
Context-sensitive Analysis, II
Ad-hoc syntax-directed translation,

Symbol Tables, andTypes

Remember the Example from Last Lecture?

Grammar for a basic block (§ 4.3.3)

Block0 → Block1 Assign
 Assign

Assign → Ident = Expr ;
Expr0 → Expr1 + Term

 Expr1 – Term
 Term

Term0 → Term1 * Factor
 Term1 / Factor
 Factor

Factor → (Expr)
 Number
 Identifier

Let’s estimate cycle counts

•  Each operation has a COST

•  Add them, bottom up

•  Assume a load per value

•  Assume no reuse

Simple problem for an AG

And Its Extensions
Tracking loads
•  Introduced Before and After sets to record loads
•  Added ≥ 2 copy rules per production

→  Serialized evaluation into execution order
•  Made the whole attribute grammar large & cumbersome

The Moral of the Story
•  Non-local computation needed lots of supporting rules
•  Complex local computation was relatively easy

The Problems
•  Copy rules increase complexity

→  Hard to understand and maintain
•  Copy rules increase space requirements

→  Need copies of attributes
→  Can use pointers, but harder to understand

Addressing the Problem
If you gave this problem to a programmer at IBM
•  Introduce a central repository for facts
•  Table of names

→  Field in table for loaded/not loaded state
•  Avoids all the copy rules, allocation & storage headaches
•  All inter-assignment attribute flow is through table

→  Clean, efficient implementation
→  Good techniques for implementing the table (hashing, § B.3)
→  When its done, information is in the table !
→  Cures most of the problems

•  Unfortunately, this design violates the functional paradigm
→  Do we care?

Remind ourselves of Compiler Phases

Different Phases of Project

Phase I: Scanner
Phase II: Parser
Phase III: Semantic Routines
Phase IV: Code Generator

The Realist’s Alternative
Ad-hoc syntax-directed translation
•  Associate a snippet of code with each production
•  At each reduction, the corresponding snippet runs
•  Allowing arbitrary code provides complete flexibility

→  Includes ability to do tasteless & bad things

To make this work
•  Need names for attributes of each symbol on lhs & rhs

→  Typically, one attribute passed through parser + arbitrary code
(structures, globals, statics, …)

•  Need an evaluation scheme
→  Fits nicely into LR(1) parsing algorithm

Reworking the Example (with load tracking)
Block0 → Block1 Assign

 Assign
Assign → Ident = Expr ; cost← cost + COST(store);
Expr0 → Expr1 + Term cost← cost + COST(add);

 Expr1 – Term cost← cost + COST(sub);
 Term

Term0 → Term1 * Factor cost← cost + COST(mult);
 Term1 / Factor cost← cost + COST(div);
 Factor

Factor → (Expr)
 Number cost← cost + COST(loadi);
 Identifier { i← hash(Identifier);

 if (Table[i].loaded = false)
 then {
 cost ← cost + COST(load);
 Table[i].loaded ← true;
 }
}

This looks
simpler than

 the
 Attribute
 Grammar
 solution!

Example — Building an Abstract Syntax Tree
•  Assume constructors for each node
•  Assume stack holds pointers to nodes

Goal → Expr Goal.node = E.node;

Expr → Expr + Term E0.node=
MakeAddNode(E1.node,T.node);

 | Expr – Term E0.node=
MakeSubNode(E1.node,T.node);

 | Term E.node = T.node;

Term → Term *
Factor

T0.node=
MakeMulNode(T1.node,F.node);

 | Term /
Factor

T0.node=
MakeDivNode(T1.node,F.node);

 | Factor T.node = F.node;

Factor → (Expr) F.node = Expr.node;

 | number F.node= MakeNumNode(token);

 | id F.node = MakeIdNode(token);

Reality
Most parsers are based on this ad-hoc style of context-

sensitive analysis

Advantages
•  Addresses shortcomings of Attribute Grammar paradigm
•  Efficient, flexible

Disadvantages
•  Must write the code with little assistance
•  Programmer deals directly with the details

Most parser generators support a yacc/bison-like notation

Typical Uses
•  Building a symbol table

→  Enter declaration information as processed
→  At end of declaration syntax, do some post processing
→  Use table to check errors as parsing progresses

•  Simple error checking/type checking
→  Define before use → lookup on reference
→  Dimension, type, ... → check as encountered
→  Type conformability of expression → bottom-up walk
→  Procedure interfaces are harder

♦  Build a representation for parameter list & types
♦  Create list of sites to check
♦  Check offline, or handle the cases for arbitrary orderings

assumes table
 is global

Symbol Tables
•  For compile-time efficiency, compilers use symbol tables

→  Associates lexical names (symbols) with their attributes

•  What items go in symbol tables?

→  Variable names
→  Defined constants
→  Procedure/function/method names
→  Literal constants and strings

→  Separate layout for structure layouts
♦  Field offsets and lengths

•  A symbol table is a compile-time structure
•  More after mid-term!

Attribute Information
•  Attributes are internal representation of declarations
•  Symbol table associates names with attributes
•  Names may have different attributes depending on their

meaning:
→  Variables: type, procedure level
→  Types: type descriptor, data size/alignment
→  Constants: type, value
→  Procedures: Signature (arguments/types) , result type, etc.

Is This Really “Ad-hoc” ?
Relationship between practice and attribute grammars

Similarities
•  Both rules & actions associated with productions
•  Application order determined by tools, not author
•  (Somewhat) abstract names for symbols

Differences
•  Actions applied as a unit; not true for AG rules
•  Anything goes in ad-hoc actions; AG rules are functional
•  AG rules are higher level than ad-hoc actions

Type Systems
•  Types

→  Values that share a set of common properties
→  Defined by language (built-ins) and/or programmer (user-

defined)
•  Type System

→  Set of types in a programming language
→  Rules that use types to specify program behavior

•  Example type rules
→  If operands of addition are of type integer, then result is of

type integer
→  The result of the unary “&” operator is a pointer to the object

referred to by the operand
•  Advantages

→  Ensures run-time safety
→  Provides information for code generation

Type Checker
•  Enforces rules of the type system
•  May be strong/weak, static/dynamic

•  Static type checking
→  Performed at compile time
→  Early detection, no run-time overhead
→  Not always possible (e.g., A[I], where I comes from input)

•  Dynamic type checking
→  Performed at run time
→  More flexible, rapid prototyping
→  Overhead to check run-time type tags

Type expressions
•  Used to represent the type of a language construct
•  Describes both language and programmer types

•  Examples
→  Basic types (built-ins) : integer, float, character
→  Constructed types : arrays, structs, functions

