
Intermediate Representations

Intermediate Representations

•  Front end - produces an intermediate representation (IR)
•  Middle end - transforms the IR into an equivalent IR that

runs more efficiently
•  Back end - transforms the IR into native code

•  IR encodes the compiler’s knowledge of the program
•  Middle end usually consists of several passes

Front
End

Middle
End

Back
End

IR IR Source
Code

Target
Code

Intermediate Representations
•  Decisions in IR design affect the speed and efficiency
 of the compiler

•  Some important IR properties
→  Ease of generation
→  Ease of manipulation
→  Procedure size
→  Freedom of expression
→  Level of abstraction

•  The importance of different properties varies between
compilers
→  Selecting an appropriate IR for a compiler is critical

Types of Intermediate Representations
Three major categories
•  Graphically oriented

→  Heavily used in source-to-source translators
→  Tend to be large

•  Linear
→  Pseudo-code for an abstract machine
→  Level of abstraction varies
→  Simple, compact data structures
→  Easier to rearrange

•  Hybrid
→  Combination of graphs and linear code

Examples:
Trees, DAGs

Examples:
3 address code
Stack machine code

Example:
Control-flow graph

Level of Abstraction
•  The level of detail exposed in an IR influences the

profitability and feasibility of different optimizations.
•  Two different representations of an array reference:

subscript

A i j

loadI 1 => r1

sub rj, r1 => r2

loadI 10 => r3

mult r2, r3 => r4

sub ri, r1 => r5

add r4, r5 => r6

loadI @A => r7

Add r7, r6 => r8

load r8 => rAij

High level AST:
Good for memory
disambiguation

Low level linear code:
Good for address calculation

Level of Abstraction
•  Structural IRs are usually considered high-level
•  Linear IRs are usually considered low-level
•  Not necessarily true:

+

*

10

j 1

- j 1

-

+

@A

load

Low level AST loadArray A,i,j

High level linear code

Abstract Syntax Tree
An abstract syntax tree is the procedure’s parse tree with
 the nodes for most non-terminal nodes removed

 x - 2 * y

•  Can use linearized form of the tree
→  Easier to manipulate than pointers

 x 2 y * - in postfix form
 - * 2 y x in prefix form

-

x

2 y

*

Directed Acyclic Graph
A directed acyclic graph (DAG) is an AST with a unique
 node for each value

•  Makes sharing explicit
•  Encodes redundancy

x

2 y

*

-

←

z /

←

w

z ← x - 2 * y
w ← x / 2

Same expression twice means
that the compiler might arrange
to evaluate it just once!

Stack Machine Code
Originally used for stack-based computers, now Java
•  Example:

 x - 2 * y becomes

Advantages
•  Compact form
•  Introduced names are implicit, not explicit
•  Simple to generate and execute code

Useful where code is transmitted
over slow communication links (the net)

push x

push 2

push y

multiply

subtract

Implicit names take up
no space, where explicit
ones do!

Three Address Code
Several different representations of three address code
•  In general, three address code has statements of the form:

 x ← y op z
With 1 operator (op) and, at most, 3 names (x, y, & z)

Example:
 z ← x - 2 * y becomes

Advantages:
•  Resembles many machines
•  Introduces a new set of names
•  Compact form

t ← 2 * y

z ← x - t

*

Three Address Code: Quadruples
Naïve representation of three address code
•  Table of k * 4 small integers
•  Simple record structure
•  Easy to reorder
•  Explicit names

load 1 Y

loadi 2 2

mult 3 2 1

load 4 X

sub 5 4 2

load r1, y

loadI r2, 2

mult r3, r2, r1

load r4, x

sub r5, r4, r3

RISC assembly code Quadruples

The original FORTRAN
compiler used “quads”

Three Address Code: Triples
•  Index used as implicit name
•  25% less space consumed than quads
•  Much harder to reorder

load y
loadI 2
mult (1) (2)
load x
sub (4) (3)

(1)

(2)

(3)

(4)

(5)

Implicit names take no space!

Three Address Code: Indirect Triples

•  List first triple in each statement
•  Implicit name space
•  Uses more space than triples, but easier to reorder

•  Major tradeoff between quads and triples is compactness
versus ease of manipulation
→  In the past compile-time space was critical
→  Today, speed may be more important

load y
loadI 2
mult (100) (101)
load x
sub (103) (102)

(100)

(101)

(102)

(103)

(104)

(100)

(105)

Static Single Assignment Form
•  The main idea: each name defined exactly once
•  Introduce φ-functions to make it work

Strengths of SSA-form
•  Sharper analysis
•  φ-functions give hints about placement
•  (sometimes) faster algorithms

 Original

x ← …

y ← …

while (x < k)

 x ← x + 1

 y ← y + x

SSA-form

 x0 ← …

 y0 ← …

 if (x0 > k) goto next

loop: x1 ← φ(x0,x2)

 y1 ← φ(y0,y2)

 x2 ← x1 + 1

 y2 ← y1 + x2

 if (x2 < k) goto loop

next: …

Two Address Code
•  Allows statements of the form

 x ← x op y
Has 1 operator (op) and, at most, 2 names (x and y)

Example:
 z ← x - 2 * y becomes

•  Can be very compact

Problems
•  Machines no longer rely on destructive operations
•  Difficult name space

→  Destructive operations make reuse hard
→  Good model for machines with destructive ops (PDP-11)

t1 ← 2

t2 ← load y

t2 ← t2 * t1

z ← load x

z ← z - t2

Control-flow Graph
Models the transfer of control in the procedure
•  Nodes in the graph are basic blocks

→  Can be represented with quads or any other linear
representation

•  Edges in the graph represent control flow

Example

if (x = y)

a ← 2
b ← 5

a ← 3
b ← 4

c ← a * b

Basic blocks —
Maximal length
sequences of
straight-line code

Using Multiple Representations

•  Repeatedly lower the level of the intermediate
representation
→  Each intermediate representation is suited towards certain

optimizations
•  Example: the Open64 compiler

→  WHIRL intermediate format
♦  Consists of 5 different IRs that are progressively more

detailed

Front
End

Middle
End

Back
End

IR 1 IR 3 Source
Code

Target
Code

Middle
End

IR 2

Memory Models
Two major models
•  Register-to-register model

→  Keep all values that can legally be stored in a register in registers
→  Ignore machine limitations on number of registers
→  Compiler back-end must insert loads and stores

•  Memory-to-memory model
→  Keep all values in memory
→  Only promote values to registers directly before they are used
→  Compiler back-end can remove loads and stores

•  Compilers for RISC machines usually use register-to-register
→  Reflects programming model
→  Easier to determine when registers are used

The Rest of the Story…
Representing the code is only part of an IR

There are other necessary components
•  Symbol table
•  Constant table

→  Representation, type
→  Storage class, offset

•  Storage map
→  Overall storage layout
→  Overlap information
→  Virtual register assignments

