

Parsing VI The Last Parsing Lecture

- 1. Goal \rightarrow SheepNoise
- 2. SheepNoise \rightarrow SheepNoise baa
- 3. <u>baa</u>

Example From SheepNoise

ELAWARE T7 4 3 %

Initial step builds the item [Goal \rightarrow ·SheepNoise,EOF] and takes its closure()

 $Closure([Goal \rightarrow \cdot SheepNoise, EOF])$

Item	From
[Goal→•SheepNoise, <u>EOF]</u>	Original item
[SheepNoise→·SheepNoise baa,EOF]	1, δ <u>a</u> is <u>EOF</u>
[SheepNoise→ • baa,EOF]	1, δ <u>a</u> is <u>EOF</u>
[SheepNoise→•SheepNoise <u>baa</u> ,baa]	2, δ <u>a</u> is <u>baa</u> <u>EOF</u>
[SheepNoise→ · <u>baa</u> , <u>baa</u>]	2, δ <u>a</u> is <u>baa</u> <u>EOF</u>

So, S_0 is

{ [Goal→ • SheepNoise,EOF], [SheepNoise→ • SheepNoise baa,EOF], [SheepNoise→ • baa,EOF], [SheepNoise→ • SheepNoise baa,baa], [SheepNoise→ • baa,baa] }

 $\begin{array}{l} S_0 \text{ is } \{ \text{ [Goal} \rightarrow \cdot \text{ SheepNoise}, \text{EOF} \}, \text{ [SheepNoise} \rightarrow \cdot \text{ SheepNoise} \text{ baa}, \text{EOF} \}, \\ \text{ [SheepNoise} \rightarrow \cdot \text{ baa}, \text{EOF}], \text{ [SheepNoise} \rightarrow \cdot \text{ SheepNoise} \text{ baa}, \text{baa}], \\ \text{ [SheepNoise} \rightarrow \cdot \text{ baa}, \text{baa}] } \end{array}$

 $Goto(S_0, \underline{baa})$

Loop produces

Item	From
[SheepNoise→baa•, EOF]	Item 3 in s_0
[SheepNoise→ <u>baa</u> •, <u>baa]</u>	Item 5 in s_0

Closure adds nothing since • is at end of *rhs* in each item

In the construction, this produces s₂ { [SheepNoise→baa •, {EOF,baa}]} New, but *obvious*, notation for two distinct items [*SheepNoise→*<u>baa</u> •, <u>EOF</u>] & [*SheepNoise→*<u>baa</u> •, <u>baa</u>] Starts with S_0

 $\begin{array}{l} S_0: \{ \textit{[Goal} \rightarrow \cdot \textit{SheepNoise}, \textit{EOF} \textit{]}, \textit{[SheepNoise} \rightarrow \cdot \textit{SheepNoise} \textit{baa}, \textit{EOF} \textit{]}, \\ \textit{[SheepNoise} \rightarrow \cdot \textit{baa}, \textit{EOF} \textit{]}, \textit{[SheepNoise} \rightarrow \cdot \textit{SheepNoise} \textit{baa}, \textit{baa} \textit{]}, \\ \textit{[SheepNoise} \rightarrow \cdot \textit{baa}, \textit{baa} \textit{]} \\ \end{array}$

Starts with S_0

 $\begin{array}{l} S_{0}: \{ \text{ [Goal} \rightarrow \cdot \text{ SheepNoise}, \underline{\text{EOF}} \text{, [SheepNoise} \rightarrow \cdot \text{ SheepNoise} \underline{\text{baa}}, \underline{\text{EOF}} \text{, } \\ \text{ [SheepNoise} \rightarrow \cdot \underline{\text{baa}}, \underline{\text{EOF}} \text{, [SheepNoise} \rightarrow \cdot \text{ SheepNoise} \underline{\text{baa}}, \underline{\text{baa}} \text{, } \\ \text{ [SheepNoise} \rightarrow \cdot \underline{\text{baa}}, \underline{\text{baa}} \text{]} \\ \end{array} \right\}$

Iteration 1 computes
S₁ = Goto(S₀, SheepNoise) =
 {[Goal→ SheepNoise •, EOF], [SheepNoise→ SheepNoise • baa, EOF],
 [SheepNoise→ SheepNoise • baa, baa]}
S₂ = Goto(S₀, baa) = { [SheepNoise→ baa •, EOF],
 [SheepNoise→ baa •, baa]}


```
Starts with S_0
```

```
S<sub>0</sub>: { [Goal→ · SheepNoise, EOF], [SheepNoise→ · SheepNoise baa, EOF],
[SheepNoise→ · baa, EOF], [SheepNoise→ · SheepNoise baa, baa],
[SheepNoise→ · baa, baa] }
```

```
Iteration 1 computes
S<sub>1</sub> = Goto(S<sub>0</sub>, SheepNoise) =
    { [Goal→ SheepNoise •, EOF], [SheepNoise→ SheepNoise • baa, EOF],
    [SheepNoise→ SheepNoise • baa, baa] }
S<sub>2</sub> = Goto(S<sub>0</sub>, baa) = { [SheepNoise→ baa •, EOF],
    [SheepNoise→ baa •, baa] }
```

Iteration 2 computes S₃ = Goto(S₁, <u>baa</u>) = { [SheepNoise → SheepNoise <u>baa</u> ·, <u>EOF</u>], [SheepNoise → SheepNoise <u>baa</u> ·, <u>baa</u>] }


```
Starts with S_0
```

```
 \begin{array}{l} \mathcal{S}_{0}: \{ \text{ [Goal} \rightarrow \cdot \text{ SheepNoise}, \underline{\text{EOF}} \text{, [SheepNoise} \rightarrow \cdot \text{ SheepNoise} \underline{\text{baa}}, \underline{\text{EOF}} \text{, } \\ \text{ [SheepNoise} \rightarrow \cdot \underline{\text{baa}}, \underline{\text{EOF}} \text{, [SheepNoise} \rightarrow \cdot \text{ SheepNoise} \underline{\text{baa}}, \underline{\text{baa}} \text{, } \\ \text{ [SheepNoise} \rightarrow \cdot \underline{\text{baa}}, \underline{\text{baa}} \text{]} \\ \end{array} \right\}
```

```
Iteration 1 computes
S_1 = Goto(S_0, SheepNoise) =
    { [Goal \rightarrow SheepNoise \cdot, EOF], [SheepNoise \rightarrow SheepNoise \cdot baa, EOF],
        [SheepNoise \rightarrow SheepNoise \cdot baa, baa]}
S_2 = Goto(S_0, \underline{baa}) = \{ [SheepNoise \rightarrow \underline{baa} \cdot, \underline{EOF}], \}
     [SheepNoise \rightarrow \underline{baa} \cdot, \underline{baa}]
Iteration 2 computes
 S_3 = Goto(S_1, \underline{baa}) = \{ [SheepNoise \rightarrow SheepNoise \underline{baa}' \cdot ] \in EOF \},
                                  [SheepNoise \rightarrow SheepNoise \underline{baa}], \underline{baa}]
                                                                                    Nothing more to
                                                                                     compute, since • is
                                                                                     at the end of every
                                                                                     item in S_3.
```


S₀: { [Goal→ · SheepNoise, EOF], [SheepNoise→ · SheepNoise baa, EOF], [SheepNoise→ · baa, EOF], [SheepNoise→ · SheepNoise baa, baa], [SheepNoise→ · baa, baa] }

Control DFA for SN

$$S_3 = Goto(S_1, \underline{baa}) = \{ [SheepNoise \rightarrow SheepNoise \underline{baa} \cdot, \underline{EOF}], [SheepNoise \rightarrow SheepNoise \underline{baa} \cdot, \underline{baa}] \}$$

 $\begin{array}{l} \mathcal{S}_{0}: \{ \text{ [Goal} \rightarrow \cdot \text{ SheepNoise}, \text{ <u>EOF} \}, \text{ [SheepNoise} \rightarrow \cdot \text{ SheepNoise} \text{ <u>baa}, \text{ EOF} \}, \text{ [SheepNoise} \rightarrow \cdot \text{ SheepNoise} \text{ <u>baa}, \text{ baa} \}, \text{ [SheepNoise} \rightarrow \cdot \text{ <u>baa}, \text{ baa}] } \end{array}$ </u></u></u></u>

S₁ = Goto(S₀, SheepNoise) = { [Goal→ SheepNoise •, EOF], [SheepNoise→ SheepNoise • <u>baa</u>, EOF], [SheepNoise→ SheepNoise • <u>baa</u>, <u>baa</u>] }

 $S_2 = Goto(S_0, \underline{baa}) = \{ [SheepNoise \rightarrow \underline{baa} \cdot, \underline{EOF}], [SheepNoise \rightarrow \underline{baa} \cdot, \underline{baa}] \}$


```
S₁ = Goto(S₀, SheepNoise) =
{ [Goal→ SheepNoise •, EOF], [SheepNoise→ SheepNoise • baa, EOF],
[SheepNoise→ SheepNoise • baa, baa] }
```

 $S_2 = Goto(S_0, \underline{baa}) = \{ [SheepNoise \rightarrow \underline{baa} \cdot, \underline{EOF}], [SheepNoise \rightarrow \underline{baa} \cdot, \underline{baa}] \}$

 $S_3 = Goto(S_1, \underline{baa}) = \{ [SheepNoise \rightarrow SheepNoise \underline{baa} \cdot, \underline{EOF}], \\ [SheepNoise \rightarrow SheepNoise \underline{baa} \cdot, \underline{baa}] \}$

Filling in the ACTION and GOTO Tables

$$\forall set s_{x} \in S$$

$$\forall item i \in s_{x}$$

if $i is [A \rightarrow \beta \cdot \underline{a}d, \underline{b}] and goto(s_{x}, \underline{a}) = s_{k}, \underline{a} \in T$
then ACTION[x, \underline{a}] \leftarrow "shift k "
else if $i is [S' \rightarrow S \cdot , EOF]$
then ACTION[x, \underline{a}] \leftarrow "accept"
else if $i is [A \rightarrow \beta \cdot , \underline{a}]$
then ACTION[x, \underline{a}] \leftarrow "reduce $A \rightarrow \beta$ "
 $\forall n \in NT$
if $goto(s_{x}, n) = s_{k}$
then GOTO[x, n] $\leftarrow k$

Control DFA for SN

ACTION		
State	EOF	<u>baa</u>
0		shift 2
1	accept	shift 3
2	reduce 3	reduce 3
3	reduce 2	reduce 2

GOTO	
State	SheepNoise
0	1
1	-
2	-
3	-

Shrinking the Tables

Three options:

- Combine terminals such as <u>number</u> & <u>identifier</u>, <u>+</u> & <u>-</u>, <u>*</u> & <u>/</u>
 - \rightarrow Directly removes a column, may remove a row
 - → For expression grammar, 198 (vs. 384) table entries
- Combine rows or columns
 - \rightarrow Implement identical rows once & remap states
 - \rightarrow Requires extra indirection on each lookup
 - \rightarrow Use separate mapping for ACTION & for GOTO
- Use another construction algorithm
 - \rightarrow Both LALR(1) and SLR(1) produce smaller tables
 - \rightarrow Implementations are readily available

(table compression)

What can go wrong with LR table construction?

What if set *s* contains $[A \rightarrow \beta \cdot \underline{a}\gamma, \underline{b}]$ and $[B \rightarrow \beta \cdot, \underline{a}]$?

- First item generates "shift", second generates "reduce"
- Both define ACTION[s,<u>a</u>] cannot do both actions
- This is a fundamental ambiguity, called a *shift/reduce error*
- Modify the grammar to eliminate it
- Shifting will often resolve it correctly

What if set s contains $[A \rightarrow \gamma \cdot, \underline{a}]$ and $[B \rightarrow \gamma \cdot, \underline{a}]$?

- Each generates "reduce", but with a different production
- Both define ACTION[s,<u>a</u>] cannot do both reductions
- This fundamental ambiguity is called a *reduce/reduce error*
- Modify the grammar to eliminate it

In either case, the grammar is not LR(1)

(if-then-else)

EaC includes a worke example

Advantages Dis		Disadvantages
Top-down recursive descent	Fast Good locality Simplicity Good error detection	Hand-coded High maintenance Right associativity
LR(1)	Fast (Direct encoding) Deterministic langs. Automatable Left associativity	Large working sets Poor error messages Large table sizes

CYK Parser

- Simple context-free-language parser
 - running time is $O(n^3)$, space is $O(n^2)$
- Shunned for many years
 - "Even tabular methods [CYK, Earley] should be avoided if the language at hand has a grammar for which more efficient algorithms [LL, LALR] are available." The Theory of Parsing, Aho, Ullman, 1972
- But in practice, running time is more like $O(n \approx^{1.2})$
 - Plus computers are now 1,000,000-times faster than in 1972

b	a	а	b	а
{B}	{A,C}	{A,C}	{B}	{A,C}
		C		
<u> </u>			J	
			S> AF	AL BC
-		, I	A> BA	Ala
			B> CC	
			B> C(C> AE	CIb Bla

	D	а	а	b	а
{[3}	{A,C}	{A,C}	{ B }	{A,C}
BA,	BC	AA, AG GA,CC	AB, CB	BA,BC	
{S,	A}	{B}	{S,C}	{S,A}	
				Q > A0	
\vdash			1	Δ> R	
L				B> C(
				C> AE	Bla

	b	а	а	b	а
	{B}	{A,C}	{A,C}	{B}	{A,C}
	BA,BC	AA, AG GA,CC	АВСВ	BA,BC	
	{S,A}	{B}	{S C }	{S,A}	
	BB SA,SC AA,AC	AS, AC CS,CC, BB	AS,AA CS ,CA		
	8	{B}	ð		
				S> AF	31 BC
1			,	A> BA	Ala
				B> CC C> AE	CIb Bla

_					
b		а	а	b	а
{B]	}	{A,C}	{A,C}	{B}	{A,C}
BA,B	SC	AA, AG GA,CC	AB, GB	BA,BC	
{S,A	\}	{B}	{S,C}	(S,A}	
BE SA,€ AA,≠	/C }C	AS , AC CS ,CC, BB	ASIAA CSICA SA,SC CA,CC		
0		{B}	{B}		
				S> AE	3 I BC
1				A> B/	Ala
				B> C(
				U> Al	31a

b	a	а	b	а
{B}	{A,C}	{A,C}	{B}	{A,C}
BA,BC	AA, AC CA,CC	AB, GB	BA,BC	
{SA}	{B}	{S,C}	{S,A}	
EB SA,SC AA,AC	AS , AC CS ,CC, BB	AS,AA CS,CA SA,SC CA ,CC		
BB	{B}	{B}		
0			S> AE A> BA B> CC C> AE	BIBC Ala CIb Bla

b	а	а	b	а
{B}	{A,C}	{A,C}	{B}	{A,C}
BA,BC	AA, AC GA,CC	AB, CB	BA,BC	
{S,A}	{ B }	{S,C}	{S,A}	
BB SA,SC AA,AC	AS , AC CS ,CC, BB	AS,AA CS,CA SA,SC CA ,CC		
0	(15)	(B)		
BB SS,SC AS,AC	(AB,CB)			
0	{S,C}		S> AE	BIBC
1			A> B/	Ala
			B> CC	
			0>A	

b	a	а	b	а
(B)	{A,C}	{A,C}	{B}	{A,C}
BA,BC	AA, AC GA,CC	AB, CB	BA,BC	
{SA}	{B}	{S,C}	{S,A}	
EB SA,SC AA,AC	AS , AC CS ,CC, BB	AS,AA CS,CA SA,SC CA ,CC		
D	{B}	{B}		
BB SS SC AS AC	AB, CB BS,BA BA,BC			
•	({S,A,C})		S> AE	BIBC
BS, BA			A> B/	Ala
			B> C(CID
{S,A}			U> AE	sia

_						
	b	а	а	b	а	
	{B}	{B} {A,C}		{B}	{A,C}	
	BA,BC	AA, AG GA,CC	AB, GB	BA,BC		
	{S,A}	{B}	{S,C}	{S,A}		
	BB SA,SC AA,AC	AS, AC CS,CC, BB	AS,AA CS,CA SA,SC CA,CC			
	0	{B}	{B}			
	BB SS,SC AS,AC	AB, CB BS,BA BA,BC				
	0	{S,A,C}		S> AE	3 BC	
	BS, BA BC		A> BA			
	SB,AB	B> CC b			CID	
L	{S,A,C}			C>ABIa		

(* for the first row *) 1) for i := 1 to n do 2) $V_{i1} := \{ A \mid A \rightarrow a \text{ is a production} \}$ rule and the ith symbol of s is a} (* for subsequent rows *) 3) for j := 2 to n do for i := 1 to (n - j + 1) do 4) 5) $V_{ij} := \{\}$ 6) for k := 1 to (j - 1) do $V_{ij} := V_{ij} U \{ A \mid A \rightarrow BC \}$ 7) is a production rule, B is in V_{ik}, C is in $v_{i+k,j-k}$

Figure3: Pseudo-code for the sequential CYK algorithm. Adapted from Hopcroft, Ullman, 1979, pp139-140.

Matrix for a string of length 5 using 3 processors

Order of calculation for processor P2. P2 calculates a diagonal at a time.

Order of information received by P2. P2 receives a diagonal at a time.

Order of information P2 sends to P1. P2 sends a diagonal at a time.

if not last processor send all along to P_{i+1}

let
$$I = \sum_{q=1}^{p}$$
 length of substring for P_q

for j := 1 to I do if necessary get diagonal from p $_{i+1}$ let m = length of the diagonal within P_i for k := 1 to m do calculate V $_{j-k+1,k}$ if i <> 1 then send back new diagonal to P_{i-1} else send back V_{1,n} to Host

Extra Slides Start Here

(grammar & sets)

Simplified, <u>right</u> recursive expression grammar

$$\begin{array}{l} \textit{Goal} \rightarrow \textit{Expr} \\ \textit{Expr} \rightarrow \textit{Term} - \textit{Expr} \\ \textit{Expr} \rightarrow \textit{Term} \\ \textit{Term} \rightarrow \textit{Factor} * \textit{Term} \\ \textit{Term} \rightarrow \textit{Factor} \\ \textit{Factor} \rightarrow \textit{ident} \end{array}$$

Symbol	FIRST
Goal	{ <u>ident</u> }
Expr	{
Term	{
Factor	{
-	{ - }
*	{ * }
<u>ident</u>	{

Initialization Step

$$\begin{split} S_{0} \leftarrow closure(\{[Goal \rightarrow \cdot Expr , EOF]\}) \\ \{ [Goal \rightarrow \cdot Expr , EOF], [Expr \rightarrow \cdot Term - Expr , EOF], \\ [Expr \rightarrow \cdot Term , EOF], [Term \rightarrow \cdot Factor * Term , EOF], \\ [Term \rightarrow \cdot Factor * Term , -], [Term \rightarrow \cdot Factor , EOF], \\ [Term \rightarrow \cdot Factor , -], [Factor \rightarrow \cdot ident , EOF], \\ [Factor \rightarrow \cdot ident , -], [Factor \rightarrow \cdot ident , *] \} \end{split}$$

 $\boldsymbol{S} \leftarrow \{\boldsymbol{s}_0\}$

(building the collection)

Iteration 1

 $s_1 \leftarrow goto(s_0, Expr)$ $s_2 \leftarrow goto(s_0, Term)$ $s_3 \leftarrow goto(s_0, Factor)$ $s_4 \leftarrow goto(s_0, ident)$

Iteration 2

s₅ ← goto(s₂ , -) s₆ ← goto(s₃ , *)

Iteration 3

s₇ ← goto(s₅ , Expr) s₈ ← goto(s₆ , Term)

(Summary)

(Summary)

$$\begin{split} & \mathsf{S}_6: \{ [\mathit{Term} \rightarrow \mathit{Factor} * \cdot \mathit{Term} , \mathsf{EOF}], [\mathit{Term} \rightarrow \mathit{Factor} * \cdot \mathit{Term} , -], \\ & [\mathit{Term} \rightarrow \cdot \mathit{Factor} * \mathit{Term} , \mathsf{EOF}], [\mathit{Term} \rightarrow \cdot \mathit{Factor} * \mathit{Term} , -], \\ & [\mathit{Term} \rightarrow \cdot \mathit{Factor} , \mathsf{EOF}], [\mathit{Term} \rightarrow \cdot \mathit{Factor} , -], \\ & [\mathit{Factor} \rightarrow \cdot \mathit{ident} , \mathsf{EOF}], [\mathit{Factor} \rightarrow \cdot \mathit{ident} , -], [\mathit{Factor} \rightarrow \cdot \mathit{ident} , *] \} \\ & \mathsf{S}_7: \{ [\mathit{Expr} \rightarrow \mathit{Term} - \mathit{Expr} \cdot , \mathsf{EOF}] \} \end{split}$$

 $\mathsf{S}_8: \{ [\textit{Term} \rightarrow \textit{Factor} * \textit{Term} \cdot, \mathsf{EOF}], [\textit{Term} \rightarrow \textit{Factor} * \textit{Term} \cdot, -] \}$

(Summary)

The Goto Relationship (from the construction)

State	Expr	Term	Factor	-	*	<u>Ident</u>
0	1	2	3			4
1						
2				5		
3					6	
4						
5	7	2	3			4
6		8	3			4
7						
8						

Filling in the ACTION and GOTO Tables

x is the number of the state for s_x The algorithm \forall set $s_x \in S$ Many items \forall item $i \in S_x^{*}$ generate no if i is $[A \rightarrow \beta \cdot \underline{ad}, \underline{b}]$ and $goto(s_x, \underline{a}) = s_k, \underline{a} \in T$ table entry then ACTION[x, \underline{a}] \leftarrow "shift k" else if i is $[S' \rightarrow S \cdot EOF]$ then ACTION[x, EOF] \leftarrow "accept" e.g., $[A \rightarrow \beta \cdot B\alpha, \underline{\alpha}]$ else if i is $[A \rightarrow \beta \cdot \underline{a}]$ does not, but then ACTION[x,\underline{a}] \leftarrow "reduce $A \rightarrow \beta$ " closure ensures $\forall n \in NT$ that all the rhs' if $qoto(s_x, n) = s_k$ for B are in s_x then $GOTO[x,n] \leftarrow k$

(Filling in the tables)

The algorithm produces the following table

	ACTION				бото		
	<u>Ident</u>	-	*	EOF	Expr	Term	Factor
0	s 4				1	2	3
1				acc			
2		s 5		r 3			
3		r 5	s 6	r 5			
4		r 6	r 6	r 6			
5	s 4				7	2	3
6	s 4					8	3
7				r 2			
8		r 4		r 4			

Plugs into the skeleton LR(1) parser

Left Recursion versus Right Recursion

- Right recursion
- Required for termination in top-down parsers
- Uses (on average) more stack space
- Produces right-associative operators
- Left recursion
- Works fine in bottom-up parsers
- Limits required stack space
- Produces left-associative operators
- Rule of thumb
- Left recursion for bottom-up parsers
- Right recursion for top-down parsers

Associativity

- What difference does it make?
- Can change answers in floating-point arithmetic
- Exposes a different set of common subexpressions
- Consider x+y+z

- What if y+z occurs elsewhere? Or x+y? or x+z?
- What if x = 2 & z = 17? Neither left nor right exposes 19.
- Best choice is function of surrounding context

The inclusion hierarchy for context-free <u>languages</u>

There is a level of correctness that is deeper than grammar

```
fie(a,b,c,d)
  int a, b, c, d;
{ ... }
fee() {
  int f[3],g[0],
    h, i, j, k;
 char *p;
  fie(h,i,"ab",j, k);
  k = f * i + j;
  h = g[17];
  printf("<%s,%s>.\n",
    p,q);
  p = 10;
}
```

What is wrong with this program? (*let me count the ways* ...)

To generate code, we need to understand its meaning !

There is a level of correctness that is deeper than grammar

```
fie(a,b,c,d)
  int a, b, c, d;
{ ... }
fee() {
  int f[3],g[0],
    h, i, j, k;
 char *p;
  fie(h,i,"ab",j, k);
  k = f * i + j;
  h = g[17];
  printf("<%s,%s>.\n",
    p,q);
  p = 10;
```

What is wrong with this program? (let me count the ways ...) declared g[0], used g[17] wrong number of args to fie() • "ab" is not an int wrong dimension on use of f undeclared variable q 10 is not a character string All of these are "deeper than syntax"

To generate code, the compiler needs to answer many questions

- Is "x" a scalar, an array, or a function? Is "x" declared?
- Are there names that are not declared? Declared but not used?
- Which declaration of "x" does each use reference?
- Is the expression "x * y + z" type-consistent?
- In "a[i,j,k]", does a have three dimensions?
- Where can "z" be stored? *(register, local, global, heap, static)*
- In "f \leftarrow 15", how should 15 be represented?
- How many arguments does "fie()" take? What about "printf ()" ?
- Does "*p" reference the result of a "malloc()" ?
- Do "p" & "q" refer to the same memory location?
- Is "x" defined before it is used?

These cannot be expressed in a CFG

These questions are part of context-sensitive analysis

- Answers depend on values, not parts of speech
- Questions & answers involve non-local information
- Answers may involve computation

How can we answer these questions?

- Use formal methods
 - → Context-sensitive grammars?
 - → Attribute grammars?
- Use *ad-hoc* techniques
 - → Symbol tables
 - → *Ad-hoc* code

In scanning & parsing, formalism won; different story here.

(attributed grammars?)

(action routines)

Telling the story

- The attribute grammar formalism is important
 - \rightarrow Succinctly makes many points clear
 - → Sets the stage for actual, *ad-hoc* practice
- The problems with attribute grammars motivate practice
 - \rightarrow Non-local computation
 - \rightarrow Need for centralized information
- Some folks in the community still argue for attribute grammars
 - → Knowledge is power
 - \rightarrow Information is immunization

We will cover attribute grammars, then move on to *ad-hoc* ideas

