

Code Shape II Expressions & Arrays

Code Shape

• What if y+z is evaluated earlier?

Addition is commutative & associative for integers

The "best" shape for x+y+z depends on contextual knowledge → There may be several conflicting options

Code Shape

Another example -- the case statement

- Implement it as cascaded if-then-else statements
 - \rightarrow Cost depends on where your case actually occurs
 - \rightarrow O(number of cases)
- Implement it as a binary search
 - → Need a dense set of conditions to search
 - → Uniform (log n) cost
- Implement it as a jump table
 - \rightarrow Lookup address in a table & jump to it
 - → Uniform (constant) cost

Compiler must choose best implementation strategy No amount of massaging or transforming will convert one into another

The key code quality issue is holding values in registers

- When can a value be safely allocated to a register?
 - \rightarrow When only 1 name can reference its value
 - → Pointers, parameters, aggregates & arrays all cause trouble
- When should a value be allocated to a register?
 - \rightarrow When it is both <u>safe</u> & <u>profitable</u>

Encoding this knowledge into the IR

- Use code shape to make it known to every later phase
- Assign a virtual register to anything that can go into one
- Load or store the others at each reference

Relies on a strong register allocator


```
expr(node) {
  int result. t1. t2;
  switch (type(node)) {
      Case \times, \div, +, -:
          t1 \leftarrow expr(left child(node));
          t2← expr(right child(node));
          result ← NextRegister();
          emit (op(node), t1, t2, result);
          break:
      case IDENTIFIER:
          t1 \leftarrow base(node);
          t2 \leftarrow offset(node);
          result ~ NextRegister();
          emit (loadAO, t1, t2, result);
          break;
      case NUMBER:
          result \leftarrow NextRegister();
          emit (loadl, val(node), none, result);
          break;
       return result;
```

The concept

- Use a simple treewalk evaluator
- Bury complexity in routines it calls

> base(), offset(), & val()

- Implements expected behavior
 - > Visits & evaluates children
 - > Emits code for the op itself
 - > Returns register with result
- Works for simple expressions
- Easily extended to other operators
- Does not handle control flow

r2, r6 \Rightarrow r7

sub

Extending the Simple Treewalk Algorithm

More complex cases for IDENTIFIER

- What about values in registers?
 - → Modify the IDENTIFIER case
 - \rightarrow Already in a register \Rightarrow return the register name
 - \rightarrow Not in a register \Rightarrow load it as before, but record the fact
 - \rightarrow Choose names to avoid creating false dependences
- What about parameter values?
 - \rightarrow Many linkages pass the first several values in registers
 - \rightarrow Call-by-value \Rightarrow just a local variable with "funny" offset
 - \rightarrow Call-by-reference \Rightarrow needs an extra indirection
- What about function calls in expressions?
 - \rightarrow Generate the calling sequence & load the return value
 - → Severely limits compiler's ability to reorder operations

Extending the Simple Treewalk Algorithm

Adding other operators

- Evaluate the operands, then perform the operation
- Complex operations may turn into library calls
- Handle assignment as an operator

Mixed-type expressions

- Insert conversions as needed from conversion table
- Most languages have symmetric & rational conversion tables

Typical Addition Table

+	Integer	Real	Double	Complex	
Integer	Integer	Real	Double	Complex	
Real	Real	Real	Double	Complex	
Double	Double Double		Double	Complex	
Complex	Complex	Complex	Complex	Complex	

lhs ← rhs

Strategy

- Evaluate *rhs* to a value
- Evaluate *lhs* to a location
 - \rightarrow *lvalue* is a register \Rightarrow move rhs
 - \rightarrow *lvalue* is an address \Rightarrow store rhs
- If *rvalue* & *lvalue* have different types
 - → Evaluate *rvalue* to its "*natural*" type
 - → Convert that value to the type of */value

Unambiguous scalars go into registers Ambiguous scalars or aggregates go into memory (an rvalue) (an lvalue)

Let hardware sort out the addresses !

What if the compiler cannot determine the rhs's type?

- This is a property of the language & the specific program
- If type-safety is desired, compiler must insert a <u>run-time</u> check
- Add a *tag* field to the data items to hold type information

Code for assignment becomes more complex

```
evaluate rhs
if type(lhs) ≠ rhs.tag
then
    convert rhs to type(lhs) or
    signal a run-time error
lhs ← rhs
This is much more
complex than if it
knew the types
```

Handling Assignment

DELAWARE 1744

Compile-time type-checking

- Goal is to eliminate both the check & the tag
- Determine, at compile time, the type of each subexpression
- Use compile-time types to determine if a run-time check is needed

Optimization strategy

- If compiler knows the type, move the check to compile-time
- Unless tags are needed for garbage collection, eliminate them
- If check is needed, try to overlap it with other computation

Can design the language so all checks are static

How does the compiler handle A[i,j]?

First, must agree on a storage scheme

Row-major order

Lay out as a sequence of consecutive rows Rightmost subscript varies fastest A[1,1], A[1,2], A[1,3], A[2,1], A[2,2], A[2,3]

Column-major order

Lay out as a sequence of columns Leftmost subscript varies fastest A[1,1], A[2,1], A[1,2], A[2,2], A[1,3], A[2,3]

Indirection vectors

Vector of pointers to pointers to ... to values Takes much more space, trades indirection for arithmetic Not amenable to analysis Niversityor Elaware

(most languages)

(Fortran)

(Java)

Laying Out Arrays

The Concept

These have distinct & different cache behavior

Row-major order

A 1,1 1,2 1,3 1,4 2,1 2,2 2,3	2,4
-------------------------------	-----

Column-major order

A [1,1	2,1	1,2	2,2	1,3	2,3	1,4	2,4
-----	-----	-----	-----	-----	-----	-----	-----	-----

Indirection vectors

Computing an Array Address

A[i]

- @A + (i low) x sizeof(A[1])
- In general: base(A) + (i low) x sizeof(A[1])

Computing an Array Address

A[i]

- @A + (i low) x sizeof(A[1])
- In general: base(A) + (i low) x sizeof(A[1])

What about $A[i_1, i_2]$? Row-major order, two dimensions $@A + ((i_1 - low_1) \times (high_2 - low_2 + 1) + i_2 - low_2) \times sizeof(A[1])$

Column-major order, two dimensions $@A + ((i_2 - low_2) \times (high_1 - low_1 + 1) + i_1 - low_1) \times sizeof(A[1])$

Indirection vectors, two dimensions
 *(A[i₁])[i₂] — where A[i₁] is, itself, a 1-d array reference

Optimizing Address Calculation for A[i,j]

In row-major order $@A + (i-low_1)(high_2-low_2+1) \times w + (j - low_2) \times w$ Which can be factored into $@A + i \times (high_2-low_2+1) \times w + j \times w$ $- (low_1 \times (high_2-low_2+1) \times w) + (low_2 \times w)$ If low_i , high_i, and w are known, the last term is a constant Define $@A_0$ as $@A - (low_1 \times (high_2-low_2+1) \times w) + (low_2 \times w)$ And len_2 as $(high_2-low_2+1)$

Then, the address expression becomes

 $@A_0 + (i \times len_2 + j) \times w$

Compile-time constants

Array References

What about arrays as actual parameters?

Whole arrays, as call-by-reference parameters

- Need dimension information \Rightarrow build a *dope vector*
- Store the values in the calling sequence
- Pass the address of the dope vector in the parameter slot
- Generate complete address polynomial at each reference

What about call-by-value?

- Most c-b-v languages pass arrays by reference
- This is a language design issue

@A

low₁

high₁

low₂

high₂

Array References

What about A[12] as an actual parameter?

If corresponding parameter is a scalar, it's easy

- Pass the address or value, as needed
- Must know about both formal & actual parameter
- Language definition must force this interpretation

What if corresponding parameter is an array?

- Must know about both formal & actual parameter
- Meaning must be well-defined and understood
- Cross-procedural checking of conformability
- \Rightarrow Again, we're treading on language design issues


```
DO J = 1, N
A[I,J] = A[I,J] + B[I,J]
END DO
```

• Naïve: Perform the address calculation twice

```
DO J = 1, N

R1 = @A_0 + (J \times len_1 + I) \times floatsize

R2 = @B_0 + (J \times len_1 + I) \times floatsize

MEM(R1) = MEM(R1) + MEM(R2)

END DO
```



```
DO J = 1, N
A[I,J] = A[I,J] + B[I,J]
END DO
```

• Sophisticated: Move comon calculations out of loop

```
R1 = I x floatsize

c = len_1 x floatsize ! Compile-time constant

R2 = @A<sub>0</sub> + R1

R3 = @B<sub>0</sub> + R1

DO J = 1, N

a = J \times c

R4 = R2 + a

R5 = R3 + a

MEM(R4) = MEM(R4) + MEM(R5)

END DO
```