
Parsing VI 
The LR(1) Table Construction 



Building the Canonical Collection 
Start from s0 = closure( [S’→S,EOF ] ) 
Repeatedly construct new states, until all are found 

The algorithm 

s0 ←  closure ( [S’→S,EOF] ) 
S  ←  { s0  } 
k  ←  1 
while ( S is still changing ) 
   ∀ sj ∈ S and ∀ x ∈ ( T ∪ NT ) 
         sk ←  goto(sj,x) 
         record sj → sk on x 
    if  sk ∉ S then  

   S ← S ∪ sk 
     k ← k + 1 

  Fixed-point computation 
  Loop adds to S 
  S ⊆ 2(LR ITEMS), so S is finite 



Example from SheepNoise 
Starts with S0 

s0 ← closure( { [Goal → •Expr , EOF] } ) 

s0 ←  closure ( [S’→S,EOF] ) 
S  ←  { s0  } 
k  ←  1 
while ( S is still changing ) 
   ∀ sj ∈ S and ∀ x ∈ ( T ∪ NT ) 
         sk ←  goto(sj,x) 
         record sj → sk on x 
    if  sk ∉ S then  

   S ← S ∪ sk 
     k ← k + 1 



Example from SheepNoise 
Starts with S0 

s0 ← closure( { [Goal → •Expr , EOF] } ) 
{ [Goal→ • SheepNoise, EOF], [SheepNoise→ • baa SheepNoise, EOF], 


   [SheepNoise→• baa, EOF]} 



Example from SheepNoise 
Starts with S0 
S0 : { [Goal→ • SheepNoise, EOF], [SheepNoise→ • baa SheepNoise, EOF], 


   [SheepNoise→• baa, EOF]} 

Iteration 1 computes 
S1  = Goto(S0 , SheepNoise)  



Example from SheepNoise 
Starts with S0 
S0 : { [Goal→ • SheepNoise, EOF], [SheepNoise→ • baa SheepNoise, EOF], 


   [SheepNoise→• baa, EOF]} 

Iteration 1 computes 
S1  = Goto(S0 , SheepNoise) =  

 { [Goal→ SheepNoise •, EOF]} 

S2  = Goto(S0 , baa) 



Example from SheepNoise 
Starts with S0 
S0 : { [Goal→ • SheepNoise, EOF], [SheepNoise→ • baa SheepNoise, EOF], 


   [SheepNoise→• baa, EOF]} 

Iteration 1 computes 
S1  = Goto(S0 , SheepNoise) =  

 { [Goal→ SheepNoise •, EOF]} 

S2  = Goto(S0 , baa) = { [SheepNoise→ baa •, EOF],    
       [SheepNoise→ baa • SheepNoise, EOF],            
       [SheepNoise→ • baa, EOF],    
       [SheepNoise→ • baa SheepNoise, EOF]} 



Example from SheepNoise 

Starts with S0 
S0 : { [Goal→ • SheepNoise, EOF], [SheepNoise→ • baa SheepNoise, EOF], 


   [SheepNoise→• baa, EOF]} 

Iteration 1 computes 
S1  = Goto(S0 , SheepNoise) =  

 { [Goal→ SheepNoise •, EOF]}  

S2  = Goto(S0 , baa) = { [SheepNoise→ baa •, EOF],    
       [SheepNoise→ baa • SheepNoise, EOF],            
       [SheepNoise→ • baa, EOF],    
       [SheepNoise→ • baa SheepNoise, EOF]} 

Iteration 2 computes 
 Goto(S2,baa) creates S2 
 S3  = Goto(S2,SheepNoise) = {[SheepNoise→ baa SheepNoise•, EOF]} 



Example from SheepNoise 

Starts with S0 
S0 : { [Goal→ • SheepNoise, EOF], [SheepNoise→ • baa SheepNoise, EOF], 


   [SheepNoise→• baa, EOF]} 

Iteration 1 computes 
S1  = Goto(S0 , SheepNoise) =  

 { [Goal→ SheepNoise •, EOF]}  

S2  = Goto(S0 , baa) = { [SheepNoise→ baa •, EOF],    
       [SheepNoise→ baa • SheepNoise, EOF],            
       [SheepNoise→ • baa, EOF],    
       [SheepNoise→ • baa SheepNoise, EOF]} 

Iteration 2 computes 
 Goto(S2,baa) creates S2 
 S3  = Goto(S2,SheepNoise) = {[SheepNoise→ baa SheepNoise•, EOF]} 

Nothing more to 
compute, since • is 
at the end of the 
item in S3 . 



Example 
Simplified, right recursive expression grammar 

Goal → Expr 
Expr → Term – Expr 
Expr → Term 
Term → Factor * Term  
Term → Factor 
Factor → ident 



Example                            (building the collection) 
Initialization Step 

s0 ← closure( { [Goal → •Expr , EOF] } ) Goal → Expr 
Expr → Term – Expr 
Expr → Term 
Term → Factor * Term  
Term → Factor 
Factor → ident 



Example                            (building the collection) 
Initialization Step 

s0 ← closure( { [Goal → •Expr , EOF] } ) 
{  [Goal →  • Expr , EOF], [Expr →  • Term – Expr , EOF],  
   [Expr →  • Term , EOF], [Term →  • Factor * Term , EOF],  
   [Term →  • Factor * Term , –], [Term →  • Factor , EOF],  
   [Term →  • Factor , –], [Factor →  • ident , EOF],    
   [Factor →  • ident , –], [Factor →  • ident , *]  } 

S ← {s0  } 



Example                            (building the collection) 
Initialization Step 

s0 ← closure( { [Goal → •Expr , EOF] } ) 
{  [Goal →  • Expr , EOF], [Expr →  • Term – Expr , EOF],  
   [Expr →  • Term , EOF], [Term →  • Factor * Term , EOF],  
   [Term →  • Factor * Term , –], [Term →  • Factor , EOF],  
   [Term →  • Factor , –], [Factor →  • ident , EOF],    
   [Factor →  • ident , –], [Factor →  • ident , *]  } 

S ← {s0  } s0 ←  closure ( [S’→S,EOF] ) 
S  ←  { s0  } 
k  ←  1 
while ( S is still changing ) 
   ∀ sj ∈ S and ∀ x ∈ ( T ∪ NT ) 
         sk ←  goto(sj,x) 
         record sj → sk on x 
    if  sk ∉ S then  

   S ← S ∪ sk 
     k ← k + 1 



Example                            (building the collection) 
Iteration 1 

s1  ← goto(s0 , Expr) 
s2  ← goto(s0 , Term) 
s3 ← goto(s0 , Factor) 
s4  ← goto(s0 , ident ) 

Iteration 2 
s5 ← goto(s2 , – ) 
s6 ← goto(s3 , * ) 

Iteration 3 
s7 ← goto(s5 , Expr ) 
s8 ← goto(s6 , Term ) 

s0 ←  closure ( [S’→S,EOF] ) 
S  ←  { s0  } 
k  ←  1 
while ( S is still changing ) 
   ∀ sj ∈ S and ∀ x ∈ ( T ∪ NT ) 
         sk ←  goto(sj,x) 
         record sj → sk on x 
    if  sk ∉ S then  

   S ← S ∪ sk 
     k ← k + 1 

Let’s just create sets s1  through s4  



Example                                             (Summary) 
S0 : { [Goal  → • Expr , EOF], [Expr → • Term – Expr , EOF],  
          [Expr → • Term , EOF], [Term → • Factor * Term , EOF],  
          [Term → • Factor * Term , –], [Term → • Factor , EOF],  
         [Term → • Factor , –], [Factor → • ident , EOF],  
         [Factor  → • ident , –], [Factor→ • ident, *] } 
S1 : { [Goal → Expr •, EOF] } 
S2  : { [Expr → Term • – Expr , EOF], [Expr → Term •, EOF] } 

S3 : { [Term → Factor • * Term , EOF],[Term → Factor • * Term , –],  
        [Term → Factor •, EOF], [Term → Factor •, –] } 

S4 : { [Factor → ident •, EOF],[Factor → ident •, –], [Factor → ident •, *] } 

S5 : { [Expr → Term –  • Expr , EOF], [Expr  → • Term – Expr , EOF],  
         [Expr → • Term , EOF], [Term → • Factor * Term , –],  
        [Term  → • Factor , –], [Term  → • Factor * Term , EOF],  
        [Term → • Factor , EOF], [Factor → • ident , *],  
        [Factor → • ident , –], [Factor → • ident , EOF] } 



Example                                            (Summary) 

S6 : { [Term → Factor * • Term , EOF], [Term → Factor * • Term , –],  
  [Term →  • Factor * Term , EOF], [Term →  • Factor * Term , –],  
   [Term →  • Factor , EOF], [Term →  • Factor , –],  
   [Factor →  • ident , EOF], [Factor →  • ident , –], [Factor →  • ident , *] } 

S7: { [Expr → Term – Expr •, EOF] } 

S8 : { [Term → Factor * Term •, EOF], [Term → Factor * Term •, –] } 



Example                              (Summary) 

The Goto Relationship (from the construction)  

Iteration 1 
s1  ← goto(s0 , Expr) 
s2  ← goto(s0 , Term) 
s3 ← goto(s0 , Factor) 
s4  ← goto(s0 , ident ) 



Example                              (Summary) 

The Goto Relationship (from the construction)  

Iteration 2 
s5 ← goto(s2 , – ) 
s6 ← goto(s3 , * ) 



Example                              (Summary) 

The Goto Relationship (from the construction)  

State Expr Term Factor - * Ident

0 1 2 3 4

1

2 5

3 6

4

5 7 2 3 4

6 8 3 4

7

8

Iteration 3 
s7 ← goto(s5 , Expr ) 
s8 ← goto(s6 , Term ) 
Iteration also creates duplicate states  2, 3, and 4. 



Filling in the ACTION and GOTO Tables 
The algorithm 

Many items generate no table entry  
→  Closure( ) instantiates FIRST(X) directly for [A→β•Xδ,a ] 

∀ set sx ∈ S  
    ∀ item i ∈ sx 
        if  i is [A→β •ad,b] and goto(sx,a) = sk , a ∈ T 
             then ACTION[x,a] ← “shift k” 
        else if  i is [A→β •,a] 
              then ACTION[x,a] ← “reduce A→β” 
       else if  i is [S’→S •,EOF] 
             then ACTION[x ,a] ← “accept” 
    ∀ n ∈ NT 
        if  goto(sx ,n) = sk 
            then GOTO[x,n] ← k 

x is the state number 



Example                                (Filling in the tables) 
The algorithm produces the following table 

ACTION GOTO

Ident - * EOF Expr Term Factor
0 s 4 1 2 3
1 acc
2 s 5 r 3
3 r 5 s 6 r 5
4 r 6 r 6 r 6
5 s 4 7 2 3
6 s 4 8 3
7 r 2
8 r 4 r 4

Plugs into the skeleton LR(1) parser 



What can go wrong? 
What if set s contains [A→β•aγ,b] and [B→β•,a] ? 
•  First item generates “shift”, second generates “reduce”  
•  Both define ACTION[s,a] — cannot do both actions 
•  This is a fundamental ambiguity, called a shift/reduce error 
•  Modify the grammar to eliminate it                    (if-then-else) 
•  Shifting will often resolve it correctly  

What is set s contains [A→γ•, a] and [B→γ•, a] ? 
•  Each generates “reduce”, but with a different production 
•  Both define ACTION[s,a] — cannot do both reductions 
•  This fundamental ambiguity is called a reduce/reduce error 
•  Modify the grammar to eliminate it 

In  either case, the grammar is not LR(1) 

EaC includes a 
worked example 



Shrinking the Tables 
Three options: 
•  Combine terminals such as number & identifier, + & -, * & / 

→  Directly removes a column, may remove a row 
→  For expression grammar, 198 (vs. 384) table entries   

•  Combine rows or columns 
→  Implement identical rows once & remap states 
→  Requires extra indirection on each lookup 
→  Use separate mapping for ACTION & for GOTO 

•  Use another construction algorithm 
→  Both LALR(1) and SLR(1) produce smaller tables 
→  Implementations are readily available 


