
Lexical Analysis:
DFA Minimization & Wrap Up

Automating Scanner Construction
PREVIOUSLY
RE→NFA (Thompson’s construction)
• Build an NFA for each term
• Combine them with ε-moves
NFA →DFA (subset construction)
• Build the simulation
TODAY
DFA →Minimal DFA

• Hopcroft’s algorithm

DFA →RE (not really part of scanner construction)

• All pairs, all paths problem
• Union together paths from s0 to a final state

minimal
DFARE NFA DFA

The Cycle of Constructions

DFA Minimization
The Big Picture
• Discover sets of equivalent states
• Represent each such set with just one state

DFA Minimization
The Big Picture
• Discover sets of equivalent states
• Represent each such set with just one state

Two states are equivalent if and only if:
• The set of paths leading to them are equivalent
• ∀ α ∈ Σ, transitions on α lead to equivalent states (DFA)

• α-transitions to distinct sets ⇒ states must be in distinct sets

DFA Minimization
The Big Picture
• Discover sets of equivalent states
• Represent each such set with just one state

Two states are equivalent if and only if:
• The set of paths leading to them are equivalent
• ∀ α ∈ Σ, transitions on α lead to equivalent states (DFA)

• α-transitions to distinct sets ⇒ states must be in distinct sets

A partition P of S
• Each s ∈ S is in exactly one set pi ∈ P

• The algorithm iteratively partitions the DFA’s states

DFA Minimization
Details of the algorithm
• Group states into maximal size sets, optimistically
• Iteratively subdivide those sets, as needed
• States that remain grouped together are equivalent

Initial partition, P0 , has two sets: {DF} & {D-DF}

(DFA =(Q,Σ,δ,q0,F))

Splitting a set (“partitioning a set by a”)

• Assume qi, & qj ∈ s, and δ(qi,a) = qx, & δ(qj,a) = qy

• If qx & qy are not in the same set, then s must be split
→ qi has transition on a, qj does not ⇒ a splits s

• One state in the final DFA cannot have two transitions on a

DFA Minimization
The algorithm

P ← { DF, {D-DF}}

while (P is still changing)
 T ← Ø
 for each set p ∈ P

T ← T ∪ Split(p)
 P ← T

Split(S)
 for each α ∈ Σ
 if α splits S into s1 and s2

 then return { s1,s2}
 return S

Why does this work?
• Partition P ∈ 2D

• Starts with 2 subsets of D
{DF} and {D-DF}

• While loop takes Pi→Pi+1 by
splitting 1 or more sets

• Pi+1 is at least one step closer
to the partition with |D| sets

• Maximum of |D| splits
Note that
• Partitions are never combined
• Initial partition ensures that

final states are intact

This is a fixed-point algorithm!

Key Idea: Splitting S around α

S
T

R

α

The algorithm partitions S around α

Original set S

α

Q

α
S has transitions
on α to R, Q, & T

Key Idea: Splitting S around α

T

R

α

Original set S

α

Q

α

S1

S2

Could we split S2 further?

Yes, but it does not help
asymptotically

S2 is everything
in S - S1

DFA Minimization
What about a (b | c)* ?

First, the subset construction:

q0 q1
a ε

q4 q5

b

q6 q7
c

q3 q8 q2 q9

ε

ε

ε ε

ε ε

ε ε

ε-c losure (move(s,*))

NFA sta tes a b c
s0 q0 q1, q2, q3,

 q4, q6, q9

none none

s1 q1, q2, q3,
q4, q6, q9

none q5, q8, q9,
q3, q4, q6

q7, q8, q9,
q3, q4, q6

s2 q5, q8, q9,
q3, q4, q6

none s2 s3

s3 q7, q8, q9,
q3, q4, q6

none s2 s3

s3

s2

s0 s1

c

b
a

b

b

c

c

Final states

DFA Minimization
Then, apply the minimization algorithm

To produce the minimal DFA

s3

s2

s0 s1

c

b
a

b

b

c

c

Split on
Curr ent Part it ion a b c

P0 { s1, s2, s3} {s0} none none none

s0 s1

a

b | c
In lecture 4, we observed that a human
would design a simpler automaton than
Thompson’s construction & the subset
construction did.

Minimizing that DFA produces the one
that a human would design!

final states

Abbreviated Register Specification
Start with a regular expression

r0 | r1 | r2 | r3 | r4 | r5 | r6 | r7 | r8 | r9

minimal
DFARE NFA DFA

The Cycle of Constructions

Abbreviated Register Specification
Thompson’s construction produces

r 0

r 1

r 2

r 8

r 9

… …

s0 sf

ε

ε

ε

ε

ε

ε

εε
ε

ε

ε

ε ε

εε

ε

ε

ε

ε
ε

…

minimal
DFARE NFA DFA

The Cycle of Constructions

To make it fit, we’ve eliminated the ε-
transition between “r” and “0...9”.

Abbreviated Register Specification
The subset construction builds

This is a DFA, but it has a lot of states …

r
0

sf0

s0

sf11
sf22

sf9

sf8

…
9

8

minimal
DFARE NFA DFA

The Cycle of Constructions

Abbreviated Register Specification
The DFA minimization algorithm builds

This looks like what a skilled compiler writer would do!

rs0 sf

0,1,2,3,4,
5,6,7,8,9

minimal
DFARE NFA DFA

The Cycle of Constructions

Limits of Regular Languages
Advantages of Regular Expressions
• Simple & powerful notation for specifying patterns
• Automatic construction of fast recognizers
• Many kinds of syntax can be specified with REs

Example — an expression grammar
Term → [a-zA-Z] ([a-zA-z] | [0-9])*

Op → + | - | ∗ | /
Expr → (Term Op)* Term

Of course, this would generate a DFA …

If REs are so useful …
Why not use them for everything?

Limits of Regular Languages
Not all languages are regular

RL’s ⊂ CFL’s ⊂ CSL’s

You cannot construct DFA’s to recognize these languages
• L = { pkqk } (parenthesis languages)

• L = { wcw r | w ∈ Σ*}
Neither of these is a regular language (nor an RE)

But, this is a little subtle. You can construct DFA’s for
• Strings with alternating 0’s and 1’s

(ε | 1) (01)* (ε | 0)

• Strings with an even number of 0’s and 1’s
RE’s can count bounded sets and bounded differences

What can be so hard?
Poor language design can complicate scanning
• Reserved words are important

if then then then = else; else else = then (PL/I)

• Insignificant blanks (Fortran & Algol68)
do 10 i = 1,25
do 10 i = 1.25

• String constants with special characters (C, C++, Java, …)
newline, tab, quote, comment delimiters, …

• Finite closures (Fortran 66 & Basic)
→ Limited identifier length
→ Adds states to count length

Building Faster Scanners from the DFA

Table-driven recognizers waste effort
• Read (& classify) the next character
• Find the next state
• Assign to the state variable
• Trip through case logic in action()
• Branch back to the top

We can do better
• Encode state & actions in the code
• Do transition tests locally
• Generate ugly, spaghetti-like code
• Takes (many) fewer operations per input character

char ← next character;
state ← s0 ;

call action(state,char);
while (char ≠ eof)
 state ← δ(state,char);
 call action(state,char);
 char ← next character;

if Τ(state) = final then
 report acceptance;
else
 report failure;

Building Faster Scanners from the DFA

A direct-coded recognizer for r Digit Digit*

• Many fewer operations per character
• Almost no memory operations
• Even faster with careful use of fall-through cases

 goto s0;
s0: word ← Ø;
 char ← next character;
 if (char = ‘r’)
 then goto s1;
 else goto se;
s1: word ← word + char;
 char ← next character;
 if (‘0’ ≤ char ≤ ‘9’)
 then goto s2;
 else goto se;

s2: word ← word + char;
 char ← next character;
 if (‘0’ ≤ char ≤ ‘9’)
 then goto s2;
 else if (char = eof)
 then report success;
 else goto se;
se: print error message;
 return failure;

Building Faster Scanners
Hashing keywords versus encoding them directly
• Some (well-known) compilers recognize keywords as

identifiers and check them in a hash table
• Encoding keywords in the DFA is a better idea

→ O(1) cost per transition
→ Avoids hash lookup on each identifier

It is hard to beat a well-implemented DFA scanner

Building Scanners
The point
• All this technology lets us automate scanner construction
• Implementer writes down the regular expressions
• Scanner generator builds NFA, DFA, minimal DFA, and then

writes out the (table-driven or direct-coded) code
• This reliably produces fast, robust scanners

For most modern language features, this works
• You should think twice before introducing a feature that

defeats a DFA-based scanner
• The ones we’ve seen (e.g., insignificant blanks, non-reserved

keywords) have not proven particularly useful or long lasting

