
Career Services and ACM present:
 Team C4ISR

Wednesday, October 22
5:00 – 5:30 pm

Trabant Multipurpose Room B

Bring your resume. FREE FOOD will be provided!

Context-sensitive Analysis

Beyond Syntax
There is a level of correctness that is deeper than grammar

fie(a,b,c,d)
 int a, b, c, d;

{ … }

fee() {
 int f[3],g[0],
 h, i, j, k;

 char *p;
 fie(h,i,“ab”,j, k);
 k = f * i + j;
 h = g[17];
 printf(“<%s,%s>.\n”,
 p,q);
 p = 10;

}

What is wrong with this program?
(let me count the ways …)

Beyond Syntax
There is a level of correctness that is deeper than grammar

To generate code, we need to understand its meaning !

fie(a,b,c,d)
 int a, b, c, d;

{ … }

fee() {
 int f[3],g[0],
 h, i, j, k;

 char *p;
 fie(h,i,“ab”,j, k);
 k = f * i + j;
 h = g[17];
 printf(“<%s,%s>.\n”,
 p,q);
 p = 10;

}

What is wrong with this program?
(let me count the ways …)

•  declared g[0], used g[17]

•  wrong number of args to fie()

•  “ab” is not an int

•  wrong dimension on use of f

•  undeclared variable q

•  10 is not a character string

All of these are

“deeper than syntax”

Beyond Syntax

To generate code, the compiler needs to answer many questions
•  Is “x” a scalar, an array, or a function? Is “x” declared?
•  Are there names that are not declared? Declared but not used?
•  Which declaration of “x” does each use reference?
•  Is the expression “x * y + z” type-consistent?
•  In “a[i,j,k]”, does a have three dimensions?
•  Where can “z” be stored? (register, local, global, heap, static)
•  How many arguments does “fie()” take? What about “printf ()” ?
•  Does “*p” reference the result of a “malloc()” ?
•  Is “x” defined before it is used?

These are beyond a CFG

Beyond Syntax
These questions are part of context-sensitive analysis
•  Answers depend on values, not parts of speech
•  Questions & answers involve non-local information
•  Answers may involve computation

How can we answer these questions?
•  Use formal methods

→  Context-sensitive grammars?
→  Attribute grammars? (attributed grammars?)

•  Use ad-hoc techniques
→  Symbol tables
→  Ad-hoc code (action routines)

In scanning & parsing, formalism won; different story here.

Beyond Syntax
Telling the story
•  The attribute grammar formalism is important

→  Succinctly makes many points clear
→  Sets the stage for actual, ad-hoc practice

•  The problems with attribute grammars motivate practice
→  Non-local computation
→  Need for centralized information

•  Some folks still argue for attribute grammars
→  Knowledge is power
→  Information is immunization

We will cover attribute grammars, then move on to ad-hoc ideas

Attribute Grammars
What is an attribute grammar?
•  A context-free grammar augmented with a set of rules
•  Each symbol in the derivation has a set of values, or

attributes
•  The rules specify how to compute a value for each attribute

Number → Sign List
Sign → +
 | –
List → List Bit
 | Bit
Bit → 0
 | 1

Example grammar

This grammar describes
 signed binary numbers
We would like to augment it
 with rules that compute
 the decimal value of each
 valid input string

Examples

We will use these two throughout the lecture

Number → Sign List

 → – List

 → – Bit

 → – 1

Number

List

Bit

1

Sign

–

For “–1”

Number → Sign List

 → – List

 → – List Bit

 → – List Bit Bit

 → – Bit Bit Bit

 → – 1 Bit Bit

 → – 1 0 Bit

 → – 1 0 1

Number

List Sign

– Bit

1

List

Bit

0

List

Bit

1

For “–101”

Attribute Grammars

Add rules to compute the decimal value of a signed binary number
Productions Attribution Rules
Number → Sign List List.pos ← 0

If Sign.neg
 then Number.val ← – List.val
 else Number.val ← List.val

Sign → + Sign.neg ← false
| – Sign.neg ← true

List0 → List1 Bit List1.pos ← List0.pos + 1
Bit.pos ← List0.pos
List0.val ← List1.val + Bit.val

| Bit Bit.pos ← List.pos
List.val ← Bit.val

Bit → 0 Bit.val ← 0
| 1 Bit.val ← 2Bit.pos

Symbol Attributes

Number val

Sign neg

List pos, val

Bit pos, val

Back to the Examples

Number

List

Bit

1

Sign

–

neg ← true

Bit.pos ← 0
Bit.val ← 2Bit.pos ≡ 1

List.pos ← 0
List.val ← Bit.val ≡ 1

Number.val ← – List.val ≡ –1 For “–1” One possible evaluation order:

1  Sign.neg

2  List.pos

3  Bit.pos

4  Bit.val

5  List.val

6  Number.val

Other orders are possible

Knuth suggested a data-flow model for evaluation

•  Independent attributes first

•  Others in order as input values become available

Rules + parse tree
 imply an attribute
 dependence graph

Evaluation order
 must be consistent
 with the attribute
 dependence graph

Back to the Examples

This is the complete
 attribute dependence
 graph for “–101”.

It shows the flow of all
 attribute values in the
 example.

Some flow downward

→ inherited attributes

Some flow upward
→ synthesized attributes

A rule may use attributes
 in the parent, children, or
 siblings of a node

Number

Sign

–

List

Bit

1

List

Bit

0

List

Bit

1

pos: 0
val: 1

pos: 2
val: 4

pos: 1
val: 0

pos: 2
val: 4

pos: 1
val: 4

pos: 0
val: 5

val: –5

neg: true

For “–101”

The Rules of the Game
•  Attributes associated with nodes in parse tree
•  Rules are value assignments associated with productions
•  Attribute is defined once, using local information
•  Label identical terms in production for uniqueness
•  Rules & parse tree define an attribute dependence graph

→  Graph must be non-circular
This produces a high-level, functional specification

Synthesized attribute
→  Depends on values from children

Inherited attribute
→  Depends on values from siblings & parent

Using Attribute Grammars
Attribute grammars can specify context-sensitive actions
•  Take values from syntax
•  Perform computations with values
•  Insert tests, logic, …

We want to use both kinds of attribute

Synthesized Attributes

•  Use values from children
 & from constants

•  S-attributed grammars

•  Evaluate in a single
 bottom-up pass

Good match to LR parsing

Inherited Attributes

•  Use values from parent,
 constants, & siblings

•  directly express context

•  can rewrite to avoid them

•  Thought to be more natural

Not easily done at parse time

Evaluation Methods
Dynamic, dependence-based method (dataflow)
•  Build the parse tree
•  Build the dependence graph
•  Topological sort the dependence graph
•  Define attributes in topological order

Rule-based methods (treewalk)
•  Analyze rules at compiler-generation time
•  Determine a fixed (static) ordering
•  Evaluate nodes in that order

Oblivious methods (passes)
•  Ignore rules & parse tree
•  Pick a convenient order (at design time) & use it

Back to the Example

Number

Sign List

Bit List

Bit List

Bit

–

1

0

1 For “–101”

Back to the Example

Number

Sign List

Bit List

Bit List

Bit

–

1

0

1

pos:
val:

pos:
val:

pos:
val:

pos:
val:

pos:
val:

pos: 0
val:

val:

neg:

For “–101”

Back to the Example

Number

Sign List

Bit List

Bit List

Bit

–

1

0

1

pos: 1
val: 0

pos: 0
val: 1

pos: 2
val: 4

pos: 2
val: 4

pos: 1
val: 4

pos: 0
val: 5

val: –5

neg: true

For “–101”

Inherited Attributes

Back to the Example

Number

Sign List

Bit List

Bit List

Bit

–

1

0

1

pos: 1
val: 0

pos: 0
val: 1

pos: 2
val: 4

pos: 2
val: 4

pos: 1
val: 4

pos: 0
val: 5

val: –5

neg: true

For “–101”

Synthesized attributes

Back to the Example

Number

Sign List

Bit List

Bit List

Bit

–

1

0

1

pos: 1
val: 0

pos: 0
val: 1

pos: 2
val: 4

pos: 2
val: 4

pos: 1
val: 4

pos: 0
val: 5

val: –5

neg: true

For “–101”

Synthesized attributes

Back to the Example

Number

Sign List

Bit List

Bit List

Bit

–

1

0

1

pos: 1
val: 0

pos: 0
val: 1

pos: 2
val: 4

pos: 2
val: 4

pos: 1
val: 4

pos: 0
val: 5

val: –5

neg: true

For “–101”

& then peel away the parse tree ...

If we show the computation ...

Back to the Example

–

1

0

1

pos: 1
val: 0

pos: 0
val: 1

pos: 2
val: 4

pos: 2
val: 4

pos: 1
val: 4

pos: 0
val: 5

val: –5

neg: true

For “–101”

All that is left is the attribute
 dependence graph.

This succinctly represents the
 flow of values in the problem
 instance.

The dynamic methods sort this
 graph to find independent
 values, then work along graph
 edges.

The rule-based methods try to
 discover “good” orders by
 analyzing the rules.

The oblivious methods ignore
 the structure of this graph.

The dependence graph must be acyclic

An Extended Example
Grammar for a basic block (§ 4.3.3)

Block0 → Block1 Assign
 Assign

Assign → Ident = Expr ;
Expr0 → Expr1 + Term

 Expr1 – Term
 Term

Term0 → Term1 * Factor
 Term1 / Factor
 Factor

Factor → (Expr)
 Number
 Identifier

Let’s estimate cycle counts

•  Each operation has a COST

•  Add them, bottom up

•  Assume a load per value

•  Assume no reuse

Simple problem for an AG

An Extended Example (continued)
Adding attribution rules

Block0 → Block1 Assign Block0.cost ← Block1.cost +
 Assign.cost

 Assign Block0.cost ← Assign.cost
Assign → Ident = Expr

;
Assign.cost ← COST(store) +
 Expr.cost

Expr0 → Expr1 + Term Expr0.cost ← Expr1.cost +
 COST(add) + Term.cost

 Expr1 – Term Expr0.cost ← Expr1.cost +
 COST(add) + Term.cost

 Term Expr0.cost ← Term.cost
Term0 → Term1 *

Factor
Term0.cost ← Term1.cost +
 COST(mult) + Factor.cost

 Term1 /
Factor

Term0.cost ← Term1.cost +
 COST(div) +Factor.cost

 Factor Term0.cost ← Factor.cost
Factor → (Expr) Factor.cost ← Expr.cost

 Number Factor.cost ← COST(loadI)
 Identifier Factor.cost ← COST(load)

All these
 attributes are
 synthesized!

An Extended Example
Properties of the example grammar
•  All attributes are synthesized ⇒ S-attributed grammar
•  Rules can be evaluated bottom-up in a single pass

→  Good fit to bottom-up, shift/reduce parser
•  Easily understood solution
•  Seems to fit the problem well

What about an improvement?
•  Values are loaded only once per block (not at each use)
•  Need to track which values have been already loaded

Adding load tracking
•  Need sets Before and After for each production
•  Must be initialized, updated, and passed around the tree

A Better Execution Model

Factor → (Expr) Factor.cost ← Expr.cost ;
Expr.Before ← Factor.Before ;
Factor.After ← Expr.After

 Number Factor.cost ← COST(loadi) ;
Factor.After ← Factor.Before

 Identifier If (Identifier.name ∉ Factor.Before)
 then
 Factor.cost ← COST(load);
 Factor.After ← Factor.Before
 ∪ Identifier.name
 else
 Factor.cost ← 0
 Factor.After ← Factor.Before

This looks more complex!

•  Load tracking adds complexity
•  But, most of it is in the “copy rules”
•  Every production needs rules to copy Before & After

A sample production

These copy rules multiply rapidly
Each creates an instance of the set
Lots of work, lots of space, lots of rules to write

A Better Execution Model

Expr0 → Expr1 + Term Expr0.cost ← Expr1.cost +
 COST(add) + Term.cost ;
Expr1.Before ← Expr0.Before ;
Term.Before ← Expr1.After;
Expr0.After ← Term.After

What about accounting for finite register sets?
•  Before & After must be of limited size
•  Adds complexity to Factor→Identifier
•  Requires more complex initialization

Jump from tracking loads to tracking registers is small
•  Copy rules are already in place
•  Some local code to perform the allocation

Next class
⇒  Curing these problems with ad-hoc syntax-directed translation

An Even Better Model

