
Instruction Selection and Scheduling 
and Phase IV 



Structure of a Compiler 

A compiler is a lot of fast stuff followed by some hard problems 
→  The hard stuff is mostly in optimization and code generation 
→  For superscalars, its allocation & scheduling that count 
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Structure of a Compiler 
For the rest of CISC672, we assume the following model 

•  Selection is fairly simple (problem of the 1980s) 
•  Allocation & scheduling are complex 
•  Operation placement is not yet critical     (unified register set) 

What about the IR ? 
•  Low-level, RISC-like IR called ILOC  
•  Has “enough” registers 
•  ILOC was designed for this stuff {

Branches, compares, & labels 
Memory tags 
Hierarchy of loads & stores 
Provision for multiple ops/cycle 
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Definitions 
Instruction selection 
•  Mapping IR into assembly code 
•  Assumes a fixed storage mapping & code shape 
•  Combining operations, using address modes 

Instruction scheduling 
•  Reordering operations to hide latencies 
•  Assumes a fixed program  (set of operations) 
•  Changes demand for registers 

Register allocation 
•  Deciding which values will reside in registers 
•  Changes the storage mapping, may add false sharing 
•  Concerns about placement of data & memory operations 

These 3 problems 
are tightly 
coupled. 



The Big Picture 
How hard are these problems? 

Instruction selection 
•  Can make locally optimal choices, with automated tool 
•  Global optimality is (undoubtedly) NP-Complete 

Instruction scheduling 
•  Single basic block  ⇒ heuristics work well 
•  General problem, with control flow  ⇒ NP-Complete 

Register allocation 
•  Single basic block, no spilling, & 1 register size  ⇒ linear time 
•  Whole procedure is NP-Complete 



The Big Picture 
Conventional wisdom says that we lose little  

by solving these problems independently 
Instruction selection 
•  Use some form of pattern matching  
•  Assume enough registers or target “important” values  

Instruction scheduling 
•  Within a block, list scheduling is “close” to optimal   
•  Across blocks, build framework to apply list scheduling 

Register allocation 
•  Start from virtual registers & map “enough” into k 
•  With targeting, focus on good priority heuristic 

This slide is full of  
“fuzzy” terms 

Optimal for  
> 85% of 
blocks 



The Problem 
Writing a compiler is a lot of work 
•  Would like to reuse components whenever possible 
•  Would like to automate construction of components 

•  Front end construction is largely automated 
•  Middle is largely hand crafted 
•  (Parts of ) back end can be automated 

Front End Back End Middle  End 
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Definitions 
Instruction selection 
•  Mapping IR into assembly code 
•  Assumes a fixed storage mapping & code shape 
•  Combining operations, using address modes 

Instruction scheduling 
•  Reordering operations to hide latencies 
•  Assumes a fixed program  (set of operations) 
•  Changes demand for registers 

Register allocation 
•  Deciding which values will reside in registers 
•  Changes the storage mapping, may add false sharing 
•  Concerns about placement of data & memory operations 



The Problem 
Modern computers (still) have many ways to do anything 

Consider register-to-register copy in ILOC 
•  Obvious operation is  i2i ri ⇒ rj 
•  Many others exist 

•  Human would ignore all of these 

•  Algorithm must look at all of them & find low-cost encoding 
→  Take context into account                          (busy functional unit?) 

addI  ri,0 ⇒ rj subI ri,0 ⇒ rj lshiftI ri,0 ⇒ rj 
multI ri,1 ⇒ rj divI ri,1 ⇒ rj rshiftI ri,0 ⇒ rj
orI   ri,0 ⇒ rj xorI ri,0 ⇒ rj … and others … 



The Goal 
Want to automate generation of instruction selectors 
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The Big Picture 
Need pattern matching techniques  
•  Must produce good code                        (some metric for good ) 
•  Must run quickly 

A treewalk code generator runs quickly 
How good was the code?  

x

IDENT 
<a,ARP,4> 

IDENT 
<b,ARP,8> 

loadI  4     ⇒ r5 
loadAO  rarp,r5 ⇒ r6 

loadI  8     ⇒ r7 
loadAO  rarp,r7 ⇒ r8 
mult  r6,r8 ⇒ r9 

loadAI  rarp,4  ⇒ r5 
loadAI  rarp,8  ⇒ r6 
mult  r5,r6 ⇒ r7 

Tree Treewalk Code Desired Code 



The Big Picture 
Need pattern matching techniques  
•  Must produce good code                        (some metric for good ) 
•  Must run quickly 

A treewalk code generator runs quickly 
How good was the code?  

x

IDENT 
<a,ARP,4> 

IDENT 
<b,ARP,8> 

loadI  4     ⇒ r5 
loadAO  rarp,r5 ⇒ r6 

loadI  8     ⇒ r7 
loadAO  rarp,r7 ⇒ r8 
mult  r6,r8 ⇒ r9 

loadAI  rarp,4  ⇒ r5 
loadAI  rarp,8  ⇒ r6 
mult  r5,r6 ⇒ r7 

Tree Treewalk Code Desired Code 

Pretty easy to fix. See 
1st digression in Ch. 7 



The Big Picture 
Need pattern matching techniques  
•  Must produce good code                        (some metric for good ) 
•  Must run quickly 

A treewalk code generator runs quickly 
How good was the code? 

x

IDENT 
<a,ARP,4> 

NUMBER 
<2> 

loadI  4     ⇒ r5 
loadAO  rarp,r5 ⇒ r6 
loadI  2     ⇒ r7 
mult  r6,r7 ⇒ r8 

loadAI  rarp,4  ⇒ r5 
multI  r5,2 ⇒ r7 

Tree Treewalk Code Desired Code 



The Big Picture 
Need pattern matching techniques  
•  Must produce good code                        (some metric for good ) 
•  Must run quickly 

A treewalk code generator runs quickly 
How good was the code? 

x

IDENT 
<a,ARP,4> 

NUMBER 
<2> 

loadI  4     ⇒ r5 
loadAO  rarp,r5 ⇒ r6 
loadI  2     ⇒ r7 
mult  r6,r7 ⇒ r8 

loadAI  rarp,4  ⇒ r5 
multI  r5,2 ⇒ r7 

Tree Treewalk Code Desired Code 

Must combine these 
This is a nonlocal problem 



The Big Picture 
Need pattern matching techniques  
•  Must produce good code                        (some metric for good ) 
•  Must run quickly 

A treewalk code generator runs quickly 
How good was the code? 

x

IDENT 
<c,@G,4> 

IDENT 
<d,@H,4> 

loadI  @G  ⇒ r5 
loadI  4     ⇒ r6 
loadAO  r5,r6 ⇒ r7 
loadI  @H  ⇒ r7 
loadI  4     ⇒ r8 
loadAO  r8,r9 ⇒ r10 
mult  r7,r10⇒ r11 

loadI  4           ⇒ r5 
loadAI  r5,@G ⇒ r6 
loadAI  r5,@H ⇒ r7  
mult  r6,r7   ⇒ r8 

Tree Treewalk Code Desired Code 



The Big Picture 
Need pattern matching techniques  
•  Must produce good code                        (some metric for good ) 
•  Must run quickly 

A treewalk code generator can meet the second criteria 
How did it do on the first ? 

x

IDENT 
<c,@G,4> 

IDENT 
<d,@H,4> 

loadI  @G  ⇒ r5 
loadI  4     ⇒ r6 
loadAO  r5,r6 ⇒ r7 
loadI  @H  ⇒ r7 
loadI  4     ⇒ r8 
loadAO  r8,r9 ⇒ r10 
mult  r7,r10⇒ r11 

loadI  4           ⇒ r5 
loadAI  r5,@G ⇒ r6 
loadAI  r5,@H ⇒ r7  
mult  r6,r7   ⇒ r8 

Tree Treewalk Code Desired Code 

Common offset 
Again, a nonlocal problem 



How do we perform this kind of matching ? 
Tree-oriented IR suggests pattern matching on trees 
•  Tree-patterns as input, matcher as output 
•  Each pattern maps to a target-machine instruction sequence 
•  Use dynamic programming or bottom-up rewrite systems 

Linear IR suggests using some sort of string matching 
•  Strings as input, matcher as output 
•  Each string maps to a target-machine instruction sequence 
•  Use text matching or peephole matching 

In practice, both work well; matchers are quite different 



Phase IV Discussion 
You are given a working coolc binary that works, so use it!   
•  Compile some simple coolc programs and look at assembly 

output.  Reverse Engineering is the key! 
•  Main goal of project is to generate code for expressions. 

                Example:       X <-  E1 + E2  

•  Compute E1   (e.g., result in $a0) 
•  Store result on stack  (e.g., store $a0) 
•  Compute E2   
•  Load E1   (into a temporary) 
•  Perform Add 
•  Store result on stack 

Need to figure out how many temporaries you need.   
Naïve approach: Use a temporary for every lefthand side of an operator. 



Instruction Scheduling 



What Makes Code Run Fast? 
•  Many operations have non-zero latencies 
•  Modern machines can issue several operations per cycle 
•  Execution time is order-dependent  

Assumed latencies   (conservative) 

Operation              Cycles  
load   3 
store   3 
loadI   1 
add   1 
mult   2 
fadd   1 
fmult   2 
shift   1 
branch               0 to 8 

•  Loads & stores may or may not block 
>  Non-blocking ⇒fill those issue slots 

•  Instructions can have different latencies  
  and use different resources 

•  Branches typically have delay slots 
>  Fill slots with unrelated operations 
>  Percolates branch upward 

•  Scheduler should hide the latencies 



Example 
w ← w * 2 * x  * y * z 

1 loadAI r0,@w ⇒ r1
4 add r1,r1 ⇒ r1
5 loadAI r0,@x ⇒ r2
8 mult r1,r2 ⇒ r1
9 loadAI r0,@y ⇒ r2

12 mult r1,r2 ⇒ r1
13 loadAI r0,@z ⇒ r2
16 mult r1,r2 ⇒ r1

   18 storeAI r1 ⇒ r0,@w
21 r1 is free

1 loadAI r0,@w ⇒ r1
2 loadAI r0,@x ⇒ r2
3 loadAI r0,@y ⇒ r3
4 add r1,r1 ⇒ r1
5 mult r1,r2 ⇒ r1
6 loadAI r0,@z ⇒ r2
7 mult r1,r3 ⇒ r1
9 mult r1,r2 ⇒ r1

11 storeAI r1 ⇒ r0,@w
14 r1 is free

Cycles          Simple schedule Cycles       Schedule loads early 

2 registers, 20 cycles 3 registers, 13 cycles 

Reordering operations for speed is called instruction scheduling 



Instruction Scheduling          (Engineer’s View) 
The Problem 

Given a code fragment for some target machine and the  
latencies for each individual operation, reorder the operations 
to minimize execution time 

The Concept 

Scheduler 
slow 
code 

fast 
code 

Machine description 

The task 

•  Produce correct code 
•  Minimize wasted cycles 

•  Avoid spilling registers 

•  Operate efficiently  



Instruction Scheduling    (The Abstract View) 
To capture properties of the code, build a dependence graph G 
•  Nodes  n ∈ G are instructions 
•  An edge e = (n1,n2) ∈ G if a “data hazard” between them 

→  n2 uses the result of n1  (raw) 
→  n2 writes to same location as n1   (waw) 
→  n2 writes to a location used by n1    (war) 

a: loadAI r0,@w ⇒ r1
b: add r1,r1 ⇒ r1
c: loadAI r0,@x ⇒ r2
d: mult r1,r2 ⇒ r1
e: loadAI r0,@y ⇒ r2
f: mult r1,r2 ⇒ r1
g: loadAI r0,@z ⇒ r2
h: mult r1,r2 ⇒ r1
i: storeAI r1 ⇒ r0,@w

The Code 

a
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d e

f g 

h

i 

The Dependence 
Graph 



Instruction Scheduling  (What’s so difficult?) 
Critical Points 
•  All operands must be available  
•  Multiple operations can be ready 
•  Moving operations can lengthen register lifetimes 
•  Placing uses near definitions can shorten register lifetimes 
•  Operands can have multiple predecessors 
Together, these issues make scheduling hard      (NP-Complete) 

Local scheduling is the simple case 
•  Restricted to straight-line code 
•  Consistent and predictable latencies 



Instruction Scheduling 
The big picture 
1.  Build a dependence graph, P 
2.  Compute a priority function over the nodes in P 
3.  Use list scheduling to construct a schedule, one cycle at a 

time 
a.  Use a queue of operations that are ready 
b.  At each cycle 

I.  Choose a ready operation and schedule it 
II. Update the ready queue 

Local list scheduling 
•  The dominant algorithm for twenty years 
•  A greedy, heuristic, local technique  



Local List Scheduling 

Cycle ← 1 
Ready ← nodes of P with no predecessors 
Active ← Ø 

while (Ready ∪ Active ≠ Ø) 
    if (Ready ≠ Ø) then 
       remove an op from Ready 
       S(op) ← Cycle 
       Active ← Active ∪ op 

    Cycle ← Cycle + 1 

    for each op ∈ Active 
         if (S(op) + delay(op) ≤ Cycle) then 
            remove op from Active 
            for each predecessor s of op in P 
                 if (s is ready) then 
                    Ready ← Ready ∪ s 

Removal in priority order 

op has completed execution 

If successor’s operands 
are ready, put it on Ready 



Scheduling Example 
1.  Build the dependence graph 
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Scheduling Example 
1.  Build the dependence graph 
2. Determine priorities: longest latency-weighted path 
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Scheduling Example 
1.  Build the dependence graph 
2. Determine priorities: longest latency-weighted path 
3. Perform list scheduling 
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Phase IV 
1.  Compute the inheritance graph  
2. Assign tags to all classes in depth-first order 
3. Determine the layout of attributes, temporaries, and 

dispatch tables for each class 
4. Generate code for global data: constants, dispatch tables 
5. Generate code for each feature 



Revised Phase IV 
1.  Compute the inheritance graph  
2. Assign tags to all classes in depth-first order 
3. Determine the layout of attributes, temporaries, and 

dispatch tables for each class 
4. Generate code for global data: constants, dispatch tables 
5. Generate code for each feature 

 Also forget about Garbage Collection. 

      Code will be given to you! 
 Do a checkout again Friday afternoon. 



Revised Phase IV 
1.  Compute the inheritance graph  
2. Assign tags to all classes in depth-first order 
3. Determine the layout of attributes, temporaries, and 

dispatch tables for each class 
4. Generate code for global data: constants, dispatch tables 
5. Generate code for each feature 

 Also forget about Garbage Collection. 

      Code will be given to you! 
 Do a checkout again Friday afternoon. 



Phase IV Notes 
1.  Need to create space on stack for all local variables; this is 

the simplest register allocation scheme 
2. A bunch of free temporary registers are available (see 

SPIM manual) 
3. Need to write code for cgen for all tree nodes.  E.g., 

dispatch tables (if function call is in expression) is given to 
you. 

4. Again, look at MIPS code generated.  Try to emulate what is 
generated!   

               REVERSE ENGINEERING IS THE KEY! 


