
Parsing — Part II
(Top-down parsing, left-recursion removal)

Parsing Techniques
Top-down parsers (LL(1), recursive descent)

• Start at the root of the parse tree and grow toward leaves
• Pick a production & try to match the input
• Bad “pick” ⇒ may need to backtrack
• Some grammars are backtrack-free (predictive parsing)

Bottom-up parsers (LR(1), operator precedence)

• Start at the leaves and grow toward root
• As input is consumed, encode possibilities in an internal state
• Start in a state valid for legal first tokens
• Bottom-up parsers handle a large class of grammars

A top-down parser starts with the root of the parse tree
The root node is labeled with the goal symbol of the grammar

Top-down parsing algorithm:
Construct the root node of the parse tree
Repeat until the fringe of the parse tree matches the input string
1 At a node labeled A, select a production with A on its lhs and, for

each symbol on its rhs, construct the appropriate child
2 When a terminal symbol is added to the fringe and it doesn’t match

the fringe, backtrack
3 Find the next node to be expanded (label ∈ NT)

• The key is picking the right production in step 1
→ That choice should be guided by the input string

Top-down Parsing

Remember the expression grammar?

And the input x – 2 * y

Version with precedence derived last lecture

1 Goal → Expr
2 Expr → Expr + Term
3 | Expr – Term
4 | Term
5 Term → Term * Factor
6 | Term / Factor
7 | Factor
8 Factor → number
9 | id

Let’s try x – 2 * y :

Example

Goal

Expr

Term+Expr

Term

Fact.

<id,x>

Leftmost derivation, choose productions in an order that exposes problems

Rule Sentential Form Input
— Goal ↑ x – 2 * y
1 Expr ↑ x – 2 * y
2 Expr + Term ↑ x – 2 * y
4 Term + Term ↑ x – 2 * y
7 Factor + Term ↑ x – 2 * y
9 <id,x> + Term ↑ x – 2 * y
9 <id,x> + Term x ↑ – 2 * y

Let’s try x – 2 * y :

This worked well, except that “–” doesn’t match “+”
The parser must backtrack to here

Example

Goal

Expr

Term+Expr

Term

Fact.

<id,x>

Rule Sentential Form Input
— Goal ↑ x – 2 * y
1 Expr ↑ x – 2 * y
2 Expr + Term ↑ x – 2 * y
4 Term + Term ↑ x – 2 * y
7 Factor + Term ↑ x – 2 * y
9 <id,x> + Term ↑ x – 2 * y
9 <id,x> + Term x ↑ – 2 * y

Example
Continuing with x – 2 * y :

Goal

Expr

Term–Expr

Term

Fact.

<id,x>

Rule Sentential
Form

Input

— Goal ↑ x – 2 * y
1 Expr ↑ x – 2 * y
3 Expr – Term ↑ x – 2 * y
4 Term – Term ↑ x – 2 * y
7 Factor – Term ↑ x – 2 * y
9 <id,x> – Term ↑ x – 2 * y
9 <id,x> – Term x ↑ – 2 * y
— <id,x> – Term x – ↑ 2 * y

Example
Continuing with x – 2 * y :

Goal

Expr

Term–Expr

Term

Fact.

<id,x>

We can advance past
“–” to look at “2”

This time, “–” and
“–” matched

⇒ Now, we need to expand Term - the last NT on the fringe

Rule Sentential
Form

Input

— Goal ↑ x – 2 * y
1 Expr ↑ x – 2 * y
3 Expr – Term ↑ x – 2 * y
4 Term – Term ↑ x – 2 * y
7 Factor – Term ↑ x – 2 * y
9 <id,x> – Term ↑ x – 2 * y
9 <id,x> – Term x ↑ – 2 * y
— <id,x> – Term x – ↑ 2 * y

Example
Trying to match the “2” in x – 2 * y :

Goal

Expr

Term–Expr

Term

Fact.

<id,x>

Fact.

<num,2>

Rule Sentential Form Input
— <id,x> – Term x – ↑ 2 * y
7 <id,x> – Factor x – ↑ 2 * y
9 <id,x> – <num,2> x – ↑ 2 * y
— <id,x> – <num,2> x – 2 ↑ * y

Example
Trying to match the “2” in x – 2 * y :

Where are we?
• “2” matches “2”
• We have more input, but no NTs left to expand
• The expansion terminated too soon
⇒ Need to backtrack

Goal

Expr

Term-Expr

Term

Fact.

<id,x>

Fact.

<num,2>

Rule Sentential Form Input
— <id,x> – Term x – ↑ 2 * y
7 <id,x> – Factor x – ↑ 2 * y
9 <id,x> – <num,2> x – ↑ 2 * y
— <id,x> – <num,2> x – 2 ↑ * y

Example
Trying again with “2” in x – 2 * y :

This time, we matched & consumed all the input
⇒ Success!

Goal

Expr

Term–Expr

Term

Fact.

<id,x>

Fact.

<id,y>

Term

Fact.

<num,2>

*

Rule Sentential Form Input
— <id,x> – Term x – ↑ 2 * y
5 <id,x> – Term * Factor x – ↑ 2 * y
7 <id,x> – Factor * Factor x – ↑ 2 * y
8 <id,x> – <num,2> * Factor x – ↑ 2 * y
— <id,x> – <num,2> * Factor x – 2 ↑ * y
— <id,x> – <num,2> * Factor x – 2 * ↑ y
9 <id,x> – <num,2> * <id,y> x – 2 * ↑ y
— <id,x> – <num,2> * <id,y> x – 2 * y↑

Other choices for expansion are possible

This doesn’t terminate (obviously)
• Wrong choice of expansion leads to non-termination
• Non-termination is a bad property for a parser to have
• Parser must make the right choice

Another possible parse

consuming no input !
Rule Sentential Form Input
— Goal ↑ x – 2 * y
1 Expr ↑ x – 2 * y
2 Expr + Term ↑ x – 2 * y
2 Expr + Term +Term ↑ x – 2 * y
2 Expr + Term + Term +Term ↑ x – 2 * y
2 Expr +Term + Term + …+Term ↑ x – 2 * y

Left Recursion

Top-down parsers cannot handle left-recursive grammars

Formally,
A grammar is left recursive if ∃ A ∈ NT such that
∃ a derivation A ⇒+ Aα, for some string α ∈ (NT ∪ T)+

Our expression grammar is left recursive
• This can lead to non-termination in a top-down parser
• For a top-down parser, any recursion must be right recursion
• We would like to convert the left recursion to right recursion

Non-termination is a bad property in any part of a compiler

Eliminating Left Recursion
To remove left recursion, we can transform the grammar

Consider a grammar fragment of the form
Fee → Fee α
 | β

where neither α nor β start with Fee

We can rewrite this as
Fee → β Fie
Fie → α Fie

 | ε
where Fie is a new non-terminal

This accepts the same language, but uses only right recursion

Eliminating Left Recursion

The expression grammar contains two cases of left recursion

Applying the transformation yields

These fragments use only right recursion
They retain the original left associativity

Expr → Expr + Term
 | Expr – Term
 | Term

Term → Term * Factor
 | Term / Factor
 | Factor

Expr → Term Expr′
Expr′ | + Term Expr′
 | – Term Expr′
 | ε

Term → Factor Term′
Term′ | * Factor Term′
 | / Factor Term′
 | ε

Eliminating Left Recursion
Substituting them back into the grammar yields

• This grammar is correct,
 if somewhat non-intuitive.

• It is left associative, as was
 the original

• A top-down parser will
 terminate using it.

• A top-down parser may
 need to backtrack with it.

1 Goal → Expr
2 Expr → Term Expr′
3 Expr′ → + Term Expr′
4 | – Term Expr′
5 | ε
6 Term → Factor Term′
7 Term′ → * Factor

Term′
8 | / Factor

Term′
9 | ε
10 Factor → number
11 | id
12 | (Expr)

Eliminating Left Recursion
The transformation eliminates immediate left recursion
What about more general, indirect left recursion ?

The general algorithm:
arrange the NTs into some order A1, A2, …, An

for i ← 1 to n
for s ← 1 to i – 1
replace each production Ai → Asγ with Ai → δ1γ δ2γ…δkγ,

where As → δ1δ2…δk are all the current productions for As

eliminate any immediate left recursion on Ai
using the direct transformation

This assumes that the initial grammar has no cycles (Ai ⇒+ Ai),
and no epsilon productions

And back

Must start with 1 to ensure that
A1 → A1 β is transformed

Eliminating Left Recursion
How does this algorithm work?
1. Impose arbitrary order on the non-terminals
2. Outer loop cycles through NT in order
3. Inner loop ensures that a production expanding Ai has no

non-terminal As in its rhs, for s < i
4. Last step in outer loop converts any direct recursion on Ai

to right recursion using the transformation showed earlier
5. New non-terminals are added at the end of the order & have

no left recursion

 At the start of the ith outer loop iteration
For all k < i, no production that expands Ak contains a non-terminal
As in its rhs, for s < k

Example

G → E

E → E + T

E → T

T → E ~ T

T → id

• Order of symbols: G, E, T

Example

1. Ai = G

G → E

E → E + T

E → T

T → E ~ T

T → id

• Order of symbols: G, E, T

Example

1. Ai = G

G → E

E → E + T

E → T

T → E ~ T

T → id

2. Ai = E

G → E

E → T E'

E' → + T E'

E' → ε

T → E ~ T

T → id

• Order of symbols: G, E, T

Example

1. Ai = G

G → E

E → E + T

E → T

T → E ~ T

T → id

2. Ai = E

G → E

E → T E'

E' → + T E'

E' → ε

T → E ~ T

T → id

3. Ai = T, As = E

G → E

E → T E'

E' → + T E'

E' → ε

T → T E' ~ T

T → id

• Order of symbols: G, E, T

Go to
Algorithm

Example

1. Ai = G

G → E

E → E + T

E → T

T → E ~ T

T → id

2. Ai = E

G → E

E → T E'

E' → + T E'

E' → ε

T → E ~ T

T → id

3. Ai = T, As = E

G → E

E → T E'

E' → + T E'

E' → ε

T → T E' ~ T

T → id

4. Ai = T

G → E

E → T E'

E' → + T E'

E' → ε

T → id T'

T' → E' ~ T T'

T' → ε

• Order of symbols: G, E, T

