
Code Shape I
Procedure Calls & Dispatch

Code Shape
Definition
•  All those nebulous properties of the code that impact

performance & code “quality”
•  Includes code, approach for different constructs, cost,

storage requirements & mapping, & choice of operations
•  Code shape is the end product of many decisions (big & small)

Impact
•  Code shape influences algorithm choice & results
•  Code shape can encode important facts, or hide them

Rule of thumb: expose as much derived information as possible
•  Example: explicit branch targets in ILOC simplify analysis
•  Example: hierarchy of memory operations in ILOC (in EaC)

Procedure Linkages
Standard procedure linkage

procedure p

prolog

epilog

pre-call

post-return

procedure q

prolog

epilog

Procedure has
•  standard prolog
•  standard epilog
Each call involves a
•  pre-call sequence
•  post-return sequence
These are completely
predictable from the
call site ⇒ depend on
the number & type of
the actual parameters

Implementing Procedure Calls
If p calls q …
•  In the code for p, compiler emits pre-call sequence

→  Evaluates each parameter & stores it appropriately
→  Loads the return address from a label
→  (with access links) sets up q ‘s access link
→  Branches to the entry of q

•  In the code for p, compiler emits post-return sequence
→  Copy return value into appropriate location
→  Free q ‘s AR, if needed
→  Resume p ‘s execution

Invariant parts of pre-call sequence might be moved into the prolog

Implementing Procedure Calls
If p calls q …
•  In the prolog, q must

→  Set up its execution environment
→  (with display) update the display entry for its lexical level
→  Allocate space for its (AR &) local variables & initialize them
→  If q calls other procedures, save the return address
→  Establish addressability for static data area(s)

•  In the epilog, q must
→  Store return value (unless “return” statement already did so)
→  (with display) restore the display entry for its lexical level
→  Restore the return address (if saved)
→  Begin restoring p ’s environment
→  Load return address and branch to it

Implementing Procedure Calls
If p calls q, one of them must
•  Preserve register values (caller-saves versus callee saves)

→  Caller-saves registers stored/restored by p in p ‘s AR
→  Callee-saves registers stored/restored by q in q ‘s AR

•  Allocate the AR
→  Heap allocation ⇒ callee allocates its own AR
→  Stack allocation ⇒ caller & callee cooperate to allocate AR

Space tradeoff
•  Pre-call & post-return occur on every call
•  Prolog & epilog occur once per procedure
•  More calls than procedures

→  Moving operations into prolog/epilog saves space

Implementing Procedure Calls
If p calls q, one of them must
•  Preserve register values (caller-saves versus callee saves)

If space is an issue
•  Moving code to prolog & epilog saves space
•  As register sets grow, save/restore code does, too

→  Each saved register costs 2 operations
→  Can use a library routine to save/restore

♦  Pass it a mask to determine actions & pointer to space
♦  Hardware support for save/restore or storeM/loadM

Can decouple who saves from what is saved

Implementing Procedure Calls
If p calls q, one of them must
•  Preserve register values (caller-saves versus callee saves)

If space is an issue
•  All saves in prolog, all restores in epilog

→  Caller provides a bit mask for caller-saves registers
→  Callee provides a bit mask for callee-saves registers
→  Store all of them in same AR (either caller or callee)
→  Efficient use of time and code space
→  May waste some register save space in the AR

•  Caller-save & callee-save assign responsibility not work

Implementing Procedure Calls
Evaluating parameters
•  Call by reference ⇒ evaluate parameter to an lvalue
•  Call by value ⇒ evaluate parameter to an rvalue & store it

Aggregates, arrays, & strings are usually c-b-r
•  Language definition issues
•  Alternative is copying them at each procedure call

→  Small structures can be passed in registers
→  Can pass large c-b-v objects c-b-r and copy on modification

AIX does this for C

Implementing Procedure Calls
Evaluating parameters
•  Call by reference ⇒ evaluate parameter to an lvalue
•  Call by value ⇒ evaluate parameter to an rvalue & store it

Procedure-valued parameters
•  Must pass starting address of procedure
•  With access links, need the lexical level as well

→  Procedure value is a tuple < level,address >
♦  May also need shared data areas (file-level scopes)
♦  In-file & out-of-file calls have (slightly) different costs

→  This lets the caller set up the appropriate access link

Implementing Procedure Calls
What about arrays as actual parameters?
Whole arrays, as call-by-reference parameters
•  Callee needs dimension information ⇒ build a dope vector
•  Store the values in the calling sequence
•  Pass the address of the dope vector in the parameter slot
•  Generate complete address polynomial at each reference
Some improvement is possible
•  Save leni and lowi rather than lowi and highi
•  Pre-compute the fixed terms in prologue sequence
What about call-by-value?
•  Most c-b-v languages pass arrays by reference
•  This is a language design issue

@A

low1

high1

low2

high2

Implementing Procedure Calls
What about A[12] as an actual parameter?

If corresponding parameter is a scalar, it’s easy
•  Pass the address or value, as needed
•  Must know about both formal & actual parameter
•  Language definition must force this interpretation

What is corresponding parameter is an array?
•  Must know about both formal & actual parameter
•  Meaning must be well-defined and understood
•  Cross-procedural checking of conformability

⇒ Again, we’re treading on language design issues

An Aside That Doesn’t Fit Well Anywhere …
What about code for access to variable-sized arrays?

Local arrays dimensioned by actual parameters
•  Same set of problems as parameter arrays
•  Requires dope vectors (or equivalent)

→  Place dope vector at fixed offset in activation record
⇒ Different access costs for textually similar references

This presents lots of opportunities for a good optimizer
•  Common subexpressions in the address polynomial
•  Contents of dope vector are fixed during each activation
•  Should be able to recover much of the lost ground

⇒ Handle them like parameter arrays

Implementing Procedure Calls
What about a string-valued argument?
•  Call by reference ⇒ pass a pointer to the start of the string

→  Works with either length/contents or null-terminated string
•  Call by value ⇒ copy the string & pass it

→  Can store it in caller’s AR or callee’s AR
→  Callee’s AR works well with stack-allocated ARs
→  Can pass by reference & have callee copy it if necessary …

Pointer functions as a “descriptor” for the string, stored in the
appropriate location (register or slot in the AR)

Implementing Procedure Calls
What about a structure-valued parameter?
•  Again, pass a descriptor
•  Call by reference ⇒ descriptor (pointer) refers to original
•  Call by value ⇒ create copy & pass its descriptor

→  Can allocate it in either caller’s AR or callee’s AR
→  Callee’s AR works well with stack-allocated ARs
→  Can pass by reference & have callee copy it if necessary …

If it is actually an array of structures, then use a dope vector
If it is an element of an array of structures, then …

What About Calls in an OOL (Dispatch)?
In an OOL, most calls are indirect calls
•  Compiled code does not contain address of callee

→  Finds it by indirection through class’ method table
→  Required to make subclass calls find right methods
→  Code compiled in class C cannot know of subclass methods that

override methods in C and C ‘s superclasses
•  In the general case, need dynamic dispatch

→  Map method name to a search key
→  Perform a run-time search through hierarchy

♦  Start with object’s class, search for 1st occurrence of key
♦  This can be expensive

→  Use a method cache to speed search
♦  Cache holds < key,class,method pointer > How big?

Bigger ⇒ more hits &
 longer search

Smaller ⇒ fewer hits,
 faster search

What About Calls in an OOL (Dispatch)?
Improvements are possible in special cases
•  If class has no subclasses, can generate direct call

→  Class structure must be static or class must be FINAL
•  If class structure is static

→  Can generate complete method table for each class
→  Single indirection through class pointer (1 or 2 operations)
→  Keeps overhead at a low level

•  If class structure changes infrequently
→  Build complete method tables at run time
→  Initialization & any time class structure changes

•  If running program can create new classes, …
→  Well, not all things can be done quickly

What About Calls in an OOL (Dispatch)?
Unusual issues in OOL call
•  Need to pass receiver’s object record as (1st) parameter

→  Becomes self or this
•  Typical OOL has lexical scoping in method

→  Limited to block-style scoping ⇒ no need for access links
→  Can overlay successive blocks in same method (reuse)

•  Method needs access to its class
→  Object record has static pointer to superclass, and so on …
→  Class pointers don’t need updating like access-links

•  Method is a full-fledged procedure
→  It still needs an AR …
→  Can often stack allocate them (HotSpot does …)

What About setjmp() and longjmp() ?
Unix system calls to implement abnormal returns
•  Setjmp() stores a descriptor for use with longjmp()
•  Invoking longjump(d) causes execution to continue at the

point after the setjump() call that created d

How can we implement setjmp() & longjmp() ?
•  Setjmp() must store ARP and return address in descriptor

→  What about values of registers and variables?
→  If they are to be preserved, must compute a closure

•  Longjmp() must restore environment at setjmp()
→  Restore ARP & discard ARs creates since setjmp()

♦  Cheap with stack-allocated ARs, might cost more with heap

