The Procedure Abstraction
Part ITI: Allocating Storage & Establishing
Addressability

Placing Run-time Data Structures

Classic Organization

Better utilization if

s G stack & heap grow
c lt 1| H S toward each other
t
o |ago| - | __ | | * Very old result (Knuth)
d [t b
e |i al P c * Code & data separate or
c | k interleaved
0 high °

Uses address space,

Single Logical Address Space not allocated memory

* Code, static, & global data have known size
> Use symbolic labels in the code

* Heap & stack both grow & shrink over time

* This is a virtual address space

How Does This Really Work?
The Big Picture

/O\ Compiler's view

virtual address
spaces «—

S G S G S G S G
c |t 1| H 3 clt 1| H ‘:‘ clt 1| H ‘:‘ c |t 1| n ‘:‘
o |a&o| e o |a&o| e o |a&o| e o |a&o| e
d |t b| a [T 2 d |t b| a [T 2 d |t b| a [T 2 d |t bl a [T 2
c c c c
e I a o] K e 1 a (o] K e 1 a (o] K e 1 a (o] K
c | c | c | c |
] .
OS's view
XX
0 high

\Q/ Hardware's view

Physical address
space_ +—

Where Do Local Variables Live?

A Simplistic model
* Allocate a data area for each distinct scope
* One data area per “sheaf"” in scoped table

What about recursion?

* Need a data area per invocation (or activation) of a scope
* We call this the scope's activation record

* The compiler can also store control information there |

More complex scheme

* One activation record (AR) per procedure instance

* All the procedure's scopes share a single AR (may share space)
* Static relationship between scopes in single procedure

Used this way, "static” means knowable
at compile time (and, therefore, fixed).

Translating Local Names

How does the compiler represent a specific instance of x?
* Name is translated into a static coordinate
— < level,offset > pair
— "level”is lexical nesting level of the procedure
— "offset”is unigue within that scope
* Subsequent code will use the static coordinate to generate
addresses and references
* ‘level”is a function of the table in which x is found
— Stored in the entry for each x
* ‘offset”must be assighed and stored in the symbol table
— Assigned at compile time

— Known at compile time
— Used to generate code that executes at run-time

Storage for Blocks within a Single Procedure

BO: {
int a, b, ¢
Bl: {
int v, b, x, w
B2: {
int x,y, z
}
B3: {
int x, a, v
}
}...
} .

Fixed length data can always be at a
constant offset from the beginning
of a procedure
— In our example, the a declared at
level O will always be the first data
element, stored at byte O in the
fixed-length data area
— The x declared at level 1 will always
be the sixth data item, stored at
byte 20 in the fixed data area
— The x declared at level 2 will always
be the eighth data item, stored at
byte 28 in the fixed data area
— But what about the a declared in the
second block at level 2?

Variable-length Data

BO: { Arrays
int a, b — If size is fixed at compile time, store in
o - assign value to fixed-length data area
B1: { — If size is variable, store descriptor in
int v(a), b, x fixed length area, with pointer to variable
B2: { length area
int x, y(8) — Variable-length data area is assigned at
the end of the fixed length area for block
} in which it is allocated

a| b|v|b|x]|«x y(8) v(a)

Includes variable length data for _/ Variable-length data
all blocks in the procedure ...

Activation Record Basics

parameters «

register .

save area

\\

return value

\

return address -

|

ARP

addressability |

Space for parameters to
the current routine

Saved register contents

If function, space for
return value

Address to resume caller

caller’s ARP &

Help with non-local access

local <«—

variables

i

To restore caller’s ARon a
return

Space for local values &
variables (including spills)

One AR for each invocation of a procedure

Activation Record Details

How does the compiler find the variables?
* They are at known offsets from the AR pointer

* The static coordinate leads to a "loadAIL" operation
— Level specifies an ARP, offset is the constant

Variable-length data

* If AR can be extended, put it after local variables
* Leave a pointer at a known offset from ARP

* Oftherwise, put variable-length data on the heap

Initializing local variables
* Must generate explicit code to store the values
* Among the procedure's first actions

Activation Record Details

Where do activation records live?
e TIf lifetime of AR matches lifetime of invocation, AND

* If code normally executes a “return” K s

= Keep ARs on a stack dlele [T
\ c |

* If aprocedure can outlive its caller, OR Vesl This stack.

* Ifitcanreturnanobject that can reference its execution
state
= ARs must be kept in the heap

* TIf a procedure makes no calls
= AR can be allocated statically

Efficiency prefers static, stack, then heap

Communicating Between Procedures

Most languages provide a parameter passing mechanism
— Expression used at "call site” becomes variable in callee

Two common binding mechanisms

* Call-by-reference passes a pointer to actual parameter
— Requires slot in the AR (for address of parameter)
— Multiple names with the same address?

* Call-by-value passes a copy of its value at time of call
— Requires slot in the AR call fee(x,x,x):
— Each name gets a unique location (may have same value)
— Arrays are mostly passed by reference, not value

* Can always use global variables ...

Establishing Addressability

Must create base addresses

* Global & static variables
— Construct a label by mangling names (i.e., &_fee)

* Local variables
— Convert to static data coordinate and use ARP + offset

* Local variables of other procedures
— Convert to static coordinates
— Find appropriate ARP { Must find the right AR

— Use that ARP + offset Need links to nameable ARs

Establishing Addressability

Using access links
* Each AR has a pointer to AR of lexical ancestor
* Lexical ancestor need not be the caller

parameters
parameters
parameters register
ol register save area
register
save area
save area return value
return value
return value return address
return address .
return address access link |——»
access link
access link P> caller’s ARP +—»
AR——» - caller’s ARP ~+—»
P caller’s ARP—|1—» local
local variables
/ qca/ variables
variables

* Reference to <p,16> runs up access link chain to p
* Cost of access is proportional to lexical distance

Establishing Addressability

Using access links

Assume
e Current lexical level is 2
* Access link is at ARP - 4

SC Generated Code

<2,8> |loadAlry, 8=r,

<1,12> |loadAl ry, -4 =14
loadAl ry, 12=r1;

Maintaining access link
* Calling level k+1

<0,16> | loadAl ro, -4 => r4 > Us.e cur'r'en‘r' ARP as link
loadAl ry, -4=> 14 * Calling level j< k
loadAl 1, 16=>r1; — Find ARP for j -1

— Use that ARP as link

Access & maintenance cost varies with level
All accesses are relative to ARP (r,)

Establishing Addressability

Using a display
* Global array of pointer to nameable ARs
* Needed ARP is an array access away

Display
level 0 parameters
level 1 parameters register
level 2 save area
parameters register
level 3 save area return value
register
save area return value return address
return value return address | savedptr.
ARP return address > saved ptr. caller’s ARP1T—»
savedptr. T caller’s ARP 1—» local
> variables
caller’s ARP local
variables
local
variables

* Reference to <p,16> looks up p's ARP in display & adds 16
e Cost of access is constant (ARP + offset)

Establishing Addressability

Using a display
Assume
* Current lexical level is 2
SC |Generated Code * Display is at label _disp
<2,8> |loadAlr, 8=r Maintaining access link
<1,12> |loadl _disp = r * On entry to level j
loadAl r1, 4=>r; — Save level j entry intfo AR
loadAl r1, 12=>r1; (Saved Ptr field)
<0,16> |loadl _disp=>r — Store ARP in level j slot
loadAl r1, 16 = r2 * On exit from level j
Desired AR is at _disp + 4 x leve/ | |~ Resfore level jentry

Access & maintenance costs are fixed
Address of display may consume a register

Establishing Addressability

Access links versus Display
* Each adds some overhead to each call
* Access links costs vary with level of reference

— Overhead only incurred on references & calls
— If ARs outlive the procedure, access links still work

* Display costs are fixed for all references

— References & calls must load display address
— Typically, this requires a register (rematerialization)

Your mileage will vary
* Depends on ratio of non-local accesses to calls
* Extra register can make a difference in overall speed

For either scheme to work, the compiler must
insert code into each procedure call & return

Procedure Linkages

How do procedure calls actually work?

* At compile time, callee may not be available for inspection
— Different calls may be in different compilation units
— Compiler may not know system code from user code
— All calls must use the same protocol

Compiler must use a standard sequence of operations

* Enforces control & data abstractions

* Divides responsibility between caller & callee

Usually a system-wide agreement (for interoperability)

Procedure Linkages

Standard procedure linkage

procedure p

prolog

\ 4

pre-call

A 4

epilog

procedure g

prolog

\ 4

post-return \

epilog

Procedure has
* standard prolog
* standard epilog

Each call involves a
* pre-call sequence

® post-return sequence

These are completely
predictable from the
call site = depend on
the number & type of
the actual parameters

Procedure Linkages

Pre-call Sequence
* Sets up callee's basic AR
* Helps preserve its own environment

The Details

* Allocate space for the callee’'s AR
— except space for local variables

* Evaluates each parameter & stores value or address
* Saves return address, caller's ARP into callee's AR

* TIf access links are used
— Find appropriate lexical ancestor & copy into callee's AR

* Save any caller-save registers
— Save into space in caller's AR

* Jump to address of callee’s prolog code

Procedure Linkages

Post-return Sequence
* Finish restoring caller's environment
* Place any value back where it belongs

The Details

* Copy return value from callee's AR, if necessary
* Free the callee’'s AR

* Restore any caller-save registers

* Restore any call-by-reference parameters to registers, if
heeded
— Also copy back call-by-value/result parameters

e Continue execution after the call

Procedure Linkages

Prolog Code
* Finish setting up callee's environment

* Preserve parts of caller's environment that will be disturbed

The Details
* Preserve any callee-save registers
e If display is being used

— Save display entry for current lexical level
— Store current ARP into display for current lexical level

* Allocate space for local data
— Easiest scenario is to extend

* Find any static data areas referenced in the callee

* Handle any local variable initializations

With heap allocated AR, may
heed to use a separate heap
object for local variables

Procedure Linkages

Epilog Code
* Wind up the business of the callee
* Start restoring the caller's environment

The Details

* Store return value?
— Some implementations do this on the return statement
— Others have return assign it & epilog store it into caller's AR
* Restore callee-save registers
* Free space for local datq, if necessary (on the heap)
* Load return address from AR
If ARs are stack allocated,

* Restore caller's ARP this may not be necessary.

* Jump to the return address (Caller can reset stacktop
Yo its pre-call value.)

Back to Activation Records

If activation records are stored on the stack
* Easy to extend — simply bump top of stack pointer

* Cadller & callee share responsibility

— Caller can push parameters, space for registers, return value
slot, return address, addressability info, & its own ARP

— Callee can push space for local variables (fixed & variable size)

If activation records are stored on the heap
* Hard to extend
* Caller passes everything it can in registers

* Callee allocates AR & stores register contents into it
— Extra parameters stored in caller's AR !

Static is easy

