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Context-sensitive Analysis 



Beyond Syntax 
There is a level of correctness that is deeper than grammar 

fie(a,b,c,d) 
 int a, b, c, d; 

{ … } 

fee() { 
 int f[3],g[0], 
  h, i, j, k; 

  char *p; 
 fie(h,i,“ab”,j, k);  
 k = f * i + j; 
 h = g[17]; 
 printf(“<%s,%s>.\n”, 
  p,q); 
 p = 10; 

} 

What is wrong with this program? 
(let me count the ways …) 



Beyond Syntax 
There is a level of correctness that is deeper than grammar 

To generate code, we need to understand its meaning ! 

fie(a,b,c,d) 
 int a, b, c, d; 

{ … } 

fee() { 
 int f[3],g[0], 
  h, i, j, k; 

  char *p; 
 fie(h,i,“ab”,j, k);  
 k = f * i + j; 
 h = g[17]; 
 printf(“<%s,%s>.\n”, 
  p,q); 
 p = 10; 

} 

What is wrong with this program? 
(let me count the ways …) 

•  declared g[0], used g[17] 

•  wrong number of  args to fie() 

•  “ab” is not an int 

•  wrong dimension on use of  f  

•  undeclared variable q 

•  10 is not a character string 

All of  these are  

“deeper than syntax” 



Beyond Syntax 

To generate code, the compiler needs to answer many questions  
•  Is “x” a scalar, an array, or a function?  Is “x” declared? 
•  Are there names that are not declared?  Declared but not used? 
•  Which declaration of “x” does each use reference? 
•  Is the expression “x * y + z” type-consistent? 
•  In “a[i,j,k]”, does a have three dimensions? 
•  Where can “z” be stored?            (register, local, global, heap, static) 
•  How many arguments does “fie()” take? What about “printf ()” ? 
•  Does “*p” reference the result of a “malloc()” ?   
•  Is “x” defined before it is used? 

These are beyond a CFG 



Beyond Syntax 
These questions are part of context-sensitive analysis 
•  Answers depend on values, not parts of speech 
•  Questions & answers involve non-local information 
•  Answers may involve computation 

How can we answer these questions? 
•  Use formal methods 

→  Context-sensitive grammars? 
→  Attribute grammars?                                 (attributed grammars?) 

•  Use ad-hoc techniques 
→  Symbol tables 
→  Ad-hoc code                                                         (action routines) 

In scanning & parsing, formalism won; different story here. 



Beyond Syntax 
Telling the story 
•  The attribute grammar formalism is important 

→  Succinctly makes many points clear 
→  Sets the stage for actual, ad-hoc practice 

•  The problems with attribute grammars motivate practice 
→  Non-local computation 
→  Need for centralized information 

•  Some folks still argue for attribute grammars 
→  Knowledge is power 
→  Information is immunization 

We will cover attribute grammars, then move on to ad-hoc ideas 



Attribute Grammars 
What is an attribute grammar? 
•  A context-free grammar augmented with a set of rules 
•  Each symbol in the derivation has a set of values, or 

attributes  
•  The rules specify how to compute a value for each attribute 

Number →  Sign List 
Sign →  + 
 | – 
List →  List Bit 
 | Bit 
Bit →  0 
 | 1 

 

 

Example grammar 

This grammar describes
 signed binary numbers 
We would like to augment it
 with rules that compute
 the decimal value of each
 valid input string 



Examples  

We will use these two throughout the lecture 

Number  → Sign List 

 → – List 

 → – Bit 

 → – 1 

Number 

List 

Bit 

1 

Sign 

– 

For “–1” 

Number  → Sign List 

 →  – List 

 → – List Bit 

 → – List Bit Bit 

 → – Bit Bit Bit 

 → – 1 Bit Bit 

 → – 1 0 Bit 

 → – 1 0 1 

Number 

List Sign 

– Bit 

1 

List 

Bit 

0 

List 

Bit 

1 

For “–101” 



Attribute Grammars 

Add rules to compute the decimal value of a signed binary number 
Productions Attribution Rules
Number → Sign List List.pos ← 0

If Sign.neg
   then Number.val ←  – List.val
   else Number.val ← List.val

Sign → + Sign.neg ← false
| – Sign.neg ← true

List0 → List1 Bit List1.pos ← List0.pos + 1
Bit.pos ← List0.pos
List0.val ← List1.val + Bit.val

| Bit Bit.pos ← List.pos
List.val ← Bit.val

Bit → 0 Bit.val  ← 0
| 1 Bit.val  ← 2Bit.pos

Symbol Attributes

Number val

Sign neg

List pos, val

Bit pos, val



Back to the Examples 

Number 

List 

Bit 

1 

Sign 

– 

neg ← true 

Bit.pos ← 0 
Bit.val ← 2Bit.pos ≡ 1 

List.pos ← 0 
List.val ← Bit.val ≡ 1 

Number.val ←  – List.val ≡ –1 For “–1” One possible evaluation order: 

1  Sign.neg 

2  List.pos 

3  Bit.pos 

4  Bit.val 

5  List.val 

6  Number.val 

Other orders are possible 

Knuth suggested a data-flow model for evaluation 

•  Independent attributes first 

•  Others in order as input values become available 

Rules + parse tree
 imply an attribute
 dependence graph 

Evaluation order
 must be consistent
 with the  attribute
 dependence graph 



Back to the Examples 

This is the complete
 attribute dependence
 graph for “–101”. 

It shows the flow of  all
 attribute values in the
 example. 

Some flow downward 

→ inherited attributes 

Some flow upward 
→ synthesized attributes 

A rule may use attributes
 in the parent, children, or
 siblings of  a node 

Number 

Sign 

– 

List 

Bit 

1 

List 

Bit 

0 

List 

Bit 

1 

pos: 0 
val: 1 

pos: 2 
val: 4 

pos: 1 
val: 0 

pos: 2 
val: 4 

pos: 1 
val: 4 

pos: 0 
val: 5 

val: –5 

neg: true 

For “–101” 



The Rules of the Game 
•  Attributes associated with nodes in parse tree 
•  Rules are value assignments associated with productions 
•  Attribute is defined once, using local information 
•  Label identical terms in production for uniqueness 
•  Rules & parse tree define an attribute dependence graph 

→  Graph must be non-circular  
This produces a high-level, functional specification 

Synthesized attribute 
→  Depends  on values from children 

Inherited attribute 
→  Depends on values from siblings & parent 



Using Attribute Grammars 
Attribute grammars can specify context-sensitive actions 
•  Take values from syntax 
•  Perform computations with values 
•  Insert tests, logic, … 

We want to use both kinds of attribute  

Synthesized Attributes 

•  Use values from children  
  & from constants 

•  S-attributed grammars 

•  Evaluate in a single  
   bottom-up pass 

Good match to LR parsing 

Inherited Attributes 

•  Use values from parent,   
  constants, & siblings 

•  directly express context 

•  can rewrite to avoid them 

•  Thought to be more natural 

Not easily done at parse time 



Evaluation Methods 
Dynamic, dependence-based method              (dataflow) 
•  Build the parse tree 
•  Build the dependence graph 
•  Topological sort the dependence graph 
•  Define attributes in topological order 

Rule-based methods                                                    (treewalk) 
•  Analyze rules at compiler-generation time 
•  Determine a fixed (static) ordering 
•  Evaluate nodes in that order 

Oblivious methods                                             (passes) 
•  Ignore rules & parse tree 
•  Pick a convenient order (at design time) & use it 



Back to the Example 

Number 

Sign List 

Bit List 

Bit List 

Bit 

– 

1 

0 

1 For “–101” 



Back to the Example 

Number 

Sign List 

Bit List 

Bit List 

Bit 
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0 

1 

pos: 
val: 

pos: 
val: 

pos: 
val: 

pos: 
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For “–101” 



Back to the Example 

Number 

Sign List 

Bit List 

Bit List 

Bit 
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For “–101” 

Inherited Attributes 



Back to the Example 
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Synthesized attributes 



Back to the Example 

Number 

Sign List 

Bit List 

Bit List 
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For “–101” 

Synthesized attributes 



Back to the Example 

Number 

Sign List 

Bit List 

Bit List 

Bit 

– 

1 

0 

1 

pos: 1 
val: 0 

pos: 0 
val: 1 

pos: 2 
val: 4 

pos: 2 
val: 4 

pos: 1 
val: 4 

pos: 0 
val: 5 

val: –5 

neg: true 

For “–101” 

& then peel away the parse tree ... 

If  we show the computation ... 



Back to the Example 

– 

1 

0 

1 

pos: 1 
val: 0 

pos: 0 
val: 1 

pos: 2 
val: 4 

pos: 2 
val: 4 

pos: 1 
val: 4 

pos: 0 
val: 5 

val: –5 

neg: true 

For “–101” 

All that is left is the attribute
 dependence graph. 

This succinctly represents the
 flow of  values in the problem
 instance. 

The dynamic methods sort this
 graph to find independent
 values, then work along graph
 edges.   

The rule-based methods try to
 discover “good” orders by
 analyzing the rules. 

The oblivious methods ignore
 the structure of  this graph. 

The dependence graph must be acyclic 



An Extended Example 
Grammar for a basic block                                  (§ 4.3.3)  

Block0 → Block1 Assign
 Assign

Assign → Ident  =  Expr  ;
Expr0 → Expr1  + Term

 Expr1  – Term
 Term

Term0 → Term1  *  Factor
 Term1  /  Factor
 Factor

Factor → (  Expr  )
 Number
 Identifier

Let’s estimate cycle counts 

•  Each operation has a COST 

•  Add them, bottom up 

•  Assume a load per value 

•  Assume no reuse 

Simple problem for an AG 



An Extended Example                       (continued)    
Adding attribution rules 

Block0 → Block1 Assign Block0.cost ← Block1.cost +
              Assign.cost

 Assign Block0.cost ← Assign.cost
Assign → Ident  =  Expr

;
Assign.cost ← COST(store) +
              Expr.cost

Expr0 → Expr1  + Term Expr0.cost ← Expr1.cost +
              COST(add) + Term.cost

 Expr1  – Term Expr0.cost ← Expr1.cost +
              COST(add) + Term.cost

 Term Expr0.cost ← Term.cost
Term0 → Term1  *

Factor
Term0.cost ← Term1.cost +
           COST(mult ) + Factor.cost

 Term1  /
Factor

Term0.cost ← Term1.cost +
             COST(div) +Factor.cost

 Factor Term0.cost ← Factor.cost
Factor → (  Expr  ) Factor.cost ← Expr.cost

 Number Factor.cost ← COST(loadI)
 Identifier Factor.cost ← COST(load)

All these
 attributes are
 synthesized! 



An Extended Example 
Properties of the example grammar 
•  All attributes are synthesized ⇒ S-attributed grammar 
•  Rules can be evaluated bottom-up in a single pass 

→  Good fit to bottom-up, shift/reduce parser 
•  Easily understood solution 
•  Seems to fit the problem well 

What about an improvement? 
•  Values are loaded only once per block (not at each use) 
•  Need to track which values have been already loaded 



Adding load tracking 
•  Need sets Before and After for each production 
•  Must be initialized, updated, and passed around the tree 

A Better Execution Model 

Factor → (  Expr  ) Factor.cost ← Expr.cost ;
Expr.Before ← Factor.Before ;
Factor.After ← Expr.After

 Number Factor.cost ← COST(loadi) ;
Factor.After ← Factor.Before

 Identifier If (Identifier.name ∉ Factor.Before)
   then
        Factor.cost ← COST(load);
        Factor.After ← Factor.Before
                      ∪ Identifier.name
   else
       Factor.cost ← 0
       Factor.After ← Factor.Before

This looks more complex! 



•  Load tracking adds complexity 
•  But, most of it is in the “copy rules” 
•  Every production needs rules to copy Before & After 

A sample production 

These copy rules multiply rapidly 
Each creates an instance of the set 
Lots of work, lots of space, lots of rules to write 

A Better Execution Model 

Expr0 → Expr1  + Term Expr0.cost ← Expr1.cost +
            COST(add) + Term.cost ;
Expr1.Before ← Expr0.Before ;
Term.Before ← Expr1.After;
Expr0.After ← Term.After



What about accounting for finite register sets? 
•  Before & After must be of limited size 
•  Adds complexity to Factor→Identifier  
•  Requires more complex initialization 

Jump from tracking loads to tracking registers is small 
•  Copy rules are already in place 
•  Some local code to perform the allocation 

Next class  
⇒  Curing these problems with ad-hoc syntax-directed translation 

An Even Better Model 


