Instruction Selection and Scheduling
and Phase IV

Structure of a Compiler

O(n) O(n) O(n log n)
words IR | Analysis
—* Scanner * Parser > &
Optimization
IR
| Instruction| ™ | Instruction| **" | Register [

Selection | = | Scheduling| « | Allocation | ¥
regs regs regs

Either fast or NP-Complete NP-Complete
NP-Complete

A compiler is a lot of fast stuff followed by some hard problems
— The hard stuff is mostly in optimization and code generation
— For superscalars, its allocation & scheduling that count

Structure of a Compiler

For the rest of CISC672, we assume the following model

ﬂ Ana;ys1s IR; Irslstlrui.tion asn: Isns;rt:ictli.on asm; A'Tlegis:?r asm
o |Optimization | oo election | | Scheduling | ocation K
regs reg regs regs regs

* Selection is fairly simple (problem of the 1980s)

* Allocation & scheduling are complex
* Operation placement is not yet critical (unified register set)

?
What about the IR) Branches, compares, & labels
* Low-level, R1sc-like IR called ILOC @ Memory tags
* Has "enough” registers Hierarchy of loads & stores
: : Provision for multiple ops/cycle
* TLoc was designed for this stuff Ple opsrey

Definitions

Instruction selection
* Mapping IR into assembly code

* Assumes a fixed storage mapping & code shape

* Combining operations, using address modes

Instruction scheduling

* Reordering operations to hide latencies

* Assumes a fixed program (set of operations)
* Changes demand for registers

Register allocation
* Deciding which values will reside in registers

These 3 problems
are tightly
coupled.

* Changes the storage mapping, may add false sharing
* Concerns about placement of data & memory operations

The Big Picture
How hard are these problems?

Instruction selection
* Can make locally optimal choices, with automated tool
* Global optimality is (undoubtedly) NP-Complete

Instruction scheduling
* Single basic block = heuristics work well

* General problem, with control flow = NP-Complete

Register allocation
* Single basic block, no spilling, & 1 register size = linear time
* Whole procedure is NP-Complete

The Big Picture

Conventional wisdom says that we lose little
by solving these problems independently
Instruction selection This slide is full of

* Use some form of pattern matching fuzzy” terms
* Assume enough registers or target “important” values

: : Optimal for
Instruction scheduling | ST85% of
e Within a block, list scheduling is "close” to optimal |blocks

* Across blocks, build framework to apply list scheduling

Register allocation
* Start from virtual registers & map “"enough” into k
* With targeting, focus on good priority heuristic

The Problem

Writing a compiler is a lot of work
* Would like to reuse components whenever possible
* Would like to automate construction of components

Front End Middle End Back End TOdC(yIS IQCTUI"@:
> N N >
N AN O A A Automating
Instruction
\\ Selection
Infrastructure -~

* Front end construction is largely automated

* Middle is largely hand crafted
* (Parts of) back end can be automated

Definitions

Instruction selection

* Mapping IR into assembly code

* Assumes a fixed storage mapping & code shape
* Combining operations, using address modes

Instruction scheduling

* Reordering operations to hide latencies

* Assumes a fixed program (set of operations)
* Changes demand for registers

Register allocation

* Deciding which values will reside in registers

* Changes the storage mapping, may add false sharing

* Concerns about placement of data & memory operations

The Problem

Modern computers (still) have many ways to do anything

Consider register-to-register copy in ILOC
* Obvious operationis i2i r; = r,
* Many others exist

addl r;,0 = r; |subIl r;,0 = r, |1lshiftI r;,0 = r,

multl r;,1 = r; |divI r;,1 = ry |rshiftl r,,0 = r,

orI r;,0 = r; [xorlI r;,0 = r, .. and others ...

* Human would ignore all of these

* Algorithm must look at all of them & find low-cost encoding
— Take context into account (busy functional unit?)

The Goal

Want to automate generation of instruction selectors

Front End Middle End Back End

i \
Infrastructure / \
/

Machine | Back-end s Tables
description a Generator 0| '9pe oy
P 5 Description-based
Pattern retargeting
Matching
Engine
-

The Big Picture

Need pattern matching techniques
* Must produce good code (some metric for good)
* Must run quickly

A treewalk code generator runs quickly
How good was the code?

Tree Treewalk Code Desired Code

loadI 4 = rs

X
/ \ loadAO ry.,.rs=>r¢ loadAT ry.,4 =r5
oadl 8 =r loadAT r,.,.8 =r¢

IDENT IDENT loadAO ry.,.r; = rg mult 5.6 = I'7
<a,ARP,4> <b ,ARP,8> mult rgrg=rg

The Big Picture

Need pattern matching techniques
* Must produce good code (some metric for good)
* Must run quickly

A treewalk code generator runs quickly
How good was the code?

Tree Treewalk Code Desired Code

X loadI 4 = rs

loadAO ry.,.rs=>r¢ loadAT r,.,4 =rs

oadl 8 loadAT r,.,.8 =r¢

oa = Iy mult rs,rg = I
<a,ARP,4> <b,ARP,8> P

mult rgrg =g

Pretty easy to fix. See
1st digression in Ch. 7

The Big Picture

Need pattern matching techniques

* Must produce good code (some metric for good)
* Must run quickly

A treewalk code generator runs quickly
How good was the code?

Tree Treewalk Code Desired Code
loadI 4 = rs

X
loadAO ry.,.rs=>r¢ loadAT r,., 4 =rs
loadI 2 =r, mutl rs;2=r,

mult r. Py =r
IDENT NUMBER of7 T8
<a,ARP,4> <2>

The Big Picture

Need pattern matching techniques
* Must produce good code (some metric for good)
* Must run quickly

A treewalk code generator runs quickly
How good was the code?

Tree Treewalk Code Desired Code
loadI 4 = rs
loadAO ry.,.rs=r¢ loadAT r,., 4 =rs
loadI 2 =ry; _multl rg2=ry
ult rgr;=rg
IDENT
<a,ARP,4>

Must combine these
This is a nonlocal problem

The Big Picture

Need pattern matching techniques
* Must produce good code (some metric for good)
* Must run quickly

A treewalk code generator runs quickly
How good was the code?

Tree Treewalk Code Desired Code

loadI @6 =r;

X
loadI 4 =r, loadI 4 =rg
loadAO rs,re=r; loadAI r;,@6 = r
loadI

@H =r
IDENT IDENT loadT =17 loadAT r5,@H=r,

4 =rg mult r.r, =r
<c,@6,4> <d,@H, 4> 10adAO rg,rg = I 67 8

mUH' r'7,r'103 r'11

The Big Picture

Need pattern matching techniques

* Must produce good code (some metric for good)
* Must run quickly

A treewalk code generator can meet the second criteria
How did it do on the first ?

Tree Treewalk Code Desired Code
loadI @6 =r;
loadI_~@ = s
5,@6 = I"6
IDENT IDENT r5,@H = r;
<c,@6(4)> «d,@H@® Fe.l'7 =T

Again, a nonlocal problem
Common offset

How do we perform this kind of matching ?

Tree-oriented IR suggests pattern matching on frees

* Tree-patterns as input, matcher as output

* Each pattern maps to a target-machine instruction sequence
* Use dynamic programming or bottom-up rewrite systems

Linear IR suggests using some sort of string matching

* Strings as input, matcher as output

* Each string maps to a target-machine instruction sequence
* Use text matching or peephole matching

In practice, both work well; matchers are quite different

Phase IV Discussion

You are given a working coolc binary that works, so use it!

* Compile some simple coolc programs and look at assembly
output. Reverse Engineering is the key!

* Main goal of project is to generate code for expressions.
Example: X< E/+E,

e Compute E; (e.g., result in $a0)

e Store result on stack (e.g., store $a0)
* Compute E,

* Load E; (into a temporary)

* Perform Add

* Store result on stack

Need to figure out how many temporaries you need.
Naive approach: Use a temporary for every lefthand side of an operator.

Instruction Scheduling

What Makes Code Run Fast?

* Many operations have non-zero latencies
* Modern machines can issue several operations per cycle
* Execution time is order-dependent

Assumed latencies (conservative)

Operation Cycles * Loads & stores may or may not block
load 3 > Non-blocking =fill those issue slots
store 3
loadl 1 * Instructions can have different latencies
add 1 and use different resources
mult 2
fadd 1 * Branches typically have delay slots
fm.ult 2 > Fill slots with unrelated operations
shift 1 > Percolates branch upward
branch Oto8

* Scheduler should hide the latencies

Example

W—w*2*x *y*z

Cycles Simple schedule Cycles Schedule loads early
1 loadAl rn,@ew =r1 1 loadAl rn,@ew =r1
4 add r1,r =1 2 loadAl r0,@x =>r2
5 loadAl r0,@x =r2 3 loadAl @y =r3
8 mult r1,r2 =1 4 add r1,r =1
9 loadAl @y =r2 5 mult Mr2 =r
12 mult r1,r2 = r1 6 loadAl @z =r2
13 loadAl @z =r2 7 mult r11,r3 =1
16 mult r1,r2 = r1 9 mult r1,r2 =1
18 storeAl r1 = r0,@w 11 storeAl r1 = r0,@w
21 rlis free 14 r1is free
2 registers, 20 cycles 3 registers, 13 cycles

Reordering operations for speed is called instruction scheduling

Instruction Scheduling (Engineer’s View)

The Problem

Given a code fragment for some target machine and the
latencies for each individual operation, reorder the operations
to minimize execution time

* Produce correct code
Machine description * Minimize wasted cycles

* Avoid spilling registers

slow Scheduler fasl'

* Operate efficiently
code code

Instruction Scheduling (The Abstract View)

To capture properties of the code, build a dependence graph &
* Nodes ne Gare instructions
* Anedge e = (n,n,) € Gif a"data hazard” between them

— n, uses the result of n, (raw)

— n,writes to same location as n, (waw)
— n,writes to a location used by n, (war)

a: loadAl rn@w =r1 a
b: add r1,r1 =1
c: loadAl r0,@x =r2 l c
d: mult M2 =rl b\ /
e: loadAl @y =r2 d e
f: mult r1,r2 = r1 o /
g: loadAl 0@z =>r2 f. 2
h: mult rMr2 =r1 h
i storeAl r1 = r0,@w li
The Code The Dependence

Graph

Instruction Scheduling (What's so difficuli?)

Critical Points

* All operands must be available

* Multiple operations can be ready

* Moving operations can lengthen register lifetimes

* Placing uses near definitions can shorten register lifetimes
* Operands can have multiple predecessors

Together, these issues make scheduling hard (NP-complete)

Local scheduling is the simple case
* Restricted to straight-line code
* Consistent and predictable latencies

Instruction Scheduling

The big picture
1. Build a dependence graph, P
2. Compute a priority function over the nodes in P
3. Use list scheduling to construct a schedule, one cycle at a
Time
a. Use a queue of operations that are ready
b. At each cycle
I. Choose a ready operation and schedule it
IT. Update the ready queue

Local list scheduling
* The dominant algorithm for twenty years
* A greedy, heuristic, local technique

Local List Scheduling

Cycle <— 1 /| Removal in priority order

Ready < nodes of P with no predecessor.
Active < @
while (Ready U Active = @)

if (Ready = @) then

remove an op from Ready
S(op) <— Cycle op has completed execution

Active <— Active U op
Cycle < Cycle +1 /
for each op € Active

if (S(op) + delay(op) < Cycle) then
remove op from Active /‘ If successor's operands

for each predecessor s OW are ready, put it on Ready
if (s is ready) then

Ready <— Ready U s

Scheduling Example

1. Build the dependence graph

a: loadAl r0,@w =r1 a

b: add MM =r o c

c: loadAl r0,@x = r2 b

d: mult rMr2 =nr N ‘/ \e

e loadAl 10,@2 = r2 A\

£ omut M2 = f

g: storeAl r1 = r0,@w g
The Code The Dependence

Graph

Scheduling Example

1. Build the dependence graph
2. Determine priorities: longest latency-weighted path

loadAl r0,@w =r1

a:

b: add M = 119\, .10

c: loadAl r0, @x 2 b

. @ =t 9\ v\ 8

d: mult rMr2 =nr e

e: loadAl r0,@z =>r2 7R85,

£ omut 2 = f

g: storeAl 1 = r0,@w g 3
The Code The Dependence

Graph

Scheduling Example

1. Build the dependence graph
2. Determine priorities: longest latency-weighted path
3. Perform list scheduling

loadAl r0,@w =r1

d.
c: loadAl r0,@x = r2 119\, .10
b: add r1,r = r1 b
! 9

d: mult r1,r2 = r1 N ‘/ \38
e: loadAl r0,@z =>r2 7R85,
£omult M2 = f
g: storeAl 1 = r0,@w g 3

The Code The Dependence

Graph

Phase IV

1. Compute the inheritance graph
2. Assign tags to all classes in depth-first order

3. Determine the layout of attributes, temporaries, and
dispatch tables for each class

4. Generate code for global data: constants, dispatch tables
B. Generate code for each feature

Revised Phase IV

1. Comprre-tre-rheritance-graph-
7 Acsi el copthti I

3. Determine the layout of attributes, temporaries, and

Hepatrch-tablesforcach-class
4. Generate code for global data: constants, dispatch-tables

5. Generate code for each feature

Also forget about Garbage Collection.

Code will be given to youl
Do a checkout again Friday afternoon.

Revised Phase IV

1. Comprre-tre-rheritance-graph-
7 Acsi el copthti I

3. Determine the layout of attributes, temporaries, and

Hepatrch-tablesforcach-class
4. Generate code for global data: constants, dispatch-tables

5. Generate code for each feature

Also forget about Garbage Collection.

Code will be given to youl
Do a checkout again Friday afternoon.

Phase IV Notes
1.

2.

Need to create space on stack for all local variables; this is
the simplest register allocation scheme

A bunch of free temporary registers are available (see
SPIM manual)

. Need to write code for cgen for all tree nodes. E.g.,

dispatch tables (if function call is in expression) is given to
you.

. Again, look at MIPS code generated. Try to emulate what is

generated!

REVERSE ENGINEERING IS THE KEY!

