
Parsing V 
The LR(1) Table Construction 



LR(1) items 

The LR(1) table construction algorithm uses LR(1) items to  
represent valid configurations of an LR(1) parser 

An LR(1) item is a pair [P, a], where 
P is a production A→β with a • at some position in the rhs and a  
is a lookahead word (or EOF)‏ 

The • in an item indicates the position of the top of the stack 
[A→•βγ,a] means that the input seen so far is consistent with the  
               use of A →βγ immediately after the symbol on top of the stack  

[A →β•γ,a] means that the input seen so far is consistent with A →βγ at  
              this point in the parse, and that the parser has already recognized β


[A →βγ•,a] means that the parser has seen βγ, and that a lookahead  
              symbol of a is consistent with reducing to A 



High-level overview 
1  Build the canonical collection of sets of LR(1) Items 

a  Begin in an appropriate state, S0 
♦  [S’ →•S,EOF], along with any equivalent items 
♦ Derive equivalent items as closure( S0 ) 

b  Repeatedly compute, for each Sk, goto(Sk,X),                            
where X is all NT and T 
♦  If the set is not already in the collection, add it 
♦  Record all the transitions created by goto( ) 

     This eventually reaches a fixed point 

2  Fill in the table from the collection of sets of LR(1) items 
The canonical collection completely encodes the  
transition diagram for the handle-finding DFA 

LR(1) Table Construction 



The SheepNoise Grammar                 (revisited) 
We will use this grammar extensively in today’s lecture 

1.   Goal → SheepNoise 
2.   SheepNoise → baa SheepNoise 
3.            |   baa 



Computing FIRST Sets 
Define FIRST as 
•  If α ⇒* aβ, a ∈ T, β ∈ (T ∪ NT)*, then a ∈ FIRST(α) 
•  If α ⇒* ε, then ε ∈ FIRST(α) 

Note: if α = Xβ, FIRST(α) = FIRST(X) 

To compute FIRST 
•  Use a fixed-point method 
•  FIRST(A) ∈ 2(T ∪ ε) 
•  Loop is monotonic 
⇒ Algorithm halts 



Computing FIRST Sets 
for each x  ∈ T, FIRST(x) ←  { x } 
for each A ∈ NT, FIRST(A) ← Ø 
while (FIRST sets are still changing) 
    for each p ∈ P, of the form A→β, 
        if β is B1B2…Bk where Bi ∈ T ∪ NT then begin 
            FIRST(A) ← FIRST(A) ∪ ( FIRST(B1) –  { ε } ) 

        for i ← 1 to k–1 by 1 while ε ∈ FIRST(Bi )  
       FIRST(A) ← FIRST(A) ∪ ( FIRST(Bi +1) –  { ε } ) 

    if  i = k and ε ∈ FIRST(Bk ) 
  then FIRST(A) ← FIRST(A) ∪ { ε } 
     



Computing Closures 
Closure(s)  adds all the items implied by items already in s 
•  Any item [A→β•Bδ,a] implies [B→•τ,x] for each production  

 with B on the lhs,  and each x ∈ FIRST(δa) 
•  Since βBδ is valid, any way to derive βBδ is valid, too 

The algorithm 

Closure( s ) 
  while ( s is still changing ) 
     ∀ items [A → β •Bδ,a] ∈ s 
        ∀ productions B → τ  ∈ P 
          ∀ b  ∈ FIRST(δa) // δ might be ε 
            if  [B→ • τ,b] ∉ s 
                then add [B→ • τ,b] to s 

  Classic fixed-point method 
  Halts because s ⊂ LR ITEMS 
  Closure “fills out” state s 



Example From SheepNoise 
Initial step builds the item [Goal→•SheepNoise,EOF] 
and takes its closure( ) 

Closure( [Goal→•SheepNoise,EOF] ) 

So, S0  is  
{ [Goal→ • SheepNoise,EOF], [SheepNoise→ • baa SheepNoise,EOF], 

   [SheepNoise→• baa,EOF]}


Item From 
[Goal→•SheepNoise, EOF] Original item  

[SheepNoise→• baa SheepNoise ,EOF] 1, δa is EOF 
[SheepNoise→ • baa,EOF] 1, δa is EOF 

  
  

 

 



Computing Gotos 
Goto(s,x) computes the state that the parser would reach  
if it recognized an x  while in state s 
•  Goto( { [A→β•Xδ,a] }, X ) produces [A→βX•δ,a]       (easy part) 
•  Also computes closure( [A→βX•δ,a] )   (fill out the state) 

The algorithm 

Goto( s, X ) 
    new ←Ø 
     ∀ items [A→β•Xδ,a] ∈ s 
        new ← new ∪ [A→βX•δ,a] 
     return closure(new) 

  Not a fixed-point method! 
  Straightforward computation 
  Uses closure ( ) 

Goto() moves forward 



Example from SheepNoise 

S0  is { [Goal→ • SheepNoise,EOF], [SheepNoise→ • baa SheepNoise,EOF], 

        [SheepNoise→ • baa,EOF]}


Goto( S0 , baa ) 
•  Loop produces 

•  Closure adds two items since • is before SheepNoise in first 

Item From 
[SheepNoise→baa• SheepNoice, EOF] Item 2 in s0 
[SheepNoise→baa•, EOF] Item 3 in s0 

[SheepNoise→•baa, EOF] Item 1 in s1 

[SheepNoise→•baa SheepNoise , EOF] Item 1 in s1 
 

 



Example from SheepNoise 

S0 : { [Goal→ • SheepNoise, EOF], [SheepNoise→ • baa SheepNoise, EOF], 

   [SheepNoise→• baa, EOF]} 

S1  = Goto(S0 , SheepNoise) =  
 { [Goal→ SheepNoise •, EOF]} 

S2  = Goto(S0 , baa) = { [SheepNoise→ baa •, EOF],     
        [SheepNoise→ baa •SheepNoise, EOF],                

[SheepNoise→ • baa, EOF], [SheepNoise→ • baa SheepNoise, EOF], } 

S3  = Goto(S1 , SheepNoise) = { [SheepNoise→ baa SheepNoise •, EOF]} 



Building the Canonical Collection 
Start from s0 = closure( [S’→S,EOF ] ) 
Repeatedly construct new states, until all are found 

The algorithm 

s0 ←  closure ( [S’→S,EOF] ) 
S  ←  { s0  } 
k  ←  1 
while ( S is still changing ) 
   ∀ sj ∈ S and ∀ x ∈ ( T ∪ NT ) 
         sk ←  goto(sj,x) 
         record sj → sk on x 
    if  sk ∉ S then  

   S ← S ∪ sk 
     k ← k + 1 

  Fixed-point computation 
  Loop adds to S 
  S ⊆ 2(LR ITEMS), so S is finite 



Example from SheepNoise 
Starts with S0 
S0 : { [Goal→ • SheepNoise, EOF], [SheepNoise→ • baa SheepNoise, EOF], 


   [SheepNoise→• baa, EOF]} 



Example from SheepNoise 
Starts with S0 
S0 : {[Goal→ • SheepNoise, EOF], [SheepNoise→ • baa SheepNoise, EOF], 


  [SheepNoise→• baa, EOF]} 

Iteration 1 computes 

S1  = Goto(S0 , SheepNoise) = {[Goal→ SheepNoise •, EOF]} 

S2  = Goto(S0 , baa) = {[SheepNoise→ baa •, EOF],         
         [SheepNoise→ baa • SheepNoise, EOF],           

    [SheepNoise→ • baa, EOF], 
    [SheepNoise→ • baa SheepNoise, EOF]} 



Example from SheepNoise 

Starts with S0 
S0 : { [Goal→ • SheepNoise, EOF], [SheepNoise→ • baa SheepNoise, EOF], 


   [SheepNoise→• baa, EOF]} 

Iteration 1 computes 
S1  = Goto(S0 , SheepNoise) = { [Goal→ SheepNoise •, EOF]}  

S2  = Goto(S0 , baa) = {[SheepNoise→ baa •, EOF],     
     [SheepNoise→ baa • SheepNoise, EOF],           

          [SheepNoise→ • baa, EOF],   
        [SheepNoise→ • baa SheepNoise, EOF]} 
Iteration 2 computes 
 Goto(S2,baa) creates S2 
 S3  = Goto(S2,SheepNoise) = {[SheepNoise→ baa SheepNoise•, EOF]} 



Example from SheepNoise 

Starts with S0 
S0 : { [Goal→ • SheepNoise, EOF], [SheepNoise→ • baa SheepNoise, EOF], 


   [SheepNoise→• baa, EOF]} 

Iteration 1 computes 
S1  = Goto(S0 , SheepNoise) = { [Goal→ SheepNoise •, EOF]} 

S2  = Goto(S0 , baa) = {[SheepNoise→ baa •, EOF],     
               [SheepNoise→ baa • SheepNoise, EOF], 

              [SheepNoise→ • baa, EOF], 
              [SheepNoise→ • baa SheepNoise, EOF]} 

Iteration 2 computes 
 Goto(S2,baa) creates S2 
 S3  = Goto(S2,SheepNoise) = {[SheepNoise→ baa SheepNoise•, EOF]} 

Nothing more to
 compute, since • is
 at the end of the
 item in S3 . 



Example                                    (grammar & sets) 
Simplified, right recursive expression grammar 

Goal → Expr 
Expr → Term – Expr 
Expr → Term 
Term → Factor * Term  
Term → Factor 
Factor → ident 

Symbol FIRST
Goal { ident }
Expr { ident }
Term { ident }

Factor { ident }
– { – }
* { * }

ident { ident }



Example                            (building the collection) 
Initialization Step 

s0 ← closure( { [Goal → •Expr , EOF] } ) 
{  [Goal →  • Expr , EOF], [Expr →  • Term – Expr , EOF],  
   [Expr →  • Term , EOF], [Term →  • Factor * Term , EOF],  
   [Term →  • Factor * Term , –], [Term →  • Factor , EOF],  
   [Term →  • Factor , –], [Factor →  • ident , EOF],    
   [Factor →  • ident , –], [Factor →  • ident , *]  } 

S ← {s0  } 



Example                            (building the collection) 
Iteration 1 

s1  ← goto(s0 , Expr) 
s2  ← goto(s0 , Term) 
s3 ← goto(s0 , Factor) 
s4  ← goto(s0 , ident ) 

Iteration 2 
s5 ← goto(s2 , – ) 
s6 ← goto(s3 , * ) 

Iteration 3 
s7 ← goto(s5 , Expr ) 
s8 ← goto(s6 , Term ) 



Example                                             (Summary) 
S0 : { [Goal  → • Expr , EOF], [Expr → • Term – Expr , EOF],  
          [Expr → • Term , EOF], [Term → • Factor * Term , EOF],  
          [Term → • Factor * Term , –], [Term → • Factor , EOF],  
         [Term → • Factor , –], [Factor → • ident , EOF],  
         [Factor  → • ident , –], [Factor→ • ident, *] } 
S1 : { [Goal → Expr •, EOF] } 
S2  : { [Expr → Term • – Expr , EOF], [Expr → Term •, EOF] } 

S3 : { [Term → Factor • * Term , EOF],[Term → Factor • * Term , –],  
        [Term → Factor •, EOF], [Term → Factor •, –] } 

S4 : { [Factor → ident •, EOF],[Factor → ident •, –], [Factor → ident •, *] } 

S5 : { [Expr → Term –  • Expr , EOF], [Expr  → • Term – Expr , EOF],  
         [Expr → • Term , EOF], [Term → • Factor * Term , –],  
        [Term  → • Factor , –], [Term  → • Factor * Term , EOF],  
        [Term → • Factor , EOF], [Factor → • ident , *],  
        [Factor → • ident , –], [Factor → • ident , EOF] } 



Example                                            (Summary) 

S6 : { [Term → Factor * • Term , EOF], [Term → Factor * • Term , –],  
  [Term →  • Factor * Term , EOF], [Term →  • Factor * Term , –],  
   [Term →  • Factor , EOF], [Term →  • Factor , –],  
   [Factor →  • ident , EOF], [Factor →  • ident , –], [Factor →  • ident , *] } 

S7: { [Expr → Term – Expr •, EOF] } 

S8 : { [Term → Factor * Term •, EOF], [Term → Factor * Term •, –] } 



Example                              (Summary) 

The Goto Relationship (from the construction)  

State Expr Term Factor - * Ident

0 1 2 3 4

1

2 5

3 6

4

5 7 2 3 4

6 8 3 4

7

8



Filling in the ACTION and GOTO Tables 
The algorithm 

Many items generate no table entry  
→  Closure( ) instantiates FIRST(X) directly for [A→β•Xδ,a ] 

∀ set sx ∈ S  
    ∀ item i ∈ sx 
        if  i is [A→β •ad,b] and goto(sx,a) = sk , a ∈ T 
             then ACTION[x,a] ← “shift k” 
        else if  i is [S’→S •,EOF] 
             then ACTION[x ,a] ← “accept” 
        else if  i is [A→β •,a] 
              then ACTION[x,a] ← “reduce A→β” 
    ∀ n ∈ NT 
        if  goto(sx ,n) = sk 
            then GOTO[x,n] ← k 

x is the state number 



Example                                (Filling in the tables) 
The algorithm produces the following table 

ACTION GOTO

Ident - * EOF Expr Term Factor
0 s 4 1 2 3
1 acc
2 s 5 r 3
3 r 5 s 6 r 5
4 r 6 r 6 r 6
5 s 4 7 2 3
6 s 4 8 3
7 r 2
8 r 4 r 4

Plugs into the skeleton LR(1) parser 



What can go wrong? 
What if set s contains [A→β•aγ,b] and [B→β•,a] ? 
•  First item generates “shift”, second generates “reduce”  
•  Both define ACTION[s,a] — cannot do both actions 
•  This is a fundamental ambiguity, called a shift/reduce error 
•  Modify the grammar to eliminate it         (if-then-else) 
•  Shifting will often resolve it correctly  

What is set s contains [A→γ•, a] and [B→γ•, a] ? 
•  Each generates “reduce”, but with a different production 
•  Both define ACTION[s,a] — cannot do both reductions 
•  This fundamental ambiguity is called a reduce/reduce error 
•  Modify the grammar to eliminate it 

In  either case, the grammar is not LR(1) 

EaC includes a
 worked
 example 



Shrinking the Tables 
Three options: 
•  Combine terminals such as number & identifier, + & -, * & / 

→  Directly removes a column, may remove a row 
→  For expression grammar, 198 (vs. 384) table entries   

•  Combine rows or columns 
→  Implement identical rows once & remap states 
→  Requires extra indirection on each lookup 
→  Use separate mapping for ACTION & for GOTO 

•  Use another construction algorithm 
→  Both LALR(1) and SLR(1) produce smaller tables 
→  Implementations are readily available 



LR(k) versus LL(k)       (Top-down Recursive Descent ) 

Finding Reductions 
LR(k) ⇒ Each reduction in the parse is detectable with  

1  the complete left context, 
2  the reducible phrase, itself, and 
3  the k terminal symbols to its right 

LL(k) ⇒ Parser must select the reduction based on 
1  The complete left context 
2  The next k terminals 

Thus, LR(k) examines more context  

“… in practice, programming languages do not actually seem to 
fall in the gap between LL(1) languages and deterministic 
languages”       J.J. Horning, “LR Grammars and Analysers”, in 
Compiler Construction, An Advanced Course, Springer-Verlag, 1976  



Summary 

Advantages 

Fast 
Good locality 
Simplicity 
Good error                                                                                 
 detection 

Fast  
Deterministic langs. 
Automatable 
Left associativity 

Disadvantages 

Hand-coded 
High maintenance 
Right associativity 

Large working sets 
Poor error messages 
Large table sizes 

Top-down 
recursive 
descent 

LR(1) 


