
Parsing VI
The Last Parsing Lecture

Quiz : The Left Recursive SheepNoise Grammar

1.  Goal → SheepNoise
2.  SheepNoise → SheepNoise baa
3.  | baa

Example From SheepNoise
Initial step builds the item [Goal→•SheepNoise,EOF]
and takes its closure()‏

Closure([Goal→•SheepNoise,EOF])‏

So, S0 is
{ [Goal→ • SheepNoise,EOF], [SheepNoise→ • SheepNoise baa,EOF],
 [SheepNoise→• baa,EOF], [SheepNoise→ • SheepNoise baa,baa],
 [SheepNoise→ • baa,baa] }

Example from SheepNoise

S0 is { [Goal→ • SheepNoise,EOF], [SheepNoise→ • SheepNoise baa,EOF],
 [SheepNoise→ • baa,EOF], [SheepNoise→ • SheepNoise baa,baa],
 [SheepNoise→ • baa,baa] }

Goto(S0 , baa)‏
•  Loop produces

•  Closure adds nothing since • is at end of rhs in each item

In the construction, this produces s2
{ [SheepNoise→baa •, {EOF,baa}]}

New, but obvious, notation
 for two distinct items
[SheepNoise→baa •, EOF] &
 [SheepNoise→baa •, baa]

Example from SheepNoise
Starts with S0
S0 : { [Goal→ • SheepNoise, EOF], [SheepNoise→ • SheepNoise baa, EOF],

 [SheepNoise→• baa, EOF], [SheepNoise→ • SheepNoise baa, baa],
 [SheepNoise→ • baa, baa] }

Example from SheepNoise
Starts with S0
S0 : { [Goal→ • SheepNoise, EOF], [SheepNoise→ • SheepNoise baa, EOF],

 [SheepNoise→• baa, EOF], [SheepNoise→ • SheepNoise baa, baa],
 [SheepNoise→ • baa, baa] }

Iteration 1 computes
S1 = Goto(S0 , SheepNoise) =

 { [Goal→ SheepNoise •, EOF], [SheepNoise→ SheepNoise • baa, EOF],
 [SheepNoise→ SheepNoise • baa, baa] }

S2 = Goto(S0 , baa) = { [SheepNoise→ baa •, EOF],
 [SheepNoise→ baa •, baa] }

Example from SheepNoise
Starts with S0
S0 : { [Goal→ • SheepNoise, EOF], [SheepNoise→ • SheepNoise baa, EOF],

 [SheepNoise→• baa, EOF], [SheepNoise→ • SheepNoise baa, baa],
 [SheepNoise→ • baa, baa] }

Iteration 1 computes
S1 = Goto(S0 , SheepNoise) =

 { [Goal→ SheepNoise •, EOF], [SheepNoise→ SheepNoise • baa, EOF],
 [SheepNoise→ SheepNoise • baa, baa] }

S2 = Goto(S0 , baa) = { [SheepNoise→ baa •, EOF],
 [SheepNoise→ baa •, baa] }

Iteration 2 computes
 S3 = Goto(S1 , baa) = { [SheepNoise→ SheepNoise baa •, EOF],

 [SheepNoise→ SheepNoise baa •, baa] }

Example from SheepNoise
Starts with S0
S0 : { [Goal→ • SheepNoise, EOF], [SheepNoise→ • SheepNoise baa, EOF],

 [SheepNoise→• baa, EOF], [SheepNoise→ • SheepNoise baa, baa],
 [SheepNoise→ • baa, baa] }

Iteration 1 computes
S1 = Goto(S0 , SheepNoise) =

 { [Goal→ SheepNoise •, EOF], [SheepNoise→ SheepNoise • baa, EOF],
 [SheepNoise→ SheepNoise • baa, baa] }

S2 = Goto(S0 , baa) = { [SheepNoise→ baa •, EOF],
 [SheepNoise→ baa •, baa] }

Iteration 2 computes
 S3 = Goto(S1 , baa) = { [SheepNoise→ SheepNoise baa •, EOF],

 [SheepNoise→ SheepNoise baa •, baa] }

Nothing more to
 compute, since • is
 at the end of every
 item in S3 .

Example from SheepNoise

S0 : { [Goal→ • SheepNoise, EOF], [SheepNoise→ • SheepNoise baa, EOF],
 [SheepNoise→• baa, EOF], [SheepNoise→ • SheepNoise baa, baa],
 [SheepNoise→ • baa, baa] }

S1 = Goto(S0 , SheepNoise) =
 { [Goal→ SheepNoise •, EOF], [SheepNoise→ SheepNoise • baa, EOF],

 [SheepNoise→ SheepNoise • baa, baa] }

S2 = Goto(S0 , baa) = { [SheepNoise→ baa •, EOF],
 [SheepNoise→ baa •, baa] }

S3 = Goto(S1 , baa) = { [SheepNoise→ SheepNoise baa •, EOF],
 [SheepNoise→ SheepNoise baa •, baa] }

S0

S3

S2

S1

baa

baa

SN

Control DFA for SN

Filling in the ACTION and GOTO Tables
∀ set sx ∈ S
 ∀ item i ∈ sx
 if i is [A→β •ad,b] and goto(sx,a) = sk , a ∈ T
 then ACTION[x,a] ← “shift k”
 else if i is [S’→S •,EOF]
 then ACTION[x ,a] ← “accept”
 else if i is [A→β •,a]
 then ACTION[x,a] ← “reduce A→β”
 ∀ n ∈ NT
 if goto(sx ,n) = sk
 then GOTO[x,n] ← k

S0

S3

S2

S1

baa

baa

SN

Control DFA for SN

S0 : { [Goal→ • SheepNoise, EOF], [SheepNoise→ • SheepNoise baa, EOF],
 [SheepNoise→• baa, EOF], [SheepNoise→ • SheepNoise baa, baa],
 [SheepNoise→ • baa, baa] }

S1 = Goto(S0 , SheepNoise) =
 { [Goal→ SheepNoise •, EOF], [SheepNoise→ SheepNoise • baa, EOF],
 [SheepNoise→ SheepNoise • baa, baa] }

S2 = Goto(S0 , baa) = { [SheepNoise→ baa •, EOF], [SheepNoise→ baa •, baa] }

Filling in the ACTION and GOTO Tables
∀ set sx ∈ S
 ∀ item i ∈ sx
 if i is [A→β •ad,b] and goto(sx,a) = sk , a ∈ T
 then ACTION[x,a] ← “shift k”
 else if i is [S’→S •,EOF]
 then ACTION[x ,a] ← “accept”
 else if i is [A→β •,a]
 then ACTION[x,a] ← “reduce A→β”
 ∀ n ∈ NT
 if goto(sx ,n) = sk
 then GOTO[x,n] ← k

S0

S3

S2

S1

baa

baa

SN

Control DFA for SN

S1 = Goto(S0 , SheepNoise) =
 { [Goal→ SheepNoise •, EOF], [SheepNoise→ SheepNoise • baa, EOF],
 [SheepNoise→ SheepNoise • baa, baa] }

S2 = Goto(S0 , baa) = { [SheepNoise→ baa •, EOF],
 [SheepNoise→ baa •, baa] }

S3 = Goto(S1 , baa) = { [SheepNoise→ SheepNoise baa •, EOF],
 [SheepNoise→ SheepNoise baa •, baa] }

Filling in the ACTION and GOTO Tables
∀ set sx ∈ S
 ∀ item i ∈ sx
 if i is [A→β •ad,b] and goto(sx,a) = sk , a ∈ T
 then ACTION[x,a] ← “shift k”
 else if i is [S’→S •,EOF]
 then ACTION[x ,a] ← “accept”
 else if i is [A→β •,a]
 then ACTION[x,a] ← “reduce A→β”
 ∀ n ∈ NT
 if goto(sx ,n) = sk
 then GOTO[x,n] ← k

S0

S3

S2

S1

baa

baa

SN

Control DFA for SN

Shrinking the Tables
Three options:
•  Combine terminals such as number & identifier, + & -, * & /

→  Directly removes a column, may remove a row
→  For expression grammar, 198 (vs. 384) table entries

•  Combine rows or columns (table compression)
→  Implement identical rows once & remap states
→  Requires extra indirection on each lookup
→  Use separate mapping for ACTION & for GOTO

•  Use another construction algorithm
→  Both LALR(1) and SLR(1) produce smaller tables
→  Implementations are readily available

What can go wrong with LR table construction?
What if set s contains [A→β•aγ,b] and [B→β•,a] ?
•  First item generates “shift”, second generates “reduce”
•  Both define ACTION[s,a] — cannot do both actions
•  This is a fundamental ambiguity, called a shift/reduce error
•  Modify the grammar to eliminate it (if-then-else)
•  Shifting will often resolve it correctly

What if set s contains [A→γ•, a] and [B→γ•, a] ?
•  Each generates “reduce”, but with a different production
•  Both define ACTION[s,a] — cannot do both reductions
•  This fundamental ambiguity is called a reduce/reduce error
•  Modify the grammar to eliminate it

In either case, the grammar is not LR(1)

EaC includes a
 worke example

Summary of top-down and LR(1) parsing

Advantages
Fast
Good locality
Simplicity
Good error detection

Fast (Direct encoding)
Deterministic langs.
Automatable
Left associativity

Disadvantages
Hand-coded
High maintenance
Right associativity

Large working sets
Poor error messages
Large table sizes

Top-down
recursive
descent

LR(1)

CYK Parser

•  Simple context-free-language parser
•  running time is O(n3), space is O(n2)

•  Shunned for many years
“Even tabular methods [CYK, Earley] should be avoided if the

language at hand has a grammar for which more efficient
algorithms [LL, LALR] are available.” The Theory of Parsing ….,
Aho, Ullman, 1972

•  But in practice, running time is more like O(n≈1.2)
-  Plus computers are now 1,000,000-times faster than in 1972

Source: Ras Bodik, Slides: Browsing Web 3.0 on 3.0 Watts

CYK Parser (Sequential Version)

CYK Parser (Sequential Version)

CYK Parser (Sequential Version)

CYK Parser (Sequential Version)

CYK Parser (Sequential Version)

CYK Parser (Sequential Version)

CYK Parser (Sequential Version)

CYK Parser (Sequential Version)

CYK Parser (Sequential Version)

CYK Parser (Sequential Version)

CYK Parser (Sequential Version)

CYK Parser (Sequential Version)

CYK Parser (Sequential Version)

CYK Parser (Sequential Version)

CYK Parser (Sequential Version)

CYK Parser (Sequential Version)

CYK Parser (Sequential Version)

CYK Parser (Sequential Version)

CYK Parser (Sequential Version)

CYK Parser (Sequential Version)

CYK Parser (Sequential Version)

CYK Parser (Sequential Version)

CYK Parser (Sequential Version)

The CYK Parser Algorithm (Sequential Version)

CYK Parser (Parallel Version)

Matrix for a string of length 5 using 3 processors

CYK Parser (Parallel Version)

Order of calculation for processor P2. P2 calculates a diagonal at a time.

CYK Parser (Parallel Version)

Order of information received by P2. P2 receives a diagonal at a time.

CYK Parser (Parallel Version)

Order of information P2 sends to P1. P2 sends a diagonal at a time.

The CYK Parser Algorithm (Parallel Version)

q=1

p

Σ
 l =

l

Extra Slides Start Here

Example (grammar & sets)
Simplified, right recursive expression grammar

Goal → Expr
Expr → Term – Expr
Expr → Term
Term → Factor * Term
Term → Factor
Factor → ident

Symbol FIRST
Goal { ident }
Expr { ident }
Term { ident }

Factor { ident }
– { – }
* { * }

ident { ident }

Example (building the collection)
Initialization Step

s0 ← closure({ [Goal → •Expr , EOF] })
{ [Goal → • Expr , EOF], [Expr → • Term – Expr , EOF],
 [Expr → • Term , EOF], [Term → • Factor * Term , EOF],
 [Term → • Factor * Term , –], [Term → • Factor , EOF],
 [Term → • Factor , –], [Factor → • ident , EOF],
 [Factor → • ident , –], [Factor → • ident , *] }

S ← {s0 }

Example (building the collection)
Iteration 1

s1 ← goto(s0 , Expr)
s2 ← goto(s0 , Term)
s3 ← goto(s0 , Factor)
s4 ← goto(s0 , ident)

Iteration 2
s5 ← goto(s2 , –)
s6 ← goto(s3 , *)

Iteration 3
s7 ← goto(s5 , Expr)
s8 ← goto(s6 , Term)

Example (Summary)
S0 : { [Goal → • Expr , EOF], [Expr → • Term – Expr , EOF],
 [Expr → • Term , EOF], [Term → • Factor * Term , EOF],
 [Term → • Factor * Term , –], [Term → • Factor , EOF],
 [Term → • Factor , –], [Factor → • ident , EOF],
 [Factor → • ident , –], [Factor→ • ident, *] }
S1 : { [Goal → Expr •, EOF] }
S2 : { [Expr → Term • – Expr , EOF], [Expr → Term •, EOF] }

S3 : { [Term → Factor • * Term , EOF],[Term → Factor • * Term , –],
 [Term → Factor •, EOF], [Term → Factor •, –] }

S4 : { [Factor → ident •, EOF],[Factor → ident •, –], [Factor → ident •, *] }

S5 : { [Expr → Term – • Expr , EOF], [Expr → • Term – Expr , EOF],
 [Expr → • Term , EOF], [Term → • Factor * Term , –],
 [Term → • Factor , –], [Term → • Factor * Term , EOF],
 [Term → • Factor , EOF], [Factor → • ident , *],
 [Factor → • ident , –], [Factor → • ident , EOF] }

Example (Summary)

S6 : { [Term → Factor * • Term , EOF], [Term → Factor * • Term , –],
 [Term → • Factor * Term , EOF], [Term → • Factor * Term , –],
 [Term → • Factor , EOF], [Term → • Factor , –],
 [Factor → • ident , EOF], [Factor → • ident , –], [Factor → • ident , *] }

S7: { [Expr → Term – Expr •, EOF] }

S8 : { [Term → Factor * Term •, EOF], [Term → Factor * Term •, –] }

Example (Summary)

The Goto Relationship (from the construction)

State Expr Term Factor - * Ident

0 1 2 3 4

1

2 5

3 6

4

5 7 2 3 4

6 8 3 4

7

8

Filling in the ACTION and GOTO Tables
The algorithm

∀ set sx ∈ S
 ∀ item i ∈ sx
 if i is [A→β •ad,b] and goto(sx,a) = sk, a ∈ T
 then ACTION[x,a] ← “shift k”
 else if i is [S’→S •,EOF]
 then ACTION[x , EOF] ← “accept”
 else if i is [A→β •,a]
 then ACTION[x,a] ← “reduce A→β”
 ∀ n ∈ NT
 if goto(sx ,n) = sk
 then GOTO[x,n] ← k

x is the number of the state for sx

Many items
 generate no
 table entry

e.g., [A→β⋅Bα,a]
 does not, but
 closure ensures
 that all the rhs’
 for B are in sx

Example (Filling in the tables)
The algorithm produces the following table

ACTION GOTO

Ident - * EOF Expr Term Factor
0 s 4 1 2 3
1 acc
2 s 5 r 3
3 r 5 s 6 r 5
4 r 6 r 6 r 6
5 s 4 7 2 3
6 s 4 8 3
7 r 2
8 r 4 r 4

Plugs into the skeleton LR(1) parser

Left Recursion versus Right Recursion

•  Right recursion
•  Required for termination in top-down parsers
•  Uses (on average) more stack space
•  Produces right-associative operators
•  Left recursion
•  Works fine in bottom-up parsers
•  Limits required stack space
•  Produces left-associative operators

•  Rule of thumb
•  Left recursion for bottom-up parsers
•  Right recursion for top-down parsers

*
*

* w
x

y
z

w * (x * (y * z))

*
*

* z

w
x

y

((w * x) * y) * z

Associativity

•  What difference does it make?
•  Can change answers in floating-point arithmetic
•  Exposes a different set of common subexpressions

•  Consider x+y+z

•  What if y+z occurs elsewhere? Or x+y? or x+z?
•  What if x = 2 & z = 17 ? Neither left nor right exposes 19.
•  Best choice is function of surrounding context

+

+ x

y z x y

z

+

+ +

x y z

Ideal
 operator

Left
 association

Right
 association

Hierarchy of Context-Free Languages

Context-free languages

Deterministic languages (LR(k))

LL(k) languages Simple precedence
languages

LL(1) languages Operator precedence
languages

LR(k) ≡ LR(1)

The inclusion hierarchy for
 context-free languages

Beyond Syntax
There is a level of correctness that is deeper than grammar

fie(a,b,c,d)
 int a, b, c, d;

{ … }
fee() {

 int f[3],g[0],
 h, i, j, k;

 char *p;
 fie(h,i,“ab”,j, k);
 k = f * i + j;
 h = g[17];
 printf(“<%s,%s>.\n”,
 p,q);
 p = 10;

}

What is wrong with this program?
(let me count the ways …)

Beyond Syntax
There is a level of correctness that is deeper than grammar

fie(a,b,c,d)
 int a, b, c, d;

{ … }
fee() {

 int f[3],g[0],
 h, i, j, k;

 char *p;
 fie(h,i,“ab”,j, k);
 k = f * i + j;
 h = g[17];
 printf(“<%s,%s>.\n”,
 p,q);
 p = 10;

}

What is wrong with this program?
(let me count the ways …)

•  declared g[0], used g[17]
•  wrong number of args to fie()
•  “ab” is not an int
•  wrong dimension on use of f
•  undeclared variable q
•  10 is not a character string

All of these are “deeper than
 syntax”

To generate code, we need to understand its meaning !

Beyond Syntax
To generate code, the compiler needs to answer many questions
•  Is “x” a scalar, an array, or a function? Is “x” declared?
•  Are there names that are not declared? Declared but not used?
•  Which declaration of “x” does each use reference?
•  Is the expression “x * y + z” type-consistent?
•  In “a[i,j,k]”, does a have three dimensions?
•  Where can “z” be stored? (register, local, global, heap, static)
•  In “f ← 15”, how should 15 be represented?
•  How many arguments does “fie()” take? What about “printf ()” ?
•  Does “*p” reference the result of a “malloc()” ?
•  Do “p” & “q” refer to the same memory location?
•  Is “x” defined before it is used?

These cannot be expressed in a CFG

Beyond Syntax
These questions are part of context-sensitive analysis
•  Answers depend on values, not parts of speech
•  Questions & answers involve non-local information
•  Answers may involve computation

How can we answer these questions?
•  Use formal methods

→  Context-sensitive grammars?
→  Attribute grammars? (attributed grammars?)

•  Use ad-hoc techniques
→  Symbol tables
→  Ad-hoc code (action routines)

In scanning & parsing, formalism won; different story here.

Beyond Syntax
Telling the story
•  The attribute grammar formalism is important

→  Succinctly makes many points clear
→  Sets the stage for actual, ad-hoc practice

•  The problems with attribute grammars motivate practice
→  Non-local computation
→  Need for centralized information

•  Some folks in the community still argue for attribute
grammars
→  Knowledge is power
→  Information is immunization

We will cover attribute grammars, then move on to ad-hoc ideas

