Introduction to Optimization

Why study optimizations?

Moore's Law
* Chip density doubles every 18 months
* Often reflected CPU power doubling every 18 months

Proebsting's Law
* Compiler technology doubles CPU power every 18 years
* 4% improvement per year because of optimizations

Corollary

* 1year of code optimization research = 1 month of hardware
Improvements

* No need for compiler research... Just wait a few months!

Free Lunch is over

Moore's Law
* Chip density doubles every 18 months

e PAST: YT na e\ve R manth
° CURRENT: Densu'ry doublmg reflec‘red in more cores on chlpl

Corollary
* Cores will become simpler
* Just wait a few months... Your code gets slower!

* Many optimizations now being down by hand!
— “autotuning”

GFlop/s

Recent Autotuning Results

3.0 1Clovertown 8.0 7'Barcelona 6.0 7'Victoria Falls 16.0 1iCell Blade 40.0
| —

7.0 — 14.0 . 35.0 1
5.0 -
6.0 S | 120 - 30.0 — T
4.0 l 10.0 | 25.0 H H H H
20.0 HHHHE
3.0 1 1 8.0 -
15.0 HHHHHE
6.0
10.0 - !
4.0
s_o me - - - - - - 9
2.0 4 m
0.0 =111
0.0 1 il B A A M IR A A AR
1(2]als 1/2/4|8l16 ol A Bl -
Cores # SPEs # CUDA 'Thread Blocks'

[| I O R

Naive Naive Naive +DMA +NUMA +Array +Core +Register +Software +Thread +SIMD +Cache
CUDA CUDA local store Padding Blocking Blocking Prefeich Blocking Bypass
in hest indevice version

Slide Source: Datta et al., "Stencil Computation Optimization and Auto-tuning on State-of-the-Art Multicore Architectures” Supercomputing

Recent Autotuning Results

e (N
< RX gy
: N A = o
: — it 3
Wiz | Q| (L -
VX funit sxtn'de) _ 'ry
NX -

(a) (b) (c)
Decomposition of a Node Block Decomposition into Decomposition into
into a Chunk of Core Blocks Thread Blocks Register Blocks

Slide Source: Datta et al., "Stencil Computation Optimization and Auto-tuning on State-of-the-Art Multicore Architectures” Supercomputing

Traditional Three-pass Compiler

Source | Front | R | middle |IR Back Machine
Code End End End code

> Errors

Code Improvement (or Optimization)

* Analyzes IR and rewrites (or transforms) IR

* Primary goal is to reduce running time of the compiled code
— May also improve space, power consumption, ...

* Must preserve "meaning” of the code
— Measured by values of named variables
— A course (or two) unto itself

The Optimizer (or Middle End)

> Errors

Modern optimizers are structured as a series of passes

Typical Transformations

Discover & propagate some constant value

Move a computation to a less frequently executed place
Specialize some computation based on context
Discover a redundant computation & remove it

Remove useless or unreachable code

Encode an idiom in some particularly efficient form

The Role of the Optimizer

* The compiler can implement a procedure in many ways

* The optimizer tries to find an implementation that is "better”
— Speed, code size, data space, ...

To accomplish this, it

* Analyzes the code to derive knowledge about run-time behavior
— Data-flow analysis, pointer disambiguation, ...
— General term is "static analysis”

* Uses that knowledge in an attempt to improve the code
— Literally hundreds of transformations have been proposed
— Large amount of overlap between them

Nothing "optimal” about optimization
* Proofs of optimality assume restrictive & unrealistic conditions

Redundancy Elimination as an Example

An expression x+y is redundant if and only if, along every
path from the procedure's entry, it has been evaluated, and its
constituent subexpressions (x & y) have not been re-defined.

If the compiler can prove that an expression is redundant
* It can preserve the results of earlier evaluations
* It can replace the current evaluation with a reference

Two pieces to the problem
* Proving that x+y is redundant
* Rewriting the code to eliminate the redundant evaluation

One technique for accomplishing both is called value numbering

Redundant Computation

An example

Original Code
a< X+y

*bex+y
a< 17

e X+y

Value Numbering

The key notion

* Assign an identifying number, V(n), o each expression and
operand
— V(x+y) = V(j) iff x+y and j have the same value V path
— Use hashing over the value numbers to make it efficient

* Use these numbers to replace redundant expressions

Simple extensions to value humbering
* Simplify algebraic identities
* Discover constant-valued expressions, fold & propagate them

Local Value Numbering

The Algorithm

For each operation o = <operator, 0,, 0,> in the block

1 Get value numbers for operands from hash lookup

2 Hash <operator,VN(0,),VN(0,)> to get a value number for o

3 If oalready had a value number, replace o with a reference

Using hashing, the algorithm runs in linear time

Local Value Numbering

An example

Original Code

a<—b+c¢
b<—a-d
c<—b+c
d<a-d

How many redundancies:
* Eliminate redundant
stmts with references

Local Value Numbering

An example
Original Code With VNs Rewritten
a<b+c a’ < bl +c? a’ < bl +c2
b<a-d b < a3-d* b> < a3-d4
c<b+c c® < bd + ¢2 ct < b% + 2
*d<a-d * d®<—ad-d* * d3<Db°

How many redundancies:
* Eliminate redundant
stmts with references

Local Value Numbering

An example
Original Code With VNs Rewritten
A< Xx+y a3 < x1 +y2 a3 < x1 +y2
*bex+y *b3@X1+y2 * b3 — g3
a<17 at <— 17 at <— 17
FCceX+y * 3 xT+y2 * c3<— ad (oops!)
Two redundancies: Options:
e Eliminate stmts e Use c3 < b3
witha™ * Save a3 in 13
* Coalesce results ? e Rename around it

Local Value Numbering

Example (continued)

Original Code With VNs Rewritten
Ao <= Xo * Yo ag® < Xo' +Yp? ag® < Xo' +Yp?
" by <X+ Yo " b’ <= X" +Yg? " by’ < ap’
a, < 17 at <17 at <17
T Co Xt Y "GP X' Y’ " G’ < ag’
Renaming: Notation: Result:
* Give each value a * While complex, * ay3 is available
unique name the meaning is * Rewriting just
* Makes it clear Clear works

Simple Extensions to Value Numbering

Constant folding

e Add a bit that records when a value is constant

* Evaluate constant values at compile-time

* Replace with load immediate or immediate operand

Algebraic identities
* Must check (many) special cases
* Replace result with input VN

Identities:
x<y, x+0, x-0, x*1, x+1, x-x,
x*0, x+x

max(x, MAXINT), min(x, MININT),
max(x,x), min(y,y), and so on ...

\ With values, not names

Handling Larger Scopes

Extended Basic Blocks

. . . . O h °) . . I
e TInitialize table for b; with TGW Therwise, 1T Is complex

* With single-assignment naming, can use scoped hash table

f"-_~\\\
P ! RN
0| by) A The Plan:

‘ Process b, b,, b,

Pop two levels

Process b; relative to b,
Start clean with by

_. Start clean with b,

|

|

