Parsing — Part IT
(Top-down parsing, left-recursion removal)

Parsing Techniques

Top-down parsers (LL(1), recursive descent)

Start at the root of the parse tree and grow toward leaves
Pick a production & try to match the input

Bad "pick” 0 may need to backtrack

Some grammars are backtrack-free (predictive parsing)

Bottom-up parsers (LR(1), operator precedence)

Start at the leaves and grow toward root

As input is consumed, encode possibilities in an internal state
Start in a state valid for legal first tokens

Bottom-up parsers handle a large class of grammars

Top-down Parsing

A top-down parser starts with the root of the parse tree
The root node is labeled with the goal symbol of the grammar

Top-down parsing algorithm:
Construct the root node of the parse tree
Repeat until the fringe of the parse tree matches the input string

1 At a node labeled A, select a production with A on its Ihs and, for
each symbol on its rhs, construct the appropriate child

2 When a terminal symbol is added to the fringe and it doesn’t match
the fringe, backtrack

3 Find the next node to be expanded (label 0 NT)

* The key is picking the right production in step 1
~ That choice should be guided by the input string

Remember the expression grammar?

Version with precedence derived last lecture

O 00 NONO1 A WMN =

Goal -
Expr -

Term -

Factor -

Expr
Expr + Term
Expr - Term
Term

Term * Factor
Term / Factor
Factor
humber

id

And the inputx-2*y

Example

Let'stry x-2*y:

Rule

Sentential Form

Input

O O N AN -

Goal

Expr

Expr + Term
Term + Term
Factor + Term
<id, x>+ Term
<id,x> + Term

1
n

— IX IX IX IX IX IX
I

—

—

—

NI N N N N

* X % X X X

*

K K K K K K K

<id,x>

Leftmost derivation, choose productions in an order that exposes problems

Example

Let's try x©2 * y :

: (Goa)

Rule | Sentential Form | Input
— Goal 1X - g * y w\
1 |Expr 1x-2%y (Expr) é)
2 |Expr + Term 1x-2%y
4 | Term + Term (X-2%y @
7 |Factor + Term 2%y @
9 |<idx>+ Term 2%y
9 |<idx>+ Term |x @& <id, x>

This worked well, except that "- doifn"r match "+"
The parser must backtrack to here

Example

Continuing with x -2 * y :

Rule | Sentential Input
Form
— Goal 'x - 2 N
1 Expr rx - 2 N
3 Expr - Term 'x - 2 v
4 Term - Term 'x - 2 v
7 Factor - Term |1x - 2 v
9 <id,x> - Term 'x - 2 v
9 <id, x> - Term x 1= 2 N
— <id, x> - Term x - 12 v

<id,x>

Example

Continuing with x -2 * y :

Rule | Sentential Input @

Form

— Goal 'x - 2 %y @

3 Expr - Term 'x — 2 * y @ B

4 Term — Term X - 2 *y @

7 Factor - Term |1x - 2 * y

9 <id,x> - Term |1 x — 2 * v @

9 <j_d,X> Term xX 1 D x Y

— <id,x> - Yerm % _@ *y <id,x>

This time, “~" and We can advance past

“~” matched “~”to look at “2”

0 Now, we need to expand Term - the last NT on the fringe

Example

Trying to match the "2"in x-2*y: @
Rule | Sentential Form | Input @
— [- - *
S A A
9 id,x> - 2 -127%
e 2] @
@ <num, 2>

Example

Trying to match the "2" in x-2*y:

Rule | Sentential Form | Input @
— |<id,x> - Term X-12%y I \,
7 |<id,x> - Facnfég x-12%y @
9 |«id,x>-<nu x-(2*y 6
— <id,x>%n/uvm,2> 5/2@ (*y @
Where are we? @ <num, 2>

e "2" matches "2" ido

* We have more input, but no NTs left to expand
* The expansion terminated too soon

[l Need to backtrack

Example
Trying again with "2" inx-2*y:

Rule | Sentential Form

N
3

IS

-+

— |<id, x> - Term
<id,x> - Term™ Factor

v

| | |

N [N [P

* * *
<

<id,x> - Factor ™ Factor

o N O
(SN DN DI)N B

<id,x> - <num,2> * Factor

l

|

x.
K K K

<id,x> - <num,2> * Factor

* — IN
x-
<

—

— |<id,x> = <num 2> * Factor
9 |«id,x> - <num,2> * <id)y>
— |<id,x> - <num,2> * <id y>

*

<id, x> <num,2>

*

IX IX IX [IX [X IX IX [IX

This time, we matched & consumed all the input
[l Success!

Another possible parse

Other choices for expansion are possible

Rule

Sentential Form

N NN -

2

Goal

Expr

Expr + Term

Expr + Term+Term

Expr+ Term+ Term +Term
Expr +Term+ Term + ..+ Term

TR
NS DS S DN

*

K K K K K

*

*

*

*

This doesn't terminate

A

consuming no input !

(obviously)

* Wrong choice of expansion leads to non-termination

* Non-termination is a bad property for a parser to have

* Parser must make the right choice

Left Recursion

Top-down parsers cannot handle left-recursive grammars

Formally,

A grammar is left recursive if 0 A O NT such that
Oa derivation A 0+ Aa, for some string a O (NTO T)

Our expression grammar is left recursive

This can lead to non-termination in a top-down parser
For a top-down parser, any recursion must be right recursion
We would like to convert the left recursion to right recursion

Non-termination is a bad property in any part of a compiler

Eliminating Left Recursion
To remove left recursion, we can transform the grammar

Consider a grammar fragment of the form
Fee - Fee O

| B
where neither a nor B start with Fee

We can rewrite this as
Fee - B Fie
Fie - O Fie
| €
where Fie is a new non-terminal

This accepts the same language, but uses only right recursion

Eliminating Left Recursion

The expression grammar contains two cases of left recursion

Exor - Expr + Term Term - Term * Factor
| Expr - Term | Term / Factor
| Term | Factor

Applying the transformation yields
Expr - Term Expr Term - Factor Ternt
Expr |+ Term Expr Tert | * Factor Tern
- Term Expr | Factor Ternt
| E

These fragments use only right recursion

They retain the original left associativity

Eliminating Left Recursion

Substituting them back into the grammar yields

1 | Goal - Expr
2 |Expr - Term Expr
3 |Expr -~ + Term Expr * This grammar is correct,
4 | - Term Expr’ if somewhat non-intuitive.
5 | ¢
6 |Term - Factor Term' * It is left associative, as was
7 |Term' -~ * Factor the original

Term' .
8 / Factor * A top-down parser will

Term' terminate using it.
9 3

* A top-down parser ma

10 | Factor - number P P m. 4 .
11 d heed to backtrack with it.
12 (Expr)

Eliminating Left Recursion

The transformation eliminates immediate left recursion
What about more general, indirect left recursion ?

The general algorithm:
arrange the NTs into some order A, A,, ..., A,

for i «—@0 n Must start with 1 to ensure that
fors — 1toi-1 A, - A,Bis transformed

replace each production A, - Aywith A, - o,y00,y...0d,y,
where A, — 500,0...00, are all the current productions for A,

eliminate any immediate left recursion on A,
using the direct transformation

This assumes that the initial grammar has no cycles (4, 0+ A,),
and no epsilon productions

And back

Eliminating Left Recursion

How does this algorithm work?

1. Impose arbitrary order on the non-terminals

2. Outer loop cycles through NT in order

3. Inner loop ensures that a production expanding A; has no
non-terminal A, in its rhs, for s<

4. Last step in outer loop converts any direct recursion on A,
to right recursion using the transformation showed earlier

5. New non-terminals are added at the end of the order & have
no left recursion

At the start of the /" outer loop iteration
For all k < i, no production that expands A, contains a non-terminal
A_in its rhs, for s < k

Example

* Order of symbols: 6, E, T

Example
* Order of symbols: 6, E, T

1. A

I
@

G- E
E-E+T

Example

* Order of symbols: 6, E, T

1.A=G 2.A=E
G-E G-E
E_E+T E_TE
E_T E' - +TE
T E~T E' ¢

T id T E~T

T-id

Example

* Order of symbols: 6, E, T

1.A =G 2.A=E 3.A=T,A=E
E - E+T E - TE E_-TFE
E-T E'- +TE' E'-+TE'
T—)E""T E,—>€ E'—>€
T - id T E~T - TE'~T
T-id T- id
Go to

Algorithm

Example

* Order of symbols: 6, E, T

1.A =G 2.A=E 3.A =T, A=E 4.A=T
G-E G-E G- E G E
E_E+T E_TE E_TE E_TE
E_T E' . +TE E'. +TE E' L +TE
T E~T E' ¢ E'_¢ E' ¢
T-id T- E~T T TE~T T- idT
T-id T-id T o E~TT

T - ¢

