
Instruction Selection and Scheduling
and Phase IV

Structure of a Compiler

A compiler is a lot of fast stuff followed by some hard problems
→  The hard stuff is mostly in optimization and code generation
→  For superscalars, its allocation & scheduling that count

Instruction
Selection

Register
Allocation

Instruction
Scheduling

Scanner Parser
Analysis

&
Optimization

O(n log n) O(n) O(n)

NP-Complete NP-Complete Either fast or
NP-Complete

words IR

IR
asm asm asm

∞
regs

∞
regs

k
regs

Structure of a Compiler
For the rest of CISC672, we assume the following model

•  Selection is fairly simple (problem of the 1980s)
•  Allocation & scheduling are complex
•  Operation placement is not yet critical (unified register set)

What about the IR ?
•  Low-level, RISC-like IR called ILOC
•  Has “enough” registers
•  ILOC was designed for this stuff {

Branches, compares, & labels
Memory tags
Hierarchy of loads & stores
Provision for multiple ops/cycle

Instruction
Selection

Instruction
Scheduling

Register
Allocation

Analysis
&

Optimization

IR asm asm

∞
regs

∞
regs

∞
regs

∞
regs

k
regs

asm IR

Definitions
Instruction selection
•  Mapping IR into assembly code
•  Assumes a fixed storage mapping & code shape
•  Combining operations, using address modes

Instruction scheduling
•  Reordering operations to hide latencies
•  Assumes a fixed program (set of operations)
•  Changes demand for registers

Register allocation
•  Deciding which values will reside in registers
•  Changes the storage mapping, may add false sharing
•  Concerns about placement of data & memory operations

These 3 problems
are tightly
coupled.

The Big Picture
How hard are these problems?

Instruction selection
•  Can make locally optimal choices, with automated tool
•  Global optimality is (undoubtedly) NP-Complete

Instruction scheduling
•  Single basic block ⇒ heuristics work well
•  General problem, with control flow ⇒ NP-Complete

Register allocation
•  Single basic block, no spilling, & 1 register size ⇒ linear time
•  Whole procedure is NP-Complete

The Big Picture
Conventional wisdom says that we lose little

by solving these problems independently
Instruction selection
•  Use some form of pattern matching
•  Assume enough registers or target “important” values

Instruction scheduling
•  Within a block, list scheduling is “close” to optimal
•  Across blocks, build framework to apply list scheduling

Register allocation
•  Start from virtual registers & map “enough” into k
•  With targeting, focus on good priority heuristic

This slide is full of
“fuzzy” terms

Optimal for
> 85% of
blocks

The Problem
Writing a compiler is a lot of work
•  Would like to reuse components whenever possible
•  Would like to automate construction of components

•  Front end construction is largely automated
•  Middle is largely hand crafted
•  (Parts of) back end can be automated

Front End Back End Middle End

Infrastructure

Today’s lecture:
Automating

Instruction
Selection

Definitions
Instruction selection
•  Mapping IR into assembly code
•  Assumes a fixed storage mapping & code shape
•  Combining operations, using address modes

Instruction scheduling
•  Reordering operations to hide latencies
•  Assumes a fixed program (set of operations)
•  Changes demand for registers

Register allocation
•  Deciding which values will reside in registers
•  Changes the storage mapping, may add false sharing
•  Concerns about placement of data & memory operations

The Problem
Modern computers (still) have many ways to do anything

Consider register-to-register copy in ILOC
•  Obvious operation is i2i ri ⇒ rj
•  Many others exist

•  Human would ignore all of these

•  Algorithm must look at all of them & find low-cost encoding
→  Take context into account (busy functional unit?)

addI ri,0 ⇒ rj subI ri,0 ⇒ rj lshiftI ri,0 ⇒ rj
multI ri,1 ⇒ rj divI ri,1 ⇒ rj rshiftI ri,0 ⇒ rj
orI ri,0 ⇒ rj xorI ri,0 ⇒ rj … and others …

The Goal
Want to automate generation of instruction selectors

Front End Back End Middle End

Infrastructure

Tables

Pattern
Matching

Engine

Back-end
Generator

Machine
description

Description-based
retargeting

The Big Picture
Need pattern matching techniques
•  Must produce good code (some metric for good)
•  Must run quickly

A treewalk code generator runs quickly
How good was the code?

x

IDENT
<a,ARP,4>

IDENT
<b,ARP,8>

loadI 4 ⇒ r5
loadAO rarp,r5 ⇒ r6

loadI 8 ⇒ r7
loadAO rarp,r7 ⇒ r8
mult r6,r8 ⇒ r9

loadAI rarp,4 ⇒ r5
loadAI rarp,8 ⇒ r6
mult r5,r6 ⇒ r7

Tree Treewalk Code Desired Code

The Big Picture
Need pattern matching techniques
•  Must produce good code (some metric for good)
•  Must run quickly

A treewalk code generator runs quickly
How good was the code?

x

IDENT
<a,ARP,4>

IDENT
<b,ARP,8>

loadI 4 ⇒ r5
loadAO rarp,r5 ⇒ r6

loadI 8 ⇒ r7
loadAO rarp,r7 ⇒ r8
mult r6,r8 ⇒ r9

loadAI rarp,4 ⇒ r5
loadAI rarp,8 ⇒ r6
mult r5,r6 ⇒ r7

Tree Treewalk Code Desired Code

Pretty easy to fix. See
1st digression in Ch. 7

The Big Picture
Need pattern matching techniques
•  Must produce good code (some metric for good)
•  Must run quickly

A treewalk code generator runs quickly
How good was the code?

x

IDENT
<a,ARP,4>

NUMBER
<2>

loadI 4 ⇒ r5
loadAO rarp,r5 ⇒ r6
loadI 2 ⇒ r7
mult r6,r7 ⇒ r8

loadAI rarp,4 ⇒ r5
multI r5,2 ⇒ r7

Tree Treewalk Code Desired Code

The Big Picture
Need pattern matching techniques
•  Must produce good code (some metric for good)
•  Must run quickly

A treewalk code generator runs quickly
How good was the code?

x

IDENT
<a,ARP,4>

NUMBER
<2>

loadI 4 ⇒ r5
loadAO rarp,r5 ⇒ r6
loadI 2 ⇒ r7
mult r6,r7 ⇒ r8

loadAI rarp,4 ⇒ r5
multI r5,2 ⇒ r7

Tree Treewalk Code Desired Code

Must combine these
This is a nonlocal problem

The Big Picture
Need pattern matching techniques
•  Must produce good code (some metric for good)
•  Must run quickly

A treewalk code generator runs quickly
How good was the code?

x

IDENT
<c,@G,4>

IDENT
<d,@H,4>

loadI @G ⇒ r5
loadI 4 ⇒ r6
loadAO r5,r6 ⇒ r7
loadI @H ⇒ r7
loadI 4 ⇒ r8
loadAO r8,r9 ⇒ r10
mult r7,r10⇒ r11

loadI 4 ⇒ r5
loadAI r5,@G ⇒ r6
loadAI r5,@H ⇒ r7
mult r6,r7 ⇒ r8

Tree Treewalk Code Desired Code

The Big Picture
Need pattern matching techniques
•  Must produce good code (some metric for good)
•  Must run quickly

A treewalk code generator can meet the second criteria
How did it do on the first ?

x

IDENT
<c,@G,4>

IDENT
<d,@H,4>

loadI @G ⇒ r5
loadI 4 ⇒ r6
loadAO r5,r6 ⇒ r7
loadI @H ⇒ r7
loadI 4 ⇒ r8
loadAO r8,r9 ⇒ r10
mult r7,r10⇒ r11

loadI 4 ⇒ r5
loadAI r5,@G ⇒ r6
loadAI r5,@H ⇒ r7
mult r6,r7 ⇒ r8

Tree Treewalk Code Desired Code

Common offset
Again, a nonlocal problem

How do we perform this kind of matching ?
Tree-oriented IR suggests pattern matching on trees
•  Tree-patterns as input, matcher as output
•  Each pattern maps to a target-machine instruction sequence
•  Use dynamic programming or bottom-up rewrite systems

Linear IR suggests using some sort of string matching
•  Strings as input, matcher as output
•  Each string maps to a target-machine instruction sequence
•  Use text matching or peephole matching

In practice, both work well; matchers are quite different

Phase IV Discussion
You are given a working coolc binary that works, so use it!
•  Compile some simple coolc programs and look at assembly

output. Reverse Engineering is the key!
•  Main goal of project is to generate code for expressions.

 Example: X <- E1 + E2

•  Compute E1 (e.g., result in $a0)
•  Store result on stack (e.g., store $a0)
•  Compute E2
•  Load E1 (into a temporary)
•  Perform Add
•  Store result on stack

Need to figure out how many temporaries you need.
Naïve approach: Use a temporary for every lefthand side of an operator.

Instruction Scheduling

What Makes Code Run Fast?
•  Many operations have non-zero latencies
•  Modern machines can issue several operations per cycle
•  Execution time is order-dependent

Assumed latencies (conservative)

Operation Cycles
load 3
store 3
loadI 1
add 1
mult 2
fadd 1
fmult 2
shift 1
branch 0 to 8

•  Loads & stores may or may not block
>  Non-blocking ⇒fill those issue slots

•  Instructions can have different latencies
 and use different resources

•  Branches typically have delay slots
>  Fill slots with unrelated operations
>  Percolates branch upward

•  Scheduler should hide the latencies

Example
w ← w * 2 * x * y * z

1 loadAI r0,@w ⇒ r1
4 add r1,r1 ⇒ r1
5 loadAI r0,@x ⇒ r2
8 mult r1,r2 ⇒ r1
9 loadAI r0,@y ⇒ r2

12 mult r1,r2 ⇒ r1
13 loadAI r0,@z ⇒ r2
16 mult r1,r2 ⇒ r1

 18 storeAI r1 ⇒ r0,@w
21 r1 is free

1 loadAI r0,@w ⇒ r1
2 loadAI r0,@x ⇒ r2
3 loadAI r0,@y ⇒ r3
4 add r1,r1 ⇒ r1
5 mult r1,r2 ⇒ r1
6 loadAI r0,@z ⇒ r2
7 mult r1,r3 ⇒ r1
9 mult r1,r2 ⇒ r1

11 storeAI r1 ⇒ r0,@w
14 r1 is free

Cycles Simple schedule Cycles Schedule loads early

2 registers, 20 cycles 3 registers, 13 cycles

Reordering operations for speed is called instruction scheduling

Instruction Scheduling (Engineer’s View)
The Problem

Given a code fragment for some target machine and the
latencies for each individual operation, reorder the operations
to minimize execution time

The Concept

Scheduler
slow
code

fast
code

Machine description

The task

•  Produce correct code
•  Minimize wasted cycles

•  Avoid spilling registers

•  Operate efficiently

Instruction Scheduling (The Abstract View)
To capture properties of the code, build a dependence graph G
•  Nodes n ∈ G are instructions
•  An edge e = (n1,n2) ∈ G if a “data hazard” between them

→  n2 uses the result of n1 (raw)
→  n2 writes to same location as n1 (waw)
→  n2 writes to a location used by n1 (war)

a: loadAI r0,@w ⇒ r1
b: add r1,r1 ⇒ r1
c: loadAI r0,@x ⇒ r2
d: mult r1,r2 ⇒ r1
e: loadAI r0,@y ⇒ r2
f: mult r1,r2 ⇒ r1
g: loadAI r0,@z ⇒ r2
h: mult r1,r2 ⇒ r1
i: storeAI r1 ⇒ r0,@w

The Code

a

b c

d e

f g

h

i

The Dependence
Graph

Instruction Scheduling (What’s so difficult?)
Critical Points
•  All operands must be available
•  Multiple operations can be ready
•  Moving operations can lengthen register lifetimes
•  Placing uses near definitions can shorten register lifetimes
•  Operands can have multiple predecessors
Together, these issues make scheduling hard (NP-Complete)

Local scheduling is the simple case
•  Restricted to straight-line code
•  Consistent and predictable latencies

Instruction Scheduling
The big picture
1. Build a dependence graph, P
2. Compute a priority function over the nodes in P
3. Use list scheduling to construct a schedule, one cycle at a

time
a. Use a queue of operations that are ready
b. At each cycle

I. Choose a ready operation and schedule it
II. Update the ready queue

Local list scheduling
•  The dominant algorithm for twenty years
•  A greedy, heuristic, local technique

Local List Scheduling

Cycle ← 1
Ready ← nodes of P with no predecessors
Active ← Ø

while (Ready ∪ Active ≠ Ø)
 if (Ready ≠ Ø) then
 remove an op from Ready
 S(op) ← Cycle
 Active ← Active ∪ op

 Cycle ← Cycle + 1

 for each op ∈ Active
 if (S(op) + delay(op) ≤ Cycle) then
 remove op from Active
 for each predecessor s of op in P
 if (s is ready) then
 Ready ← Ready ∪ s

Removal in priority order

op has completed execution

If successor’s operands
are ready, put it on Ready

Scheduling Example
1.  Build the dependence graph

The Code

a
b c

d e

f

g

The Dependence
Graph

Scheduling Example
1.  Build the dependence graph
2. Determine priorities: longest latency-weighted path

The Code

a
b c

d e

f

g

The Dependence
Graph

3

5
8

7

9
10 11

Scheduling Example
1.  Build the dependence graph
2. Determine priorities: longest latency-weighted path
3. Perform list scheduling

The Code

a
b c

d e

f

g

The Dependence
Graph

3

5
8

7

9
10 11

Phase IV
1.  Compute the inheritance graph
2. Assign tags to all classes in depth-first order
3. Determine the layout of attributes, temporaries, and

dispatch tables for each class
4. Generate code for global data: constants, dispatch tables
5. Generate code for each feature

Revised Phase IV
1.  Compute the inheritance graph
2. Assign tags to all classes in depth-first order
3. Determine the layout of attributes, temporaries, and

dispatch tables for each class
4. Generate code for global data: constants, dispatch tables
5. Generate code for each feature

 Also forget about Garbage Collection.

 Code will be given to you!
 Do a checkout again Friday afternoon.

Revised Phase IV
1.  Compute the inheritance graph
2. Assign tags to all classes in depth-first order
3. Determine the layout of attributes, temporaries, and

dispatch tables for each class
4. Generate code for global data: constants, dispatch tables
5. Generate code for each feature

 Also forget about Garbage Collection.

 Code will be given to you!
 Do a checkout again Friday afternoon.

Phase IV Notes
1.  Need to create space on stack for all local variables; this is

the simplest register allocation scheme
2. A bunch of free temporary registers are available (see

SPIM manual)
3. Need to write code for cgen for all tree nodes. E.g.,

dispatch tables (if function call is in expression) is given to
you.

4. Again, look at MIPS code generated. Try to emulate what is
generated!

 REVERSE ENGINEERING IS THE KEY!

