
Global Register Allocation
via Graph Coloring

and
Wrap Up

Register Allocation
Part of the compiler’s back end

Critical properties
•  Produce correct code that uses k (or fewer) registers
•  Minimize added loads and stores
•  Minimize space used to hold spilled values
•  Operate efficiently

O(n), O(n log2n), maybe O(n2), but not O(2n)

Errors

IR Register
Allocation

Instruction
Selection &
Scheduling

Machine
code

Instruction
Scheduling

m register

IR

k register

IR

Global Register Allocation
The big picture

At each point in the code
1  Determine which values will reside in registers
2  Select a register for each such value
The goal is an allocation that “minimizes” running time

Most modern, global allocators use a graph-coloring paradigm
•  Build a “conflict graph” or “interference graph”
•  Find a k-coloring for the graph, or change the code to a

nearby problem that it can k-color

Register
Allocator

m register
 code

k register
 code

Optimal global allocation
is NP-Complete, under
almost any assumptions.

Global Register Allocation

What’s harder across multiple blocks?
•  Could replace a load with a move
•  Good assignment would obviate the move
•  Must build a control-flow graph to understand inter-block flow
•  Can spend an inordinate amount of time adjusting the allocation

...
store r4 ⇒ x

load x ⇒ r1
...

Global Register Allocation

A more complex scenario
•  Block with multiple predecessors in the control-flow graph
•  Must get the “right” values in the “right” registers in each

predecessor
•  In a loop, a block can be its own predecessors
This adds tremendous complications

...
store r4 ⇒ x

load x ⇒ r1
...

...
store r4 ⇒ x

What if one block has x in a
register, but the other does not?

Global Register Allocation
Taking a global approach
•  Make systematic use of registers or memory
•  Adopt a general scheme to approximate a good allocation

Graph coloring paradigm (Lavrov & (later) Chaitin)
1  Build an interference graph GI for the procedure

→  Computing LIVE is harder than in the local case
→  GI is not an interval graph

2  (try to) construct a k-coloring
→  Minimal coloring is NP-Complete
→  Spill placement becomes a critical issue

3  Map colors onto physical registers

Graph Coloring (A Background Digression)
The problem

A graph G is said to be k-colorable iff the nodes can be labeled
with integers 1… k so that no edge in G connects two nodes with
the same label

Examples

Each color can be mapped to a distinct physical register

2-colorable 3-colorable

Observation on Coloring for Register Allocation
•  Suppose you have k registers—look for a k coloring

•  Any vertex n that has fewer than k neighbors in the
interference graph (n° < k) can always be colored !
→  Pick any color not used by its neighbors — there must be one

•  Ideas behind Chaitin’s algorithm:
→  Pick any vertex n such that n°< k and put it on the stack
→  Remove that vertex and all edges incident from the

interference graph
♦  This may make some new nodes have fewer than k neighbors

→  At the end, if some vertex n still has k or more neighbors, then
spill the live range associated with n

→  Otherwise successively pop vertices off the stack and color
them in the lowest color not used by some neighbor

Chaitin’s Algorithm
1.  While ∃ vertices with < k neighbors in GI

>  Pick any vertex n such that n°< k and put it on the stack
>  Remove that vertex and all edges incident to it from GI

•  This will lower the degree of n’s neighbors

2.  If GI is non-empty (all vertices have k or more neighbors) then:
>  Pick a vertex n (using some heuristic) and spill the live range

associated with n
>  Remove vertex n from GI , along with all edges incident to it

and put it on the stack
>  If this causes some vertex in GI to have fewer than k

neighbors, then go to step 1; otherwise, repeat step 2

3.  Successively pop vertices off the stack and color them in
the lowest color not used by some neighbor

Chaitin Allocator (Bottom-up Coloring)

renumber

build

coalesce

spill costs

simplify

select

spill

Build SSA, build live ranges, rename

Build the interference graph

Fold unneeded copies
LRx→ LRy, and < LRx,LRy> ∉ GI ⇒ combine LRx & LRy

Remove nodes from the graph

Spill uncolored definitions & uses

While stack is non-empty
 pop n, insert n into GI, & try to color it

Estimate cost for spilling
 each live range

while N is non-empty
 if ∃ n with n°< k then
 push n onto stack
 else pick n to spill
 push n onto stack
 remove n from GI

Chaitin’s algorithm

Chaitin’s Algorithm in Practice

2

3

1 4 5

3 Registers

Stack

Chaitin’s Algorithm in Practice

2

3

4 5

3 Registers

Stack

1

Chaitin’s Algorithm in Practice

3

4 5

3 Registers

Stack

1

2

Chaitin’s Algorithm in Practice

3

5

3 Registers

Stack

1

2
4

Chaitin’s Algorithm in Practice

3 Registers

Stack

1

2
4
3

5

Colors:

1:

2:

3:

Chaitin’s Algorithm in Practice

5

3 Registers

Stack

1

2
4
3

Colors:

1:

2:

3:

Chaitin’s Algorithm in Practice

3

5

3 Registers

Stack

1

2
4

Colors:

1:

2:

3:

Chaitin’s Algorithm in Practice

3

4 5

3 Registers

Stack

1

2

Colors:

1:

2:

3:

Chaitin’s Algorithm in Practice

2

3

4 5

3 Registers

Stack

1

Colors:

1:

2:

3:

Chaitin’s Algorithm in Practice

2

3

1 4 5

3 Registers

Stack

Colors:

1:

2:

3:

Picking a Spill Candidate
When ∀ n ∈ GI, n° ≥ k, simplify must pick a spill candidate

Chaitin’s heuristic
•  Minimize spill cost ÷ current degree
•  If LRx has a negative spill cost, spill it pre-emptively

→  Cheaper to spill it than to keep it in a register
•  If LRx has an infinite spill cost, it cannot be spilled

→  No value dies between its definition & its use
→  No more than k definitions since last value died (safety valve)

Spill cost is weighted cost of loads & stores needed to spill x

Bernstein et al. Suggest repeating simplify, select, & spill
wit
h several different spill choice heuristics & keeping the best

