

Lexical Analysis: DFA Minimization & Wrap Up

PREVIOUSLY

RE→NFA (Thompson's construction)

- Build an NFA for each term
- Combine them with \mathcal{E} -moves NFA \rightarrow DFA (subset construction)
- Build the simulation

TODAY

 $\mathsf{DFA} \to \mathsf{Minimal} \; \mathsf{DFA}$

Hopcroft's algorithm

 $DFA \rightarrow RE$ (not really part of scanner construction)

- All pairs, all paths problem
- Union together paths from s_o to a final state

The Big Picture

- Discover sets of equivalent states
- Represent each such set with just one state

The Big Picture

- Discover sets of equivalent states
- Represent each such set with just one state

Two states are equivalent if and only if:

- The set of paths leading to them are equivalent
- $\forall \alpha \in \Sigma$, transitions on α lead to equivalent states (DFA)
- α -transitions to distinct sets \Rightarrow states must be in distinct sets

The Big Picture

- Discover sets of equivalent states
- Represent each such set with just one state

Two states are equivalent if and only if:

- The set of paths leading to them are equivalent
- $\forall \alpha \in \Sigma$, transitions on α lead to equivalent states (DFA)
- α -transitions to distinct sets \Rightarrow states must be in distinct sets
- A partition P of S
- Each $s \in S$ is in exactly one set $p_i \in P$
- The algorithm iteratively partitions the DFA's states

Details of the algorithm

- Group states into maximal size sets, *optimistically*
- Iteratively subdivide those sets, as needed
- States that remain grouped together are equivalent

Initial partition, P_0 , has two sets: $\{D_p\} \& \{D-D_p\}$ (DFA = $(Q, \Sigma, \delta, q_0, F)$)

Splitting a set ("partitioning a set by \underline{a} ")

- Assume q_i , & $q_j \in s$, and $\delta(q_i, \underline{a}) = q_x$, & $\delta(q_j, \underline{a}) = q_y$
- If $q_x \& q_y$ are not in the same set, then s must be split $\rightarrow q_i$ has transition on a, q_j does not $\Rightarrow \underline{a}$ splits s
- One state in the final DFA cannot have two transitions on <u>a</u>

DFA Minimization

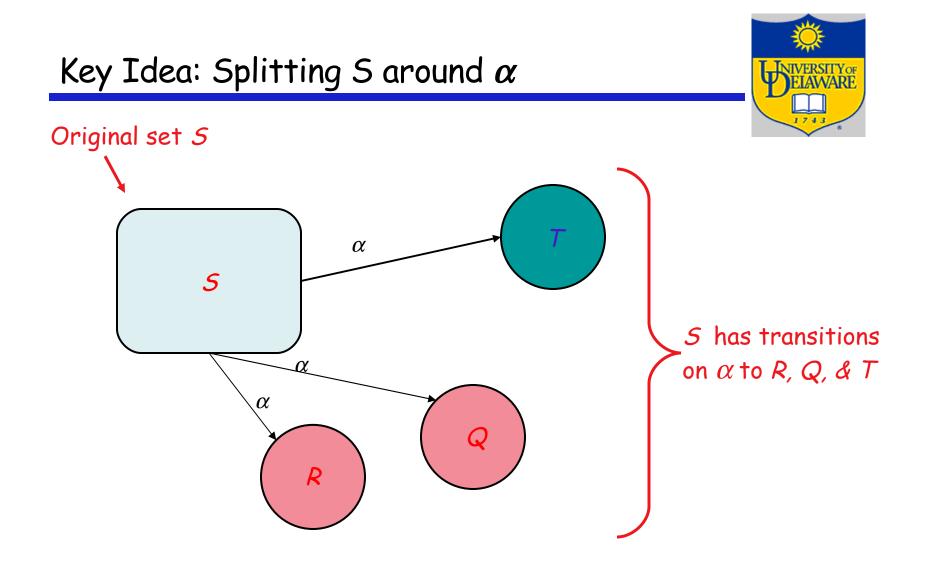
The algorithm

 $P \leftarrow \{ D_{F'} \{ D - D_{P} \} \}$ while (P is still changing) $T \leftarrow \mathcal{O}$ for each set $p \in P$ $T \leftarrow T \cup Split(p)$ $P \leftarrow T$ Split(S) for each $\alpha \in \Sigma$ if α splits S into s_1 and s_2

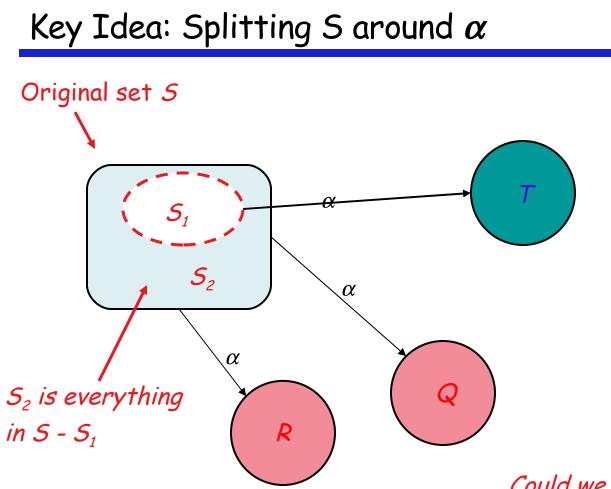
then return { s_1, s_2 } return S Why does this work?

- Partition $P \in 2^{D}$
- Starts with 2 subsets of D
 {D_p} and {D-D_p}
- While loop takes $P_i \rightarrow P_{i+1}$ by splitting 1 or more sets
- *P*_{*i*+1} is at least one step closer
 to the partition with |*D*| sets
- Maximum of |D| splits
- Note that
- Partitions are <u>never</u> combined
- Initial partition ensures that final states are intact

This is a fixed-point algorithm!



The algorithm partitions S around α



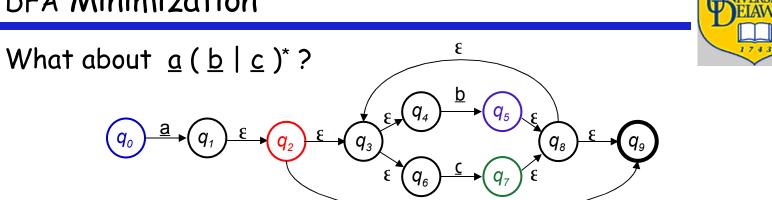
UNIVERSITY OF ELAVVARE

*Could we split S*² *further?*

Yes, but it does not help asymptotically

DFA Minimization

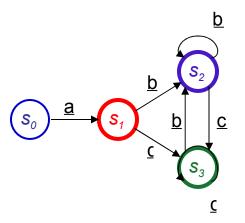
 \boldsymbol{q}_0

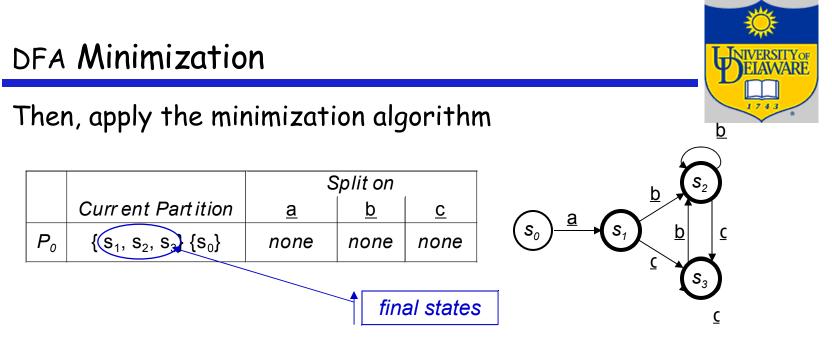


8

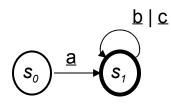
First, the subset construction:

		ɛ-closure (move(s,*))		
	NFA states	<u>a</u>	<u>b</u>	<u>C</u>
s ₀	q ₀	q ₁ , q ₂ , q ₃ , q ₄ , q ₆ , q ₉	none	none
S ₁	$q_1, q_2, q_3, q_4, q_6, q_9$	none	q ₅ , q ₈ , q ₉ , q ₃ , q ₄ , q ₆	9 ₇ , 9 ₈ , 9 ₉ , 9 ₃ , 9 ₄ , 9 ₆
S ₂	$q_{5}, q_{8}, q_{9}, q_{3}, q_{4}, q_{6}$	none	S ₂	S ₃
S ₃	q ₇ , q ₈ , q ₉ , q ₃ , q ₄ , q ₆	none	S ₂	S ₃
Final states				





To produce the minimal DFA



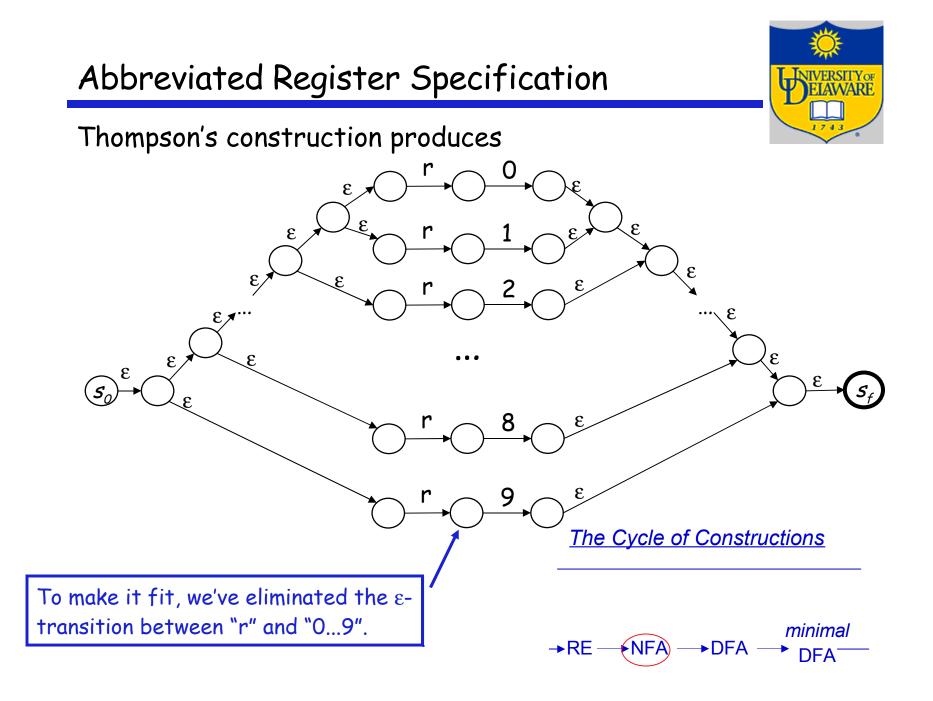
In lecture 4, we observed that a human would design a simpler automaton than Thompson's construction & the subset construction did.

Minimizing that DFA produces the one that a human would design!

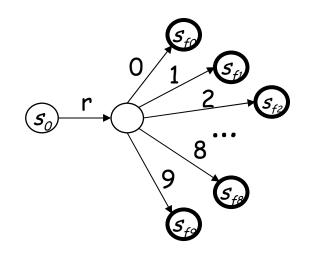
Abbreviated Register Specification

Start with a regular expression r0 | r1 | r2 | r3 | r4 | r5 | r6 | r7 | r8 | r9

minimal →NFA → DFA → DFA⁻ RE)

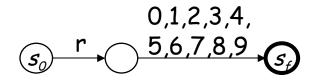


The subset construction builds



This is a DFA, but it has a lot of states ...

The DFA minimization algorithm builds



This looks like what a skilled compiler writer would do!

Advantages of Regular Expressions

- Simple & powerful notation for specifying patterns
- Automatic construction of fast recognizers
- Many kinds of syntax can be specified with REs

Example — an expression grammar

 $\textit{Term} \rightarrow \texttt{[a-zA-Z]}(\texttt{[a-zA-z]} | \texttt{[0-9]})^{\star}$

 $Op \rightarrow \pm \mid \pm \mid \pm \mid \angle$

Expr \rightarrow (Term Op)* Term

Of course, this would generate a DFA ...

If REs are so useful ...

Why not use them for everything?

Limits of Regular Languages

Not all languages are regular $\mathsf{RL's} \subset \mathsf{CFL's} \ \subset \mathsf{CSL's}$

You cannot construct DFA's to recognize these languages

- L = { p^kq^k } (parenthesis languages)
- $L = \{wcw^r \mid w \in \Sigma^*\}$

Neither of these is a regular language

But, this is a little subtle. You <u>can</u> construct DFA's for

- Strings with alternating O's and 1's $(\epsilon | 1)(01)^*(\epsilon | 0)$
- Strings with an even number of 0's and 1's

RE's can count bounded sets and bounded differences

(nor an RE)

Reserved words are important if then then then = else: else else = then (PL/I)Insignificant blanks (Fortran & Algol68) do 10 i = 1,25 do 10 i = 1.25 String constants with special characters (C, C++, Java, ...) newline, tab, quote, comment delimiters, ...

- Finite closures
 - \rightarrow Limited identifier length
 - \rightarrow Adds states to count length

(Fortran 66 & Basic)

What can be so hard?

Poor language design can complicate scanning

Building Faster Scanners from the DFA

Table-driven recognizers waste effort

- Read (& classify) the next character
- Find the next state
- Assign to the state variable
- Trip through case logic in action()
- Branch back to the top

We can do better

- Encode state & actions in the code
- Do transition tests locally
- Generate ugly, spaghetti-like code
- Takes (many) fewer operations per input character

 $\begin{array}{l} char \leftarrow next \ character;\\ state \leftarrow s_{o;}\\ call \ action(state,char);\\ while \ (char \neq \underline{eof})\\ state \leftarrow \delta(state,char);\\ call \ action(state,char);\\ char \leftarrow next \ character;\\ \end{array}$

if T(state) = <u>final</u> then report acceptance; else report failure;

Building Faster Scanners from the DFA

A direct-coded recognizer for <u>r</u> Digit Digit* $goto S_{\alpha}$ s_0 : word $\leftarrow \emptyset$; char \leftarrow next character: *if* (*char* = '*r*') then goto S_{1} ; else goto s_e; s_1 : word \leftarrow word + char; char \leftarrow next character: *if* ('0' ≤ *char* ≤ '9') then goto S_{2} ; else goto s;

s2: word \leftarrow word + char; char \leftarrow next character: if ('0' ≤ char ≤ '9') then goto s_2 ; else if (char = eof) then report success; else goto se; s; print error message;

return failure:

- Many fewer operations per character
- Almost no memory operations
- Even faster with careful use of fall-through cases

Hashing keywords versus encoding them directly

- Some *(well-known)* compilers recognize keywords as identifiers and check them in a hash table
- Encoding keywords in the DFA is a better idea
 - \rightarrow O(1) cost per transition
 - \rightarrow Avoids hash lookup on each identifier

It is hard to beat a well-implemented DFA scanner

The point

- All this technology lets us automate scanner construction
- Implementer writes down the regular expressions
- Scanner generator builds NFA, DFA, minimal DFA, and then writes out the (table-driven or direct-coded) code
- This reliably produces fast, robust scanners

For most modern language features, this works

- You should think twice before introducing a feature that defeats a DFA-based scanner
- The ones we've seen (e.g., insignificant blanks, non-reserved keywords) have not proven particularly useful or long lasting