Intermediate Representations

Intermediate Representations

Source Front IR Middle | /R Back Target
Code End End End Code

* Front end - produces an intermediate representation (IR)

* Middle end - transforms the IR into an equivalent IR that
runs more efficiently

e Back end - transforms the IR into native code

* TR encodes the compiler's knowledge of the program
* Middle end usually consists of several passes

Intermediate Representations

* Decisions in IR design affect the speed and efficiency
of the compiler

* Some important IR properties
— Ease of generation
— Ease of manipulation
— Procedure size
— Freedom of expression
— Level of abstraction

* The importance of different properties varies between
compilers

— Selecting an appropriate IR for a compiler is critical

Types of Intermediate Representations

Three major categories

* Graphically oriented
— Heavily used in source-to-source translators
— Tend to be large

* Linear
— Pseudo-code for an abstract machine
— Level of abstraction varies
— Simple, compact data structures
— Easier to rearrange

* Hybrid

— Combination of graphs and linear code

Examples:
Trees, DAGs

Examples:
3 address code
Stack machine code

Example:
Control-flow graph

Level of Abstraction

* The level of detail exposed in an IR influences the
profitability and feasibility of different optimizations.

* Two different representations of an array reference:

loadI 1 => r,

sub r,, r; => r,

subscript loadI 10 => r,

mult r,, r; => r,

sub r;, r, => r,

add r,, ry => r

loadI @A => r,

. Add r,, re => Irg

High level AST: load r = r
Good for memory 8 Aij

disambiguation)
g Low level linear code:

Good for address calculation

Level of Abstraction

* Structural IRs are usually considered high-level
* Linear IRs are usually considered low-level
* Not necessarily true:

Low level AST 1,
ow leve loadArray A,1,]

High level linear code

Abstract Syntax Tree

An abstract syntax tree is the procedure’'s parse tree with
the nodes for most non-terminal nodes removed

(-
OO
@ O
X-2%y

* Can use linearized form of the tree
— Easier to manipulate than pointers

X 2y * - in postfix form
- * 2y x in prefix form

Directed Acyclic Graph

A directed acyclic graph (DAG) is an AST with a unique
node for each value

(2
°/

e 0 zZ<—Xx-2%y

W<x/2

* Makes sharing explicit

* Encodes redundancy Same expression twice means

that the compiler might arrange
to evaluate it just oncel

Stack Machine Code

Originally used for stack-based computers, now Java

* Example:
X-2%y becomes

Advantages
* Compact form

* Introduced names are implicit, not exp/(h‘

* Simple to generate and execute code

Useful where code is transmitted
over slow communication links (the net)

push X
push 2
push y
multiply
subtract

Implicit names take up
no space, where explicit
onhes do!

Three Address Code

Several different representations of three address code
* Ingeneral, three address code has statements of the form:

X<Yyopz
With 1 operator (op) and, at most, 3 names (x, y, & z)

Example: g T —
Z<—Xx-2%y becomes e
- :t.: < .2 * -.Y.-
) s s,
zwss"'X =it
Advantages: 2

* Resembles many machines
* Introduces a new set of hames =-
* Compact form

Three Address Code: Quadruples

Naive representation of three address code
* Table of k* 4 small integers
* Simple record structure The original FORTRAN
* Easy to reorder compiler used "quads”

* Explicit names

load 1 Y
load rl, y
loadI r2, 2 loadi 2 |2
mult r3, r2, rl mult 3 2 |1
load r4, x
sub r5, r4, r3 load 4 X
sub 5 (4 |2

RISC assembly code Quadruples

Three Address Code: Triples

* Index used as implicit name
* 25% less space consumed than quads
* Much harder to reorder

(1) |load |y
(2) |loadI |2

(3) mult [(1) |[(2)
(4) load | x

5 [sib (4 |(3)

\‘ Implicit names take no space!

Three Address Code: Indirect Triples

* List first friple in each statement
* Implicit name space
* Uses more space than triples, but easier to reorder

(100) (100) | load |y
(105) (101) | loadI | 2
(102) | mult | (100) | (101)
(103) | load | x
(104) | sub | (103) | (102)

* Major tradeoff between quads and triples is compacthess
versus ease of manipulation
— In the past compile-time space was critical
— Today, speed may be more important

Static Single Assignment Form

* The main idea: each name defined exactly once
* Introduce ¢-functions to make it work

Original SSA-form

X < . Xg < e

YV < .« Yo < -

while (x < k) if (x, > k) goto next
X < x + 1 loop: X, < 0(Xq,X%,)
y <y +x Y1 < 9(YorY2)

X, < x;, +1

Y, < ¥ t X
if (x, < k) goto loop
Strengths of SSA-form next:

* Sharper analysis
e ¢-functions give hints about placement
* (sometimes) faster algorithms

Two Address Code

* Allows statements of the form

X<—Xo0py
Has 1 operator (op) and, at most, 2 names (x and y)

Example:
zZ<—X-2%y becomes

2

load y
t, * t,
load x
z - t,

(=

NNN("'N('I'("'
rrr 1

* Can be very compact

Problems
* Machines no longer rely on destructive operations

* Difficult name space
— Destructive operations make reuse hard
— Good model for machines with destructive ops (PDP-11)

Control-flow Graph

Models the transfer of control in the procedure

* Nodes in the graph are basic blocks

— Can be represented with quads or any other linear
representation

* Edges in the graph represent control flow

Example
f (x=y)] ©7""""222371Basic blocks — !
/ —~c--""" %" i Maximal length !
Ut »7 1 sequences of :
a<— 2 a< 3/ :i straight-line code |
b<5 b <4 1 :

Using Multiple Representations

Source Front | /R 7 |Middle| /R 2 |Middle| /R3 | Back JJarget
Code End End End End Code

\ 4
\4

* Repeatedly lower the level of the intermediate
representation

— Each intfermediate representation is suited tfowards certain
optimizations
* Example: the Opené64 compiler
— WHIRL intermediate format

¢ Consists of 5 different IRs that are progressively more
detailed

Memory Models

Two major models

* Register-to-register model
— Keep all values that can legally be stored in a register in registers
— Ignore machine limitations on number of registers
— Compiler back-end must insert loads and stores

* Memory-to-memory model
— Keep all values in memory
— Only promote values to registers directly before they are used
— Compiler back-end can remove loads and stores

* Compilers for RISC machines usually use register-to-register
— Reflects programming model
— Easier to determine when registers are used

The Rest of the Story...
Representing the code is only part of an IR

There are other necessary components
* Symbol table
* Constant table
— Representation, type
— Storage class, of fset
* Storage map
— Overall storage layout
— Overlap information
— Virtual register assignments

