
Code Shape II 
Expressions & Arrays 



Code Shape 

•  What if x is 2 and z is 3? 
•  What if y+z is evaluated earlier? 

The “best” shape for x+y+z depends on contextual knowledge 
→  There may be several conflicting options 

x + y + z x + y → t1 

t1+ z → t2 

x + z → t1 

t1+ y → t2 

y + z → t1 

t1+ z → t2 
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Addition is commutative & 
associative for integers  



Code Shape 
Another example -- the case statement 
•  Implement it as cascaded if-then-else statements 

→  Cost depends on where your case actually occurs 
→  O(number of cases) 

•  Implement it as a binary search 
→  Need a dense set of conditions to search 
→  Uniform (log n) cost 

•  Implement it as a jump table 
→  Lookup address in a table & jump to it 
→  Uniform (constant) cost 

Compiler must choose best implementation strategy 
No amount of massaging or transforming will convert one into 

another 



Generating Code for Expressions 
The key code quality issue is holding values in registers 
•  When can a value be safely allocated to a register? 

→  When only 1 name can reference its value 
→  Pointers, parameters, aggregates & arrays all cause trouble 

•  When should a value be allocated to a register? 
→  When it is both safe & profitable 

Encoding this knowledge into the IR 
•  Use code shape to make it known to every later phase 
•  Assign a virtual register to anything that can go into one 
•  Load or store the others at each reference 
Relies on a strong register allocator 



Generating Code for Expressions 

The concept 

•  Use a simple treewalk evaluator 

•  Bury complexity in routines it calls 
>  base(), offset(), & val() 

•  Implements expected behavior 

>  Visits & evaluates children 

>  Emits code for the op itself  

>  Returns register with result 

•  Works for simple expressions 

•  Easily extended to other operators 

•  Does not handle control flow 

expr(node) { 
   int result, t1, t2; 
   switch (type(node)) { 
         case ×,÷,+,- : 
              t1← expr(left child(node)); 
              t2← expr(right child(node)); 
              result ← NextRegister(); 
              emit (op(node), t1, t2, result); 
              break; 
         case IDENTIFIER: 
              t1← base(node); 
              t2← offset(node); 
              result ← NextRegister(); 
              emit (loadAO, t1, t2, result); 
              break; 
         case NUMBER: 
              result ← NextRegister(); 
              emit (loadI, val(node), none, result); 
              break; 
          } 
          return result; 
  } 



Generating Code for Expressions 

Example: 

Produces: 

+ 

x y 

expr(“x”) →  
  loadI @x ⇒ r1 
  loadAO r0, r1 ⇒ r2 
expr(“y”) →  
  loadI @y ⇒ r3 
  loadAO r0, r3 ⇒ r4 
expr(“+”) →  
NextRegister() → r 5  
emit(add,r2,r4,r5) →  
  add r2, r4 ⇒ r5 

 

 

expr(node) { 
   int result, t1, t2; 
   switch (type(node)) { 
         case ×,÷,+,- : 
              t1← expr(left child(node)); 
              t2← expr(right child(node)); 
              result ← NextRegister(); 
              emit (op(node), t1, t2, result); 
              break; 
         case IDENTIFIER: 
              t1← base(node); 
              t2← offset(node); 
              result ← NextRegister(); 
              emit (loadAO, t1, t2, result); 
              break; 
         case NUMBER: 
              result ← NextRegister(); 
              emit (loadI, val(node), none, result); 
              break; 
          } 
          return result; 
  } 



Generating Code for Expressions 

Example: 

Generates: 

- 

× x 

y 2 

loadI @x ⇒ r1
loadAO r0, r1 ⇒ r2
loadI 2 ⇒ r3
loadI @y ⇒ r4
loadAO r0,r4 ⇒ r5
mult r3, r5 ⇒ r6
sub r2, r6 ⇒ r7

expr(node) { 
   int result, t1, t2; 
   switch (type(node)) { 
         case ×,÷,+,- : 
              t1← expr(left child(node)); 
              t2← expr(right child(node)); 
              result ← NextRegister(); 
              emit (op(node), t1, t2, result); 
              break; 
         case IDENTIFIER: 
              t1← base(node); 
              t2← offset(node); 
              result ← NextRegister(); 
              emit (loadAO, t1, t2, result); 
              break; 
         case NUMBER: 
              result ← NextRegister(); 
              emit (loadI, val(node), none, result); 
              break; 
          } 
          return result; 
  } 



Extending the Simple Treewalk Algorithm 
More complex cases for IDENTIFIER 
•  What about values in registers?   

→  Modify the ���IDENTIFIER case 
→  Already in a register ⇒ return the register name 
→  Not in a register ⇒ load it as before, but record the fact 
→  Choose names to avoid creating false dependences 

•  What about parameter values? 
→  Many linkages pass the first several values in registers 
→  Call-by-value ⇒ just a local variable with “funny” offset 
→  Call-by-reference ⇒ needs an extra indirection 

•  What about function calls in expressions? 
→  Generate the calling sequence & load the return value 
→  Severely limits compiler’s ability to reorder operations 



Extending the Simple Treewalk Algorithm 
Adding other operators 
•  Evaluate the operands, then perform the operation 
•  Complex operations may turn into library calls 
•  Handle assignment as an operator 
Mixed-type expressions 
•  Insert conversions as needed from conversion table 
•  Most languages have symmetric & rational conversion tables 

+ Integer Real Double Complex
Integer Integer Real Double Complex
Real Real Real Double Complex
Double Double Double Double Complex
Complex Complex Complex Complex Complex

Typical 
Addition 

Table 



Handling Assignment         (just another operator) 
lhs ← rhs 
Strategy 
•  Evaluate rhs to a value                                          (an rvalue) 
•  Evaluate lhs to a location                                       (an lvalue) 

→  lvalue is a register ⇒ move rhs 
→  lvalue is an address ⇒ store rhs 

•  If rvalue & lvalue have different types 
→  Evaluate rvalue to its “natural” type 
→  Convert that value to the type of *lvalue 

Unambiguous scalars go into registers 
Ambiguous scalars or aggregates go into memory 

Let hardware 
sort out the  
addresses ! 



Handling Assignment 
What if the compiler cannot determine the rhs’s type ? 
•  This is a property of the language & the specific program 
•  If type-safety is desired, compiler must insert a run-time 

check 
•  Add a tag  field to the data items to hold type information 

Code for assignment becomes more complex 

evaluate rhs

if type(lhs) ≠ rhs.tag

   then 

      convert rhs to type(lhs) or 

      signal a run-time error

lhs ← rhs


This is much more 
complex than if it 
knew the types 



Handling Assignment 
Compile-time type-checking 
•  Goal is to eliminate both the check & the tag 
•  Determine, at compile time, the type of each subexpression 
•  Use compile-time types to determine if a run-time check is 

needed 

Optimization strategy 
•  If compiler knows the type, move the check to compile-time 
•  Unless tags are needed for garbage collection, eliminate them 
•  If check is needed, try to overlap it with other computation 

Can design the language so all checks are static 



How does the compiler handle A[i,j] ? 
First, must agree on a storage scheme 
Row-major order                                                  (most languages) 

Lay out as a sequence of consecutive rows 
Rightmost subscript varies fastest 
A[1,1], A[1,2], A[1,3], A[2,1], A[2,2], A[2,3] 

Column-major order                                                       (Fortran)  
Lay out as a sequence of columns 
Leftmost subscript varies fastest 
A[1,1], A[2,1], A[1,2], A[2,2], A[1,3], A[2,3] 

Indirection vectors                                                            (Java)  
Vector of pointers to pointers to … to values 
Takes much more space, trades indirection for arithmetic 
Not amenable to analysis 



Laying Out Arrays 
The Concept 

Row-major order 

Column-major order 

Indirection vectors 

1,1 1,2 1,3 1,4 2,1 2,2 2,3 2,4 A 

1,1 2,1 1,2 2,2 1,3 2,3 1,4 2,4 A 

1,1 1,2 1,3 1,4 

2,1 2,2 2,3 2,4 
A 

1,1 1,2 1,3 1,4 

2,1 2,2 2,3 2,4 
A 

These have distinct 
& different cache 
behavior  



Computing an Array Address 
A[ i ] 
•  @A + ( i – low ) x sizeof(A[1])  
•  In general: base(A) + ( i – low ) x sizeof(A[1]) 

Almost always a power  
of  2, known at compile-time 
⇒ use a shift for speed 



Computing an Array Address 
A[ i ] 
•  @A + ( i – low ) x sizeof(A[1])  
•  In general: base(A) + ( i – low ) x sizeof(A[1]) 

Almost always a power of 
2, known at compile-time  
⇒ use a shift for speed 

int A[1:10] ⇒ low is 1 
Make low 0 for faster 
access      (saves a – ) 



Computing an Array Address 
A[ i ] 
•  @A + ( i – low ) x sizeof(A[1])  
•  In general: base(A) + ( i – low ) x sizeof(A[1]) 

What about A[i1,i2] ? 

Row-major order, two dimensions 
 @A + (( i1 – low1 ) x (high2 – low2 + 1) + i2 – low2) x sizeof(A[1]) 

Column-major order, two dimensions 
 @A + (( i2 – low2 ) x (high1 – low1 + 1) + i1 – low1) x sizeof(A[1]) 

Indirection vectors, two dimensions 
 *(A[i1])[i2]    — where  A[i1] is, itself, a 1-d array reference 

This stuff  looks expensive! 
Lots of implicit +, -, x ops 



where w = sizeof(A[1,1]) 

Optimizing Address Calculation for A[i,j] 

In row-major order 
@A + (i–low1)(high2–low2+1) x w + (j – low2) x w 

Which can be factored into 
@A + i x (high2–low2+1) x w + j x w 
    – (low1 x (high2–low2+1) x w) + (low2 x w) 

If  lowi, highi, and w are known, the last term is a constant 
Define @A0 as  
     @A – (low1 x (high2–low2+1) x w) + (low2 x w) 
And len2 as (high2-low2+1)  

Then, the address expression becomes  
     @A0 + (i x len2 + j ) x w 

Compile-time constants 



Array References 
What about arrays as actual parameters? 
Whole arrays, as call-by-reference parameters 
•  Need dimension information ⇒ build a dope vector 
•  Store the values in the calling sequence 
•  Pass the address of the dope vector in the parameter slot 
•  Generate complete address polynomial at each reference 
What about call-by-value? 
•  Most c-b-v languages pass arrays by reference 
•  This is a language design issue 

@A 

low1 

high1 

low2 

high2 



Array References 
What about A[12] as an actual parameter? 

If corresponding parameter is a scalar, it’s easy 
•  Pass the address or value, as needed  
•  Must know about both formal & actual parameter 
•  Language definition must force this interpretation 

What if corresponding parameter is an array? 
•  Must know about both formal & actual parameter 
•  Meaning must be well-defined and understood 
•  Cross-procedural checking of conformability  

⇒ Again, we’re treading on language design issues 



Example: Array Address Calculations in a Loop 

DO J = 1, N 
 A[I,J] = A[I,J] + B[I,J] 

END DO 

•  Naïve: Perform the address calculation twice 

DO J = 1, N 
 R1 = @A0 + (J x len1 + I ) x floatsize 
 R2 = @B0 + (J x len1 + I ) x floatsize 
 MEM(R1) = MEM(R1) + MEM(R2) 

END DO 



Example: Array Address Calculations in a Loop 

DO J = 1, N 
 A[I,J] = A[I,J] + B[I,J] 

END DO 

•  Sophisticated: Move comon calculations out of loop 

R1 = I x floatsize 
c = len1 x floatsize    ! Compile-time constant 
R2 = @A0 + R1 
R3 = @B0 + R1 
DO J = 1, N 

 a = J x c  
 R4 = R2 + a 
 R5 = R3 + a 
 MEM(R4) = MEM(R4) + MEM(R5) 

END DO 


