
Parsing V
The LR(1) Table Construction

LR(1) items

The LR(1) table construction algorithm uses LR(1) items to
represent valid configurations of an LR(1) parser

An LR(1) item is a pair [P, a], where
P is a production A→β with a • at some position in the rhs and a
is a lookahead word (or EOF)‏

The • in an item indicates the position of the top of the stack
[A→•βγ,a] means that the input seen so far is consistent with the
 use of A →βγ immediately after the symbol on top of the stack

[A →β•γ,a] means that the input seen so far is consistent with A →βγ at
 this point in the parse, and that the parser has already recognized β

[A →βγ•,a] means that the parser has seen βγ, and that a lookahead
 symbol of a is consistent with reducing to A

High-level overview
1  Build the canonical collection of sets of LR(1) Items

a  Begin in an appropriate state, S0
♦  [S’ →•S,EOF], along with any equivalent items
♦ Derive equivalent items as closure(S0)

b  Repeatedly compute, for each Sk, goto(Sk,X),
where X is all NT and T
♦  If the set is not already in the collection, add it
♦  Record all the transitions created by goto()

 This eventually reaches a fixed point

2  Fill in the table from the collection of sets of LR(1) items
The canonical collection completely encodes the
transition diagram for the handle-finding DFA

LR(1) Table Construction

The SheepNoise Grammar (revisited)
We will use this grammar extensively in today’s lecture

1.  Goal → SheepNoise
2.  SheepNoise → baa SheepNoise
3.  | baa

Computing FIRST Sets
Define FIRST as
•  If α ⇒* aβ, a ∈ T, β ∈ (T ∪ NT)*, then a ∈ FIRST(α)
•  If α ⇒* ε, then ε ∈ FIRST(α)

Note: if α = Xβ, FIRST(α) = FIRST(X)

To compute FIRST
•  Use a fixed-point method
•  FIRST(A) ∈ 2(T ∪ ε)
•  Loop is monotonic
⇒ Algorithm halts

Computing FIRST Sets
for each x ∈ T, FIRST(x) ← { x }
for each A ∈ NT, FIRST(A) ← Ø
while (FIRST sets are still changing)
 for each p ∈ P, of the form A→β,
 if β is B1B2…Bk where Bi ∈ T ∪ NT then begin
 FIRST(A) ← FIRST(A) ∪ (FIRST(B1) – { ε })

 for i ← 1 to k–1 by 1 while ε ∈ FIRST(Bi)
 FIRST(A) ← FIRST(A) ∪ (FIRST(Bi +1) – { ε })

 if i = k and ε ∈ FIRST(Bk)
 then FIRST(A) ← FIRST(A) ∪ { ε }

Computing Closures
Closure(s) adds all the items implied by items already in s
•  Any item [A→β•Bδ,a] implies [B→•τ,x] for each production

 with B on the lhs, and each x ∈ FIRST(δa)
•  Since βBδ is valid, any way to derive βBδ is valid, too

The algorithm

Closure(s)
 while (s is still changing)
 ∀ items [A → β •Bδ,a] ∈ s
 ∀ productions B → τ ∈ P
 ∀ b ∈ FIRST(δa) // δ might be ε
 if [B→ • τ,b] ∉ s
 then add [B→ • τ,b] to s

  Classic fixed-point method
  Halts because s ⊂ LR ITEMS
  Closure “fills out” state s

Example From SheepNoise
Initial step builds the item [Goal→•SheepNoise,EOF]
and takes its closure()

Closure([Goal→•SheepNoise,EOF])

So, S0 is
{ [Goal→ • SheepNoise,EOF], [SheepNoise→ • baa SheepNoise,EOF],

 [SheepNoise→• baa,EOF]}

Item From
[Goal→•SheepNoise, EOF] Original item

[SheepNoise→• baa SheepNoise ,EOF] 1, δa is EOF
[SheepNoise→ • baa,EOF] 1, δa is EOF

Computing Gotos
Goto(s,x) computes the state that the parser would reach
if it recognized an x while in state s
•  Goto({ [A→β•Xδ,a] }, X) produces [A→βX•δ,a] (easy part)
•  Also computes closure([A→βX•δ,a]) (fill out the state)

The algorithm

Goto(s, X)
 new ←Ø
 ∀ items [A→β•Xδ,a] ∈ s
 new ← new ∪ [A→βX•δ,a]
 return closure(new)

  Not a fixed-point method!
  Straightforward computation
  Uses closure ()

Goto() moves forward

Example from SheepNoise

S0 is { [Goal→ • SheepNoise,EOF], [SheepNoise→ • baa SheepNoise,EOF],

 [SheepNoise→ • baa,EOF]}

Goto(S0 , baa)
•  Loop produces

•  Closure adds two items since • is before SheepNoise in first

Item From
[SheepNoise→baa• SheepNoice, EOF] Item 2 in s0
[SheepNoise→baa•, EOF] Item 3 in s0

[SheepNoise→•baa, EOF] Item 1 in s1

[SheepNoise→•baa SheepNoise , EOF] Item 1 in s1

Example from SheepNoise

S0 : { [Goal→ • SheepNoise, EOF], [SheepNoise→ • baa SheepNoise, EOF],

 [SheepNoise→• baa, EOF]}

S1 = Goto(S0 , SheepNoise) =
 { [Goal→ SheepNoise •, EOF]}

S2 = Goto(S0 , baa) = { [SheepNoise→ baa •, EOF],
 [SheepNoise→ baa •SheepNoise, EOF],

[SheepNoise→ • baa, EOF], [SheepNoise→ • baa SheepNoise, EOF], }

S3 = Goto(S1 , SheepNoise) = { [SheepNoise→ baa SheepNoise •, EOF]}

Building the Canonical Collection
Start from s0 = closure([S’→S,EOF])
Repeatedly construct new states, until all are found

The algorithm

s0 ← closure ([S’→S,EOF])
S ← { s0 }
k ← 1
while (S is still changing)
 ∀ sj ∈ S and ∀ x ∈ (T ∪ NT)
 sk ← goto(sj,x)
 record sj → sk on x
 if sk ∉ S then

 S ← S ∪ sk
 k ← k + 1

  Fixed-point computation
  Loop adds to S
  S ⊆ 2(LR ITEMS), so S is finite

Example from SheepNoise
Starts with S0
S0 : { [Goal→ • SheepNoise, EOF], [SheepNoise→ • baa SheepNoise, EOF],

 [SheepNoise→• baa, EOF]}

Example from SheepNoise
Starts with S0
S0 : {[Goal→ • SheepNoise, EOF], [SheepNoise→ • baa SheepNoise, EOF],

 [SheepNoise→• baa, EOF]}

Iteration 1 computes

S1 = Goto(S0 , SheepNoise) = {[Goal→ SheepNoise •, EOF]}

S2 = Goto(S0 , baa) = {[SheepNoise→ baa •, EOF],
 [SheepNoise→ baa • SheepNoise, EOF],

 [SheepNoise→ • baa, EOF],
 [SheepNoise→ • baa SheepNoise, EOF]}

Example from SheepNoise

Starts with S0
S0 : { [Goal→ • SheepNoise, EOF], [SheepNoise→ • baa SheepNoise, EOF],

 [SheepNoise→• baa, EOF]}

Iteration 1 computes
S1 = Goto(S0 , SheepNoise) = { [Goal→ SheepNoise •, EOF]}

S2 = Goto(S0 , baa) = {[SheepNoise→ baa •, EOF],
 [SheepNoise→ baa • SheepNoise, EOF],

 [SheepNoise→ • baa, EOF],
 [SheepNoise→ • baa SheepNoise, EOF]}
Iteration 2 computes
 Goto(S2,baa) creates S2
 S3 = Goto(S2,SheepNoise) = {[SheepNoise→ baa SheepNoise•, EOF]}

Example from SheepNoise

Starts with S0
S0 : { [Goal→ • SheepNoise, EOF], [SheepNoise→ • baa SheepNoise, EOF],

 [SheepNoise→• baa, EOF]}

Iteration 1 computes
S1 = Goto(S0 , SheepNoise) = { [Goal→ SheepNoise •, EOF]}

S2 = Goto(S0 , baa) = {[SheepNoise→ baa •, EOF],
 [SheepNoise→ baa • SheepNoise, EOF],

 [SheepNoise→ • baa, EOF],
 [SheepNoise→ • baa SheepNoise, EOF]}

Iteration 2 computes
 Goto(S2,baa) creates S2
 S3 = Goto(S2,SheepNoise) = {[SheepNoise→ baa SheepNoise•, EOF]}

Nothing more to
 compute, since • is
 at the end of the
 item in S3 .

Example (grammar & sets)
Simplified, right recursive expression grammar

Goal → Expr
Expr → Term – Expr
Expr → Term
Term → Factor * Term
Term → Factor
Factor → ident

Symbol FIRST
Goal { ident }
Expr { ident }
Term { ident }

Factor { ident }
– { – }
* { * }

ident { ident }

Example (building the collection)
Initialization Step

s0 ← closure({ [Goal → •Expr , EOF] })
{ [Goal → • Expr , EOF], [Expr → • Term – Expr , EOF],
 [Expr → • Term , EOF], [Term → • Factor * Term , EOF],
 [Term → • Factor * Term , –], [Term → • Factor , EOF],
 [Term → • Factor , –], [Factor → • ident , EOF],
 [Factor → • ident , –], [Factor → • ident , *] }

S ← {s0 }

Example (building the collection)
Iteration 1

s1 ← goto(s0 , Expr)
s2 ← goto(s0 , Term)
s3 ← goto(s0 , Factor)
s4 ← goto(s0 , ident)

Iteration 2
s5 ← goto(s2 , –)
s6 ← goto(s3 , *)

Iteration 3
s7 ← goto(s5 , Expr)
s8 ← goto(s6 , Term)

Example (Summary)
S0 : { [Goal → • Expr , EOF], [Expr → • Term – Expr , EOF],
 [Expr → • Term , EOF], [Term → • Factor * Term , EOF],
 [Term → • Factor * Term , –], [Term → • Factor , EOF],
 [Term → • Factor , –], [Factor → • ident , EOF],
 [Factor → • ident , –], [Factor→ • ident, *] }
S1 : { [Goal → Expr •, EOF] }
S2 : { [Expr → Term • – Expr , EOF], [Expr → Term •, EOF] }

S3 : { [Term → Factor • * Term , EOF],[Term → Factor • * Term , –],
 [Term → Factor •, EOF], [Term → Factor •, –] }

S4 : { [Factor → ident •, EOF],[Factor → ident •, –], [Factor → ident •, *] }

S5 : { [Expr → Term – • Expr , EOF], [Expr → • Term – Expr , EOF],
 [Expr → • Term , EOF], [Term → • Factor * Term , –],
 [Term → • Factor , –], [Term → • Factor * Term , EOF],
 [Term → • Factor , EOF], [Factor → • ident , *],
 [Factor → • ident , –], [Factor → • ident , EOF] }

Example (Summary)

S6 : { [Term → Factor * • Term , EOF], [Term → Factor * • Term , –],
 [Term → • Factor * Term , EOF], [Term → • Factor * Term , –],
 [Term → • Factor , EOF], [Term → • Factor , –],
 [Factor → • ident , EOF], [Factor → • ident , –], [Factor → • ident , *] }

S7: { [Expr → Term – Expr •, EOF] }

S8 : { [Term → Factor * Term •, EOF], [Term → Factor * Term •, –] }

Example (Summary)

The Goto Relationship (from the construction)

State Expr Term Factor - * Ident

0 1 2 3 4

1

2 5

3 6

4

5 7 2 3 4

6 8 3 4

7

8

Filling in the ACTION and GOTO Tables
The algorithm

Many items generate no table entry
→  Closure() instantiates FIRST(X) directly for [A→β•Xδ,a]

∀ set sx ∈ S
 ∀ item i ∈ sx
 if i is [A→β •ad,b] and goto(sx,a) = sk , a ∈ T
 then ACTION[x,a] ← “shift k”
 else if i is [S’→S •,EOF]
 then ACTION[x ,a] ← “accept”
 else if i is [A→β •,a]
 then ACTION[x,a] ← “reduce A→β”
 ∀ n ∈ NT
 if goto(sx ,n) = sk
 then GOTO[x,n] ← k

x is the state number

Example (Filling in the tables)
The algorithm produces the following table

ACTION GOTO

Ident - * EOF Expr Term Factor
0 s 4 1 2 3
1 acc
2 s 5 r 3
3 r 5 s 6 r 5
4 r 6 r 6 r 6
5 s 4 7 2 3
6 s 4 8 3
7 r 2
8 r 4 r 4

Plugs into the skeleton LR(1) parser

What can go wrong?
What if set s contains [A→β•aγ,b] and [B→β•,a] ?
•  First item generates “shift”, second generates “reduce”
•  Both define ACTION[s,a] — cannot do both actions
•  This is a fundamental ambiguity, called a shift/reduce error
•  Modify the grammar to eliminate it (if-then-else)
•  Shifting will often resolve it correctly

What is set s contains [A→γ•, a] and [B→γ•, a] ?
•  Each generates “reduce”, but with a different production
•  Both define ACTION[s,a] — cannot do both reductions
•  This fundamental ambiguity is called a reduce/reduce error
•  Modify the grammar to eliminate it

In either case, the grammar is not LR(1)

EaC includes a
 worked
 example

Shrinking the Tables
Three options:
•  Combine terminals such as number & identifier, + & -, * & /

→  Directly removes a column, may remove a row
→  For expression grammar, 198 (vs. 384) table entries

•  Combine rows or columns
→  Implement identical rows once & remap states
→  Requires extra indirection on each lookup
→  Use separate mapping for ACTION & for GOTO

•  Use another construction algorithm
→  Both LALR(1) and SLR(1) produce smaller tables
→  Implementations are readily available

LR(k) versus LL(k) (Top-down Recursive Descent)

Finding Reductions
LR(k) ⇒ Each reduction in the parse is detectable with

1  the complete left context,
2  the reducible phrase, itself, and
3  the k terminal symbols to its right

LL(k) ⇒ Parser must select the reduction based on
1  The complete left context
2  The next k terminals

Thus, LR(k) examines more context

“… in practice, programming languages do not actually seem to
fall in the gap between LL(1) languages and deterministic
languages” J.J. Horning, “LR Grammars and Analysers”, in
Compiler Construction, An Advanced Course, Springer-Verlag, 1976

Summary

Advantages

Fast
Good locality
Simplicity
Good error
 detection

Fast
Deterministic langs.
Automatable
Left associativity

Disadvantages

Hand-coded
High maintenance
Right associativity

Large working sets
Poor error messages
Large table sizes

Top-down
recursive
descent

LR(1)

