B 1

Skip
in B 2

Control Flow
Case Statements
1  Evaluate the controlling expression
2  Branch to the selected case
3  Execute the code for that case
4  Branch to the statement after the case
Parts 1, 3, & 4 are well understood, part 2 is the key

Control Flow
Case Statements
1  Evaluate the controlling expression
2  Branch to the selected case
3  Execute the code for that case
4  Branch to the statement after the case (use break)
Parts 1, 3, & 4 are well understood, part 2 is the key

Strategies
•  Linear search (nested if-then-else constructs)
•  Build a table of case expressions & binary search it
•  Directly compute an address (requires dense case set)

Surprisingly many
compilers do this

for all cases!

