
Introduction to Optimization

Why study optimizations?
Moore’s Law
•  Chip density doubles every 18 months
•  Often reflected CPU power doubling every 18 months

Proebsting’s Law
•  Compiler technology doubles CPU power every 18 years
•  4% improvement per year because of optimizations

Corollary
•  1 year of code optimization research = 1 month of hardware

improvements
•  No need for compiler research… Just wait a few months!

Free Lunch is over
Moore’s Law
•  Chip density doubles every 18 months

Corollary
•  Cores will become simpler
•  Just wait a few months… Your code gets slower!
•  Many optimizations now being down by hand!

→  “autotuning”

Recent Autotuning Results

Slide Source: Datta et al., “Stencil Computation Optimization and Auto-tuning on State-of-the-Art Multicore Architectures” Supercomputing 2008

Recent Autotuning Results

Slide Source: Datta et al., “Stencil Computation Optimization and Auto-tuning on State-of-the-Art Multicore Architectures” Supercomputing 2008

Traditional Three-pass Compiler

Code Improvement (or Optimization)
•  Analyzes IR and rewrites (or transforms) IR
•  Primary goal is to reduce running time of the compiled code

→  May also improve space, power consumption, …
•  Must preserve “meaning” of the code

→  Measured by values of named variables
→  A course (or two) unto itself

Errors

Source
Code

Middle
End

Front
End

Machine
code

Back
End

IR IR

The Optimizer (or Middle End)

Typical Transformations
•  Discover & propagate some constant value
•  Move a computation to a less frequently executed place
•  Specialize some computation based on context
•  Discover a redundant computation & remove it
•  Remove useless or unreachable code
•  Encode an idiom in some particularly efficient form

Errors

Opt
1

Opt
3

Opt
2

Opt
n

... IR IR IR IR IR

Modern optimizers are structured as a series of passes

The Role of the Optimizer
•  The compiler can implement a procedure in many ways
•  The optimizer tries to find an implementation that is “better”

→  Speed, code size, data space, …

To accomplish this, it
•  Analyzes the code to derive knowledge about run-time behavior

→  Data-flow analysis, pointer disambiguation, …
→  General term is “static analysis”

•  Uses that knowledge in an attempt to improve the code
→  Literally hundreds of transformations have been proposed
→  Large amount of overlap between them

Nothing “optimal” about optimization
•  Proofs of optimality assume restrictive & unrealistic conditions

Redundancy Elimination as an Example
An expression x+y is redundant if and only if, along every
path from the procedure’s entry, it has been evaluated, and its
constituent subexpressions (x & y) have not been re-defined.

If the compiler can prove that an expression is redundant
•  It can preserve the results of earlier evaluations
•  It can replace the current evaluation with a reference

Two pieces to the problem
•  Proving that x+y is redundant
•  Rewriting the code to eliminate the redundant evaluation

One technique for accomplishing both is called value numbering

Redundant Computation
An example

Original Code
 a ← x + y
* b ← x + y
 a ← 17
* c ← x + y

Value Numbering
The key notion
•  Assign an identifying number, V(n), to each expression and

operand
→  V(x+y) = V(j) iff x+y and j have the same value ∀ path
→  Use hashing over the value numbers to make it efficient

•  Use these numbers to replace redundant expressions

Simple extensions to value numbering
•  Simplify algebraic identities
•  Discover constant-valued expressions, fold & propagate them

Local Value Numbering
The Algorithm
For each operation o = <operator, o1, o2> in the block
1  Get value numbers for operands from hash lookup
2  Hash <operator,VN(o1),VN(o2)> to get a value number for o
3  If o already had a value number, replace o with a reference

Using hashing, the algorithm runs in linear time

Local Value Numbering
An example

Original Code
 a ← b + c
 b ← a - d
 c ← b + c
 d ← a - d

How many redundancies:
•  Eliminate redundant
 stmts with references

Local Value Numbering
An example

With VNs
 a3 ← b1 + c2
 b5 ← a3 - d4
 c6 ← b5 + c2
* d5 ← a3 - d4

Rewritten
 a3 ← b1 + c2
 b5 ← a3 - d4
 c6 ← b5 + c2
* d3 ← b5

Original Code
 a ← b + c
 b ← a - d
 c ← b + c
 * d ← a - d

How many redundancies:
•  Eliminate redundant
 stmts with references

Local Value Numbering
An example

With VNs
 a3 ← x1 + y2
* b3 ← x1 + y2
 a4 ← 17
* c3 ← x1 + y2

Rewritten
 a3 ← x1 + y2
* b3 ← a3
 a4 ← 17
* c3 ← a3 (oops!)

Options:
•  Use c3

 ← b3
•  Save a3 in t3
•  Rename around it

Original Code
 a ← x + y
* b ← x + y
 a ← 17
* c ← x + y

Two redundancies:
•  Eliminate stmts
 with a *
•  Coalesce results ?

Local Value Numbering
Example (continued)

With VNs
 a0

3 ← x0
1 + y0

2
* b0

3 ← x0
1 + y0

2
 a1

4 ← 17
* c0

3 ← x0
1 + y0

2

Notation:
•  While complex,
 the meaning is
 clear

Original Code

 a0 ← x0 + y0
* b0 ← x0 + y0
 a1 ← 17
* c0 ← x0 + y0

Renaming:
•  Give each value a
 unique name
•  Makes it clear

Rewritten
 a0

3 ← x0
1 + y0

2
* b0

3 ← a0
3

 a1
4 ← 17

* c0
3 ← a0

3

Result:
•  a0

3 is available
•  Rewriting just
 works

Simple Extensions to Value Numbering
Constant folding
•  Add a bit that records when a value is constant
•  Evaluate constant values at compile-time
•  Replace with load immediate or immediate operand

Algebraic identities
•  Must check (many) special cases
•  Replace result with input VN

Identities:
x←y, x+0, x-0, x*1, x÷1, x-x,
x*0, x÷x
max(x,MAXINT), min(x,MININT),
max(x,x), min(y,y), and so on ...

With values, not names

Handling Larger Scopes
Extended Basic Blocks
•  Initialize table for bi with table from bi-1
•  With single-assignment naming, can use scoped hash table

b4 b5

b6

b1

b3 b2

The Plan:
Process b1, b2, b4
Pop two levels
Process b3 relative to b1
Start clean with b5
Start clean with b6

→

→

→

→

Otherwise, it is complex

