
The Procedure Abstraction
Part III: Allocating Storage & Establishing

Addressability

Placing Run-time Data Structures
Classic Organization

•  Code, static, & global data have known size
  Use symbolic labels in the code

•  Heap & stack both grow & shrink over time
•  This is a virtual address space

•  Better utilization if
 stack & heap grow
 toward each other
•  Very old result (Knuth)
•  Code & data separate or
 interleaved
•  Uses address space,
 not allocated memory

C
o
d
e

S G
t l
a & o
t b
i a
c l

H
e
a
p

S
t
a
c
k

Single Logical Address Space
0 high

How Does This Really Work?
The Big Picture

C
o
d
e

S G
t l
a & o
t b
i a
c l

H
e
a
p

S
t
a
c
k

C
o
d
e

S G
t l
a & o
t b
i a
c l

H
e
a
p

S
t
a
c
k

C
o
d
e

S G
t l
a & o
t b
i a
c l

 H
e
a
p

S
t
a
c
k

...

...

Hardware’s view

Compiler’s view

OS’s view

Physical address
space_

virtual address
spaces

0 high

C
o
d
e

S G
t l
a & o
t b
i a
c l

H
e
a
p

S
t
a
c
k

Where Do Local Variables Live?
A Simplistic model
•  Allocate a data area for each distinct scope
•  One data area per “sheaf” in scoped table

What about recursion?
•  Need a data area per invocation (or activation) of a scope
•  We call this the scope’s activation record
•  The compiler can also store control information there !

More complex scheme
•  One activation record (AR) per procedure instance
•  All the procedure’s scopes share a single AR (may share space)
•  Static relationship between scopes in single procedure

Used this way, “static” means knowable
at compile time (and, therefore, fixed).

Translating Local Names
How does the compiler represent a specific instance of x ?
•  Name is translated into a static coordinate

→  < level,offset > pair
→  “level” is lexical nesting level of the procedure
→  “offset” is unique within that scope

•  Subsequent code will use the static coordinate to generate
addresses and references

•  “level” is a function of the table in which x is found
→  Stored in the entry for each x

•  “offset” must be assigned and stored in the symbol table
→  Assigned at compile time
→  Known at compile time
→  Used to generate code that executes at run-time

Storage for Blocks within a Single Procedure

•  Fixed length data can always be at a
constant offset from the beginning
of a procedure
→  In our example, the a declared at

level 0 will always be the first data
element, stored at byte 0 in the
fixed-length data area

→  The x declared at level 1 will always
be the sixth data item, stored at
byte 20 in the fixed data area

→  The x declared at level 2 will always
be the eighth data item, stored at
byte 28 in the fixed data area

→  But what about the a declared in the
second block at level 2?

B0: {
 int a, b, c

B1: {
 int v, b, x, w

B2: {
 int x, y, z
 ….
 }

B3: {
 int x, a, v
 …
 }
 …
 }
 …

}

Variable-length Data

Arrays
→  If size is fixed at compile time, store in

fixed-length data area
→  If size is variable, store descriptor in

fixed length area, with pointer to variable
length area

→  Variable-length data area is assigned at
the end of the fixed length area for block
in which it is allocated

B0: {
 int a, b
 … assign value to
a

B1: {
 int v(a), b, x

B2: {
 int x, y(8)
 ….
 }

a b v b x x y(8) v(a)

Variable-length data Includes variable length data for
all blocks in the procedure …

Activation Record Basics

parameters

register
save area

return value

return address

addressability

caller’s ARP

local
variables

ARP

Space for parameters to
the current routine

Saved register contents

If function, space for
return value

Address to resume caller

Help with non-local access

To restore caller’s AR on a
return

Space for local values &
variables (including spills)

One AR for each invocation of a procedure

Activation Record Details
How does the compiler find the variables?
•  They are at known offsets from the AR pointer
•  The static coordinate leads to a “loadAI” operation

→  Level specifies an ARP, offset is the constant

Variable-length data
•  If AR can be extended, put it after local variables
•  Leave a pointer at a known offset from ARP
•  Otherwise, put variable-length data on the heap

Initializing local variables
•  Must generate explicit code to store the values
•  Among the procedure’s first actions

Activation Record Details
Where do activation records live?
•  If lifetime of AR matches lifetime of invocation, AND
•  If code normally executes a “return”
⇒  Keep ARs on a stack

•  If a procedure can outlive its caller, OR
•  If it can return an object that can reference its execution

state
⇒  ARs must be kept in the heap

•  If a procedure makes no calls
⇒  AR can be allocated statically

Efficiency prefers static, stack, then heap

C
o
d
e

S G
t l
a & o
t b
i a
c l

H
e
a
p

S
t
a
c
k

Yes! This stack.

Communicating Between Procedures
Most languages provide a parameter passing mechanism
⇒  Expression used at “call site” becomes variable in callee

Two common binding mechanisms
•  Call-by-reference passes a pointer to actual parameter

→  Requires slot in the AR (for address of parameter)
→  Multiple names with the same address?

•  Call-by-value passes a copy of its value at time of call
→  Requires slot in the AR
→  Each name gets a unique location (may have same value)
→  Arrays are mostly passed by reference, not value

•  Can always use global variables …

call fee(x,x,x);

Establishing Addressability
Must create base addresses
•  Global & static variables

→  Construct a label by mangling names (i.e., &_fee)

•  Local variables
→  Convert to static data coordinate and use ARP + offset

•  Local variables of other procedures
→  Convert to static coordinates
→  Find appropriate ARP
→  Use that ARP + offset {

 Must find the right AR

 Need links to nameable ARs

Establishing Addressability
Using access links
•  Each AR has a pointer to AR of lexical ancestor
•  Lexical ancestor need not be the caller

•  Reference to <p,16> runs up access link chain to p
•  Cost of access is proportional to lexical distance

parameters

register
save area

return value

return address

access link

caller’s ARP

local
variables

AR
P

parameters

register
save area

return value

return address

access link

caller’s ARP

local
variables

parameters

register
save area

return value

return address

access link

caller’s ARP

local
variables

Establishing Addressability
Using access links

Access & maintenance cost varies with level
All accesses are relative to ARP (r0)

SC Generated Code

<2,8> loadAI r0, 8 ⇒ r2

<1,12> loadAI r0, -4 ⇒ r1

loadAI r1, 12 ⇒ r2

<0,16> loadAI r0, -4 ⇒ r1

loadAI r1, -4 ⇒ r1

loadAI r1, 16 ⇒ r2

Assume
•  Current lexical level is 2
•  Access link is at ARP - 4
Maintaining access link
•  Calling level k+1
→  Use current ARP as link
•  Calling level j < k
→  Find ARP for j –1
→  Use that ARP as link

Establishing Addressability
Using a display
•  Global array of pointer to nameable ARs
•  Needed ARP is an array access away

•  Reference to <p,16> looks up p’s ARP in display & adds 16
•  Cost of access is constant (ARP + offset)

ARP

parameters

register
save area

return value

return address

saved ptr.

caller’s ARP

local
variables

parameters

register
save area

return value

return address

saved ptr.

caller’s ARP

local
variables

level 0
level 1
level 2
level 3

Display

parameters

register
save area

return value

return address

saved ptr.

caller’s ARP

local
variables

Establishing Addressability
Using a display

Access & maintenance costs are fixed
Address of display may consume a register

SC Generated Code

<2,8> loadAI r0, 8 ⇒ r2

<1,12> loadI _disp ⇒ r1

loadAI r1, 4 ⇒ r1

loadAI r1, 12 ⇒ r2

<0,16> loadI _disp ⇒ r1

loadAI r1, 16 ⇒ r2

Assume
•  Current lexical level is 2
•  Display is at label _disp
Maintaining access link
•  On entry to level j
→  Save level j entry into AR

 (Saved Ptr field)
→  Store ARP in level j slot
•  On exit from level j
→  Restore level j entry Desired AR is at _disp + 4 x level

Establishing Addressability
Access links versus Display
•  Each adds some overhead to each call
•  Access links costs vary with level of reference

→  Overhead only incurred on references & calls
→  If ARs outlive the procedure, access links still work

•  Display costs are fixed for all references
→  References & calls must load display address
→  Typically, this requires a register (rematerialization)

Your mileage will vary
•  Depends on ratio of non-local accesses to calls
•  Extra register can make a difference in overall speed

For either scheme to work, the compiler must
insert code into each procedure call & return

Procedure Linkages
How do procedure calls actually work?
•  At compile time, callee may not be available for inspection

→  Different calls may be in different compilation units
→  Compiler may not know system code from user code
→  All calls must use the same protocol

Compiler must use a standard sequence of operations
•  Enforces control & data abstractions
•  Divides responsibility between caller & callee
Usually a system-wide agreement (for interoperability)

Procedure Linkages
Standard procedure linkage

procedure p

prolog

epilog

pre-call

post-return

procedure q

prolog

epilog

Procedure has
•  standard prolog
•  standard epilog
Each call involves a
•  pre-call sequence
•  post-return sequence
These are completely
predictable from the
call site ⇒ depend on
the number & type of
the actual parameters

Procedure Linkages
Pre-call Sequence
•  Sets up callee’s basic AR
•  Helps preserve its own environment

The Details
•  Allocate space for the callee’s AR

→  except space for local variables
•  Evaluates each parameter & stores value or address
•  Saves return address, caller’s ARP into callee’s AR
•  If access links are used

→  Find appropriate lexical ancestor & copy into callee’s AR
•  Save any caller-save registers

→  Save into space in caller’s AR
•  Jump to address of callee’s prolog code

Procedure Linkages
Post-return Sequence
•  Finish restoring caller’s environment
•  Place any value back where it belongs

The Details
•  Copy return value from callee’s AR, if necessary
•  Free the callee’s AR
•  Restore any caller-save registers
•  Restore any call-by-reference parameters to registers, if

needed
→  Also copy back call-by-value/result parameters

•  Continue execution after the call

Procedure Linkages
Prolog Code
•  Finish setting up callee’s environment
•  Preserve parts of caller’s environment that will be disturbed

The Details
•  Preserve any callee-save registers
•  If display is being used

→  Save display entry for current lexical level
→  Store current ARP into display for current lexical level

•  Allocate space for local data
→  Easiest scenario is to extend the AR

•  Find any static data areas referenced in the callee
•  Handle any local variable initializations

With heap allocated AR, may
need to use a separate heap
object for local variables

Procedure Linkages
Epilog Code
•  Wind up the business of the callee
•  Start restoring the caller’s environment

The Details
•  Store return value?

→  Some implementations do this on the return statement
→  Others have return assign it & epilog store it into caller’s AR

•  Restore callee-save registers
•  Free space for local data, if necessary (on the heap)
•  Load return address from AR
•  Restore caller’s ARP
•  Jump to the return address

If ARs are stack allocated,
this may not be necessary.
(Caller can reset stacktop
to its pre-call value.)

Back to Activation Records
If activation records are stored on the stack
•  Easy to extend — simply bump top of stack pointer
•  Caller & callee share responsibility

→  Caller can push parameters, space for registers, return value
slot, return address, addressability info, & its own ARP

→  Callee can push space for local variables (fixed & variable size)

If activation records are stored on the heap
•  Hard to extend
•  Caller passes everything it can in registers
•  Callee allocates AR & stores register contents into it

→  Extra parameters stored in caller’s AR !

Static is easy

