
Parsing VI
The LR(1) Table Construction

Building the Canonical Collection
Start from s0 = closure([S’→S,EOF])
Repeatedly construct new states, until all are found

The algorithm

s0 ← closure ([S’→S,EOF])
S ← { s0 }
k ← 1
while (S is still changing)
 ∀ sj ∈ S and ∀ x ∈ (T ∪ NT)
 sk ← goto(sj,x)
 record sj → sk on x
 if sk ∉ S then

 S ← S ∪ sk
 k ← k + 1

  Fixed-point computation
  Loop adds to S
  S ⊆ 2(LR ITEMS), so S is finite

Example from SheepNoise
Starts with S0

s0 ← closure({ [Goal → •Expr , EOF] })

s0 ← closure ([S’→S,EOF])
S ← { s0 }
k ← 1
while (S is still changing)
 ∀ sj ∈ S and ∀ x ∈ (T ∪ NT)
 sk ← goto(sj,x)
 record sj → sk on x
 if sk ∉ S then

 S ← S ∪ sk
 k ← k + 1

Example from SheepNoise
Starts with S0

s0 ← closure({ [Goal → •Expr , EOF] })
{ [Goal→ • SheepNoise, EOF], [SheepNoise→ • baa SheepNoise, EOF],

 [SheepNoise→• baa, EOF]}

Example from SheepNoise
Starts with S0
S0 : { [Goal→ • SheepNoise, EOF], [SheepNoise→ • baa SheepNoise, EOF],

 [SheepNoise→• baa, EOF]}

Iteration 1 computes
S1 = Goto(S0 , SheepNoise)

Example from SheepNoise
Starts with S0
S0 : { [Goal→ • SheepNoise, EOF], [SheepNoise→ • baa SheepNoise, EOF],

 [SheepNoise→• baa, EOF]}

Iteration 1 computes
S1 = Goto(S0 , SheepNoise) =

 { [Goal→ SheepNoise •, EOF]}

S2 = Goto(S0 , baa)

Example from SheepNoise
Starts with S0
S0 : { [Goal→ • SheepNoise, EOF], [SheepNoise→ • baa SheepNoise, EOF],

 [SheepNoise→• baa, EOF]}

Iteration 1 computes
S1 = Goto(S0 , SheepNoise) =

 { [Goal→ SheepNoise •, EOF]}

S2 = Goto(S0 , baa) = { [SheepNoise→ baa •, EOF],
 [SheepNoise→ baa • SheepNoise, EOF],
 [SheepNoise→ • baa, EOF],
 [SheepNoise→ • baa SheepNoise, EOF]}

Example from SheepNoise

Starts with S0
S0 : { [Goal→ • SheepNoise, EOF], [SheepNoise→ • baa SheepNoise, EOF],

 [SheepNoise→• baa, EOF]}

Iteration 1 computes
S1 = Goto(S0 , SheepNoise) =

 { [Goal→ SheepNoise •, EOF]}

S2 = Goto(S0 , baa) = { [SheepNoise→ baa •, EOF],
 [SheepNoise→ baa • SheepNoise, EOF],
 [SheepNoise→ • baa, EOF],
 [SheepNoise→ • baa SheepNoise, EOF]}

Iteration 2 computes
 Goto(S2,baa) creates S2
 S3 = Goto(S2,SheepNoise) = {[SheepNoise→ baa SheepNoise•, EOF]}

Example from SheepNoise

Starts with S0
S0 : { [Goal→ • SheepNoise, EOF], [SheepNoise→ • baa SheepNoise, EOF],

 [SheepNoise→• baa, EOF]}

Iteration 1 computes
S1 = Goto(S0 , SheepNoise) =

 { [Goal→ SheepNoise •, EOF]}

S2 = Goto(S0 , baa) = { [SheepNoise→ baa •, EOF],
 [SheepNoise→ baa • SheepNoise, EOF],
 [SheepNoise→ • baa, EOF],
 [SheepNoise→ • baa SheepNoise, EOF]}

Iteration 2 computes
 Goto(S2,baa) creates S2
 S3 = Goto(S2,SheepNoise) = {[SheepNoise→ baa SheepNoise•, EOF]}

Nothing more to
compute, since • is
at the end of the
item in S3 .

Example
Simplified, right recursive expression grammar

Goal → Expr
Expr → Term – Expr
Expr → Term
Term → Factor * Term
Term → Factor
Factor → ident

Example (building the collection)
Initialization Step

s0 ← closure({ [Goal → •Expr , EOF] }) Goal → Expr
Expr → Term – Expr
Expr → Term
Term → Factor * Term
Term → Factor
Factor → ident

Example (building the collection)
Initialization Step

s0 ← closure({ [Goal → •Expr , EOF] })
{ [Goal → • Expr , EOF], [Expr → • Term – Expr , EOF],
 [Expr → • Term , EOF], [Term → • Factor * Term , EOF],
 [Term → • Factor * Term , –], [Term → • Factor , EOF],
 [Term → • Factor , –], [Factor → • ident , EOF],
 [Factor → • ident , –], [Factor → • ident , *] }

S ← {s0 }

Example (building the collection)
Initialization Step

s0 ← closure({ [Goal → •Expr , EOF] })
{ [Goal → • Expr , EOF], [Expr → • Term – Expr , EOF],
 [Expr → • Term , EOF], [Term → • Factor * Term , EOF],
 [Term → • Factor * Term , –], [Term → • Factor , EOF],
 [Term → • Factor , –], [Factor → • ident , EOF],
 [Factor → • ident , –], [Factor → • ident , *] }

S ← {s0 } s0 ← closure ([S’→S,EOF])
S ← { s0 }
k ← 1
while (S is still changing)
 ∀ sj ∈ S and ∀ x ∈ (T ∪ NT)
 sk ← goto(sj,x)
 record sj → sk on x
 if sk ∉ S then

 S ← S ∪ sk
 k ← k + 1

Example (building the collection)
Iteration 1

s1 ← goto(s0 , Expr)
s2 ← goto(s0 , Term)
s3 ← goto(s0 , Factor)
s4 ← goto(s0 , ident)

Iteration 2
s5 ← goto(s2 , –)
s6 ← goto(s3 , *)

Iteration 3
s7 ← goto(s5 , Expr)
s8 ← goto(s6 , Term)

s0 ← closure ([S’→S,EOF])
S ← { s0 }
k ← 1
while (S is still changing)
 ∀ sj ∈ S and ∀ x ∈ (T ∪ NT)
 sk ← goto(sj,x)
 record sj → sk on x
 if sk ∉ S then

 S ← S ∪ sk
 k ← k + 1

Let’s just create sets s1 through s4

Example (Summary)
S0 : { [Goal → • Expr , EOF], [Expr → • Term – Expr , EOF],
 [Expr → • Term , EOF], [Term → • Factor * Term , EOF],
 [Term → • Factor * Term , –], [Term → • Factor , EOF],
 [Term → • Factor , –], [Factor → • ident , EOF],
 [Factor → • ident , –], [Factor→ • ident, *] }
S1 : { [Goal → Expr •, EOF] }
S2 : { [Expr → Term • – Expr , EOF], [Expr → Term •, EOF] }

S3 : { [Term → Factor • * Term , EOF],[Term → Factor • * Term , –],
 [Term → Factor •, EOF], [Term → Factor •, –] }

S4 : { [Factor → ident •, EOF],[Factor → ident •, –], [Factor → ident •, *] }

S5 : { [Expr → Term – • Expr , EOF], [Expr → • Term – Expr , EOF],
 [Expr → • Term , EOF], [Term → • Factor * Term , –],
 [Term → • Factor , –], [Term → • Factor * Term , EOF],
 [Term → • Factor , EOF], [Factor → • ident , *],
 [Factor → • ident , –], [Factor → • ident , EOF] }

Example (Summary)

S6 : { [Term → Factor * • Term , EOF], [Term → Factor * • Term , –],
 [Term → • Factor * Term , EOF], [Term → • Factor * Term , –],
 [Term → • Factor , EOF], [Term → • Factor , –],
 [Factor → • ident , EOF], [Factor → • ident , –], [Factor → • ident , *] }

S7: { [Expr → Term – Expr •, EOF] }

S8 : { [Term → Factor * Term •, EOF], [Term → Factor * Term •, –] }

Example (Summary)

The Goto Relationship (from the construction)

Iteration 1
s1 ← goto(s0 , Expr)
s2 ← goto(s0 , Term)
s3 ← goto(s0 , Factor)
s4 ← goto(s0 , ident)

Example (Summary)

The Goto Relationship (from the construction)

Iteration 2
s5 ← goto(s2 , –)
s6 ← goto(s3 , *)

Example (Summary)

The Goto Relationship (from the construction)

State Expr Term Factor - * Ident

0 1 2 3 4

1

2 5

3 6

4

5 7 2 3 4

6 8 3 4

7

8

Iteration 3
s7 ← goto(s5 , Expr)
s8 ← goto(s6 , Term)
Iteration also creates duplicate states 2, 3, and 4.

Filling in the ACTION and GOTO Tables
The algorithm

Many items generate no table entry
→  Closure() instantiates FIRST(X) directly for [A→β•Xδ,a]

∀ set sx ∈ S
 ∀ item i ∈ sx
 if i is [A→β •ad,b] and goto(sx,a) = sk , a ∈ T
 then ACTION[x,a] ← “shift k”
 else if i is [A→β •,a]
 then ACTION[x,a] ← “reduce A→β”
 else if i is [S’→S •,EOF]
 then ACTION[x ,a] ← “accept”
 ∀ n ∈ NT
 if goto(sx ,n) = sk
 then GOTO[x,n] ← k

x is the state number

Example (Filling in the tables)
The algorithm produces the following table

ACTION GOTO

Ident - * EOF Expr Term Factor
0 s 4 1 2 3
1 acc
2 s 5 r 3
3 r 5 s 6 r 5
4 r 6 r 6 r 6
5 s 4 7 2 3
6 s 4 8 3
7 r 2
8 r 4 r 4

Plugs into the skeleton LR(1) parser

What can go wrong?
What if set s contains [A→β•aγ,b] and [B→β•,a] ?
•  First item generates “shift”, second generates “reduce”
•  Both define ACTION[s,a] — cannot do both actions
•  This is a fundamental ambiguity, called a shift/reduce error
•  Modify the grammar to eliminate it (if-then-else)
•  Shifting will often resolve it correctly

What is set s contains [A→γ•, a] and [B→γ•, a] ?
•  Each generates “reduce”, but with a different production
•  Both define ACTION[s,a] — cannot do both reductions
•  This fundamental ambiguity is called a reduce/reduce error
•  Modify the grammar to eliminate it

In either case, the grammar is not LR(1)

EaC includes a
worked example

Shrinking the Tables
Three options:
•  Combine terminals such as number & identifier, + & -, * & /

→  Directly removes a column, may remove a row
→  For expression grammar, 198 (vs. 384) table entries

•  Combine rows or columns
→  Implement identical rows once & remap states
→  Requires extra indirection on each lookup
→  Use separate mapping for ACTION & for GOTO

•  Use another construction algorithm
→  Both LALR(1) and SLR(1) produce smaller tables
→  Implementations are readily available

