
Context-sensitive Analysis 



Beyond Syntax 
There is a level of correctness that is deeper than grammar 

fie(a,b,c,d) 
 int a, b, c, d; 

{ … } 

fee() { 
 int f[3],g[0], 
  h, i, j, k; 

  char *p; 
 fie(h,i,“ab”,j, k);  
 k = f * i + j; 
 h = g[17]; 
 printf(“<%s,%s>.\n”, 
  p,q); 
 p = 10; 

} 

What is wrong with this program? 
(let me count the ways …) 



Beyond Syntax 
There is a level of correctness that is deeper than grammar 

To generate code, we need to understand its meaning ! 

fie(a,b,c,d) 
 int a, b, c, d; 

{ … } 

fee() { 
 int f[3],g[0], 
  h, i, j, k; 

  char *p; 
 fie(h,i,“ab”,j, k);  
 k = f * i + j; 
 h = g[17]; 
 printf(“<%s,%s>.\n”, 
  p,q); 
 p = 10; 

} 

What is wrong with this program? 
(let me count the ways …) 

•  declared g[0], used g[17] 

•  wrong number of  args to fie() 

•  “ab” is not an int 

•  wrong dimension on use of  f  

•  undeclared variable q 

•  10 is not a character string 

All of  these are  

“deeper than syntax” 



Beyond Syntax 

To generate code, the compiler needs to answer many questions  
•  Is “x” a scalar, an array, or a function?  Is “x” declared? 
•  Are there names that are not declared?  Declared but not used? 
•  Which declaration of “x” does each use reference? 
•  Is the expression “x * y + z” type-consistent? 
•  In “a[i,j,k]”, does a have three dimensions? 
•  Where can “z” be stored?            (register, local, global, heap, static) 
•  How many arguments does “fie()” take? What about “printf ()” ? 
•  Does “*p” reference the result of a “malloc()” ?   
•  Do “p” & “q” refer to the same memory location? 
•  Is “x” defined before it is used? 

These are beyond a CFG 



Beyond Syntax 
These questions are part of context-sensitive analysis 
•  Questions & answers involve non-local information 
•  Answers may involve computation 

How can we answer these questions? 
•  Use formal methods 

→  Attribute grammars? 
  Also known as attributed CFG or syntax-directed definitions 

•  Use ad-hoc techniques 
→  Symbol tables 
→  Ad-hoc code                                                         (action routines) 

In scanning & parsing, formalism won; different story here. 



Beyond Syntax 
Telling the story 
•  The attribute grammar formalism is important 

→  Succinctly makes many points clear 
→  Sets the stage for actual, ad-hoc practice 

•  The problems with attribute grammars motivate practice 
→  Non-local computation 
→  Need for centralized information 

•  Some folks still argue for attribute grammars 
→  In practice, ad-hoc techniques used 

We will cover attribute grammars, then move on to ad-hoc ideas 



Attribute Grammars 
What is an attribute grammar? 
•  A context-free grammar augmented with a set of rules 
•  Each symbol in the derivation has a set of values, or attributes 

→  X.a denotes the value of a  at a particular parse-tree node labeled X  
•  The rules specify how to compute a value for each attribute 

Example grammar 

This grammar describes signed binary 
numbers: +101, -11, +10101, but not 101 
We would like to augment it with rules 
that compute the decimal value of each 
valid input string 

Example: parse -101 and compute -5 



Examples  

We will use these two throughout the lecture 

Number  → Sign List 

 → – List 

 → – Bit 

 → – 1 
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– 

For “–1” 
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 → Sign Bit 0 1 
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For “–101” 



Attribute Grammars 

Add rules to compute the decimal value of a signed binary number 

Symbol Attributes

Number val

Sign neg

List pos, val

Bit pos, val



Back to the Examples 

Number 

List 

Bit 

1 

Sign 

– 

neg ← true 

Bit.pos ← 0 
Bit.val ← 2Bit.pos ≡ 1 

List.pos ← 0 
List.val ← Bit.val ≡ 1 

Number.val ←  – List.val ≡ –1 For “–1” One possible evaluation order: 

1  List.pos  

2  Sign.neg 

3  Bit.pos 

4  Bit.val 

5  List.val 

6  Number.val 

Other orders are possible 

Knuth suggested a data-flow model for evaluation 

•  Independent attributes first 

•  Others in order as input values become available 

Rules + parse tree 
imply an attribute 
dependence graph 

Evaluation order 
must be consistent 
with the  attribute 
dependence graph 



Back to the Examples 

This is the complete 
attribute dependence 
graph for “–101”. 

It shows the flow of  all 
attribute values in the 
example. 

Some flow downward 

→ inherited attributes 

Some flow upward 
→ synthesized attributes 

A rule may use attributes 
in the parent, children, or 
siblings of  a node 
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pos: 0 
val: 1 
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val: 4 
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pos: 2 
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pos: 0 
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val: –5 

neg: true 

For “–101” 



The Rules of the Game 
•  Attributes associated with nodes in parse tree 
•  Rules are value assignments associated with productions 
•  Attribute is defined once, using local information 
•  Label identical terms in production for uniqueness 
•  Rules & parse tree define an attribute dependence graph 

→  Graph must be non-circular  
This produces a high-level, functional specification 

Synthesized attribute 
→  Depends  on values from children 

Inherited attribute 
→  Depends on values from siblings & parent 



Using Attribute Grammars 
Attribute grammars can specify context-sensitive actions 
•  Take values from syntax 
•  Perform computations with values 
•  Insert tests, logic, … 

We want to use both kinds of attribute  

Synthesized Attributes 

•  Use values from children  
  & from constants 

•  S-attributed grammars 

•  Evaluate in a single  
   bottom-up pass 

Good match to LR parsing 

Inherited Attributes 

•  Use values from parent,   
  constants, & siblings 

•  directly express context 

•  can rewrite to avoid them 

•  Thought to be more natural 

Not easily done at parse time 



Evaluation Methods 
Dynamic, dependence-based methods 
•  Build the parse tree 
•  Build the dependence graph 
•  Topological sort the dependence graph 
•  Define attributes in topological order 

Rule-based methods                                                    (treewalk) 
•  Analyze rules at compiler-generation time 
•  Determine a fixed (static) ordering 
•  Evaluate nodes in that order 

Oblivious methods                                            (passes, dataflow) 
•  Ignore rules & parse tree 
•  Pick a convenient order (at design time) & use it 



Back to the Example 
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Bit 
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0 

1 For “–101” 



Back to the Example 
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Back to the Example 
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Inherited Attributes 



Back to the Example 
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Synthesized attributes 



Back to the Example 
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Synthesized attributes 



Back to the Example 

Number 

Sign List 

Bit List 

Bit List 

Bit 

– 

1 

0 

1 

pos: 1 
val: 0 

pos: 0 
val: 1 

pos: 2 
val: 4 

pos: 2 
val: 4 

pos: 1 
val: 4 

pos: 0 
val: 5 

val: –5 

neg: true 

For “–101” 

& then peel away the parse tree ... 

If  we show the computation ... 



Back to the Example 
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All that is left is the attribute 
dependence graph. 

This succinctly represents the 
flow of  values in the problem 
instance. 

The dynamic methods sort this 
graph to find independent 
values, then work along graph 
edges.   

The rule-based methods try to 
discover “good” orders by 
analyzing the rules. 

The oblivious methods ignore 
the structure of  this graph. 

The dependence graph must be acyclic 



Circularity 
We can only evaluate acyclic instances 
•  We can prove that some grammars can only generate instances 

with acyclic dependence graphs 
•  Largest such class is “strongly non-circular” grammars (SNC ) 
•  SNC grammars can be tested in polynomial time 
•  Failing the SNC test is not conclusive 

Many evaluation methods discover circularity dynamically 
⇒ Bad property for a compiler to have 

SNC grammars were first defined by Kennedy & Warren  



An Extended Example 
Grammar for a basic block                                  (§ 4.3.3)  

Block0 → Block1 Assign
 Assign

Assign → Ident  =  Expr  ;
Expr0 → Expr1  + Term

 Expr1  – Term
 Term

Term0 → Term1  *  Factor
 Term1  /  Factor
 Factor

Factor → (  Expr  )
 Number
 Identifier

Let’s estimate cycle counts 

•  Each operation has a COST 

•  Add them, bottom up 

•  Assume a load per value 

•  Assume no reuse 

Simple problem for an AG 



An Extended Example                       (continued)    
Adding attribution rules All these attributes are synthesized! 



An Extended Example 
Properties of the example grammar 
•  All attributes are synthesized ⇒ S-attributed grammar 
•  Rules can be evaluated bottom-up in a single pass 

→  Good fit to bottom-up, shift/reduce parser 
•  Easily understood solution 
•  Seems to fit the problem well 

What about an improvement? 
•  Values are loaded only once per block (not at each use) 
•  Need to track which values have been already loaded 



Adding load tracking 
•  Need sets Before and After for each production 
•  Must be initialized, updated, and passed around the tree 

A Better Execution Model 

Factor → (  Expr  ) Factor.cost ← Expr.cost ;
Expr.Before ← Factor.Before ;
Factor.After ← Expr.After

 Number Factor.cost ← COST(loadi) ;
Factor.After ← Factor.Before

 Identifier If (Identifier.name ∉ Factor.Before)
   then
        Factor.cost ← COST(load);
        Factor.After ← Factor.Before
                      ∪ Identifier.name
   else
       Factor.cost ← 0
       Factor.After ← Factor.Before

This looks more complex! 



•  Load tracking adds complexity 
•  But, most of it is in the “copy rules” 
•  Every production needs rules to copy Before & After 

A sample production 

These copy rules multiply rapidly 
Each creates an instance of the set 
Lots of work, lots of space, lots of rules to write 

A Better Execution Model 

Expr0 → Expr1  + Term Expr0.cost ← Expr1.cost +
            COST(add) + Term.cost ;
Expr1.Before ← Expr0.Before ;
Term.Before ← Expr1.After;
Expr0.After ← Term.After



What about accounting for finite register sets? 
•  Before & After must be of limited size 
•  Adds complexity to Factor→Identifier  
•  Requires more complex initialization 

Jump from tracking loads to tracking registers is small 
•  Copy rules are already in place 
•  Some local code to perform the allocation 

Next class  
⇒  Curing these problems with ad-hoc syntax-directed translation 

An Even Better Model 


