
Semantic Analysis



Overview

Performing the semantic checking involves the following steps:

• Build inheritance graph & check to see there are no cycles.

• Build Symbol tables for each class.

• Perform Type checking based on the inheritance tree and 

the symbol tables.

You may find it easier to perform these steps in 3 different 

passes of the AST tree or just one. 



SymbolTable class

SymbolTable can be used to perform the following:

• Adding Attributes

• Managing and checking scope

• Type Checking



semanticAnalyzer.Semant

• The main method that calls the semantic analyzer for the 

Program.

• The semant() method of the Program class calls

ClassTable classTable = new ClassTable(classes);

• This installs the basic classes (Object, IO, Int, Bool and 

Str) look at semanticAnalyzer.ClassTable for more 

information



treeNodes.Program

• Once the basic classes are installed, walk the AST for all 

the classes, and call semant on those classes

• This creates a new scope for each class.

for (Class_ c : classes) {
c.semant(new SymbolTable<Info>(), classTable, c);
}



Semant() for a class

The following steps need to be done when the semant method 

of a class is called:

• Check if the class is present in the inheritance graph. 

• Start a new scope for the symbol table “ st.enterScope()”

• Add all the variables into the symbol table.

• Call semant for each method in that class.

• Exit the scope “st.exitScope()”



Variables and functions

• Perform similar passes to build the symbol table for 

functions.

• During this phase you will have to implement the semant 

method for all the treeNodes.* classes



Finally

• Section 12 of the cool manual would provide you with all the 

details of type checking for the 3rd pass of the AST tree.


