
Parsing IV 
LR(1) Parsers 



LR(1) Parsers 
•  LR(1) parsers are table-driven, shift-reduce parsers that 
     use a limited right context (1 token) for handle recognition 
•  LR(1) parsers recognize languages that have an LR(1) grammar 

Informal definition: 
A grammar is LR(1) if, given a rightmost derivation 

S ⇒ γ0  ⇒ γ1  ⇒ γ2  ⇒ …  ⇒ γn–1 ⇒ γn ⇒ sentence 
We can  

1. isolate the handle of each right-sentential form γi, and  
2. determine the production by which to reduce, 

by scanning γi from left-to-right, going at most 1 symbol beyond  
the right end of the handle of γi  



LR(1) Parsers 
A table-driven LR(1) parser looks like 

Tables can be built by hand 
However, this is a perfect task to automate 
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LR(1) Skeleton Parser 
stack.push(INVALID);  
stack.push(s0);  
token = scanner.next_token(); 
do while (TRUE) { 
    s = stack.top(); 
    if ( ACTION[s,token] == “shift si” ) then { 

  stack.push(token);  
                stack.push(si); 

  token ← scanner.next_token(); 
 } 

        else if ( ACTION[s,token] == “reduce A→β” ) then { 
  stack.popnum(2*|β|); // pop 2*|β| symbols 

                s = stack.top(); 
                stack.push(A);  
                stack.push(GOTO[s,A]); 

 } 
    else if ( ACTION[s,token] == “accept”   

    & token == EOF )   then ‏
                return; 

 else report a syntax error and recover; 
}  

The skeleton parser  

•  uses ACTION & GOTO tables 

•  does |words| shifts 

•  does |derivation| reductions  
•  does 1 accept 

•  detects errors by failure of 3
 other cases  



To make a parser for L(G), need a set of tables 

The grammar  

The tables 

LR(1) Parsers (parse tables)‏ 



stack.push(INVALID);  
stack.push(s0);  
token = scanner.next_token(); 
do while (TRUE) { 
    s = stack.top(); 
    if ( ACTION[s,token] == “shift si” ) then { 

  stack.push(token);  
                stack.push(si); 

  token ← scanner.next_token(); 
 } 

        else if ( ACTION[s,token] == “reduce A→β” ) then { 
  stack.popnum(2*|β|); // pop 2*|β| symbols 

                s = stack.top(); 
                stack.push(A);  
                stack.push(GOTO[s,A]); 

 } 
    else if ( ACTION[s,token] == “accept”   

    & token == EOF )   then ‏
                return; 

 else report a syntax error and recover; 
}  

Example Parse 1: The string “baa” 

The tables 

The grammar  
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Example Parse 1 
The string “baa” 



stack.push(INVALID);  
stack.push(s0);  
token = scanner.next_token(); 
do while (TRUE) { 
    s = stack.top(); 
    if ( ACTION[s,token] == “shift si” ) then { 

  stack.push(token);  
                stack.push(si); 

  token ← scanner.next_token(); 
 } 

        else if ( ACTION[s,token] == “reduce A→β” ) then { 
  stack.popnum(2*|β|); // pop 2*|β| symbols 

                s = stack.top(); 
                stack.push(A);  
                stack.push(GOTO[s,A]); 

 } 
    else if ( ACTION[s,token] == “accept”   

    & token == EOF )   then ‏
                return; 

 else report a syntax error and recover; 
}  

Example Parse 2: The string “baa baa” 

The tables 

The grammar  



Example Parse 2 
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Example Parse 2 
The string “baa baa” 



LR(1) Parsers 
How does this LR(1) stuff work? 
•  Unambiguous grammar ⇒ unique rightmost derivation 
•  Keep upper fringe on a stack 

→  All active handles include top of stack (TOS)‏ 
→  Shift inputs until TOS is right end of a handle 

•  Language of handles is regular (finite)  ‏
→  Build a handle-recognizing DFA 
→  ACTION & GOTO  tables encode the DFA 

•  Final state in DFA ⇒ a reduce action 
→  New state is GOTO[state at TOS (after pop), lhs] 
→  For SN, this takes the DFA to s1 



Building LR(1) Parsers 
How do we generate the ACTION and GOTO tables? 
•  Use the grammar to build a model of the DFA 
•  Use the model to build ACTION & GOTO tables 
•  If construction succeeds, the grammar is LR(1)  ‏

The Big Picture 
•  Model the state of the parser 
•  Use two functions goto( s, X )  and closure( s )  ‏

→  goto() is analogous to Delta() in the subset construction 
→  closure() adds information to round out a state  

•  Build up the states and transition functions of the DFA 
•  Use this information to fill in the ACTION and GOTO tables 



LR(1) items 
The LR(1) table construction algorithm uses LR(1) items to  
represent valid configurations of an LR(1) parser 

An LR(1) item is a pair [P, a], where 
P is a production A→β with a • at some position in the rhs and a  
is a lookahead word (or EOF)  ‏

The • in an item indicates the position of the top of the stack 
[A→•βγ,a] means that the input seen so far is consistent with the  
               use of A →βγ immediately after the symbol on top of the stack  

[A →β•γ,a] means that the input seen so far is consistent with A →βγ at  
              this point in the parse, and that the parser has already recognized β


[A →βγ•,a] means that the parser has seen βγ, and that a lookahead  
              symbol of a is consistent with reducing to A 



LR(1) Items 
The production A→β, where β = B1B1B1 with lookahead a,  
can give rise to 4 items 

[A→•B1B2B3,a], [A→B1•B2B3,a], [A→B1B2•B3,a], & [A→B1B2B3•,a]  

The set of LR(1) items for a grammar is finite 

What’s the point of all these lookahead symbols? 
•  Carry them along to choose the correct reduction, if there is 

a choice 
•  Lookaheads are bookkeeping, unless item has • at right end 

→  Has no direct use in [A→β•γ,a] 
→  In [A→β•,a], a lookahead of a implies a reduction by A →β

→  For { [A→β•,a],[B→γ•δ,b] }, a ⇒ reduce to A; FIRST(δ) ⇒ shift 

⇒ Limited right context is enough to pick the actions 



High-level overview 
1  Build the canonical collection of sets of LR(1) Items  

a  Begin in an appropriate state, CC0 

♦  [S’ →•S,EOF], along with any equivalent items 
♦ Derive equivalent items as closure( CC0 )  ‏

b  Repeatedly compute, for each CCk, and each X, goto(CCk,X)  ‏
♦  If the set is not already in the collection, add it 
♦  Record all the transitions created by goto( )  ‏

     This eventually reaches a fixed point 

2  Fill in the tables from the collection of sets of LR(1) items 
The canonical collection completely encodes the  
transition diagram for the handle-finding DFA 

LR(1) Table Construction 



Computing FIRST Sets 
Define FIRST as 
•  If α ⇒* aβ, a ∈ T, β ∈ (T ∪ NT)*, then a ∈ FIRST(α)  ‏
•  If α ⇒* ε, then ε ∈ FIRST(α)  ‏

Note: if α = Xβ, FIRST(α) = FIRST(X)  ‏

To compute FIRST 
•  Use a fixed-point method 
•  FIRST(A) ∈ 2(T ∪ ε)  ‏

•  Loop is monotonic 
⇒ Algorithm halts 



Computing Closures 
Closure(s)  adds all the items implied by items already in s 
•  Any item [A→β•Bδ,a] implies [B→•τ,x] for each production  

 with B on the lhs,  and each x ∈ FIRST(δa)  ‏
•  Since βBδ is valid, any way to derive βBδ is valid, too 

The algorithm 

Closure( s )‏ 
  while ( s is still changing )‏ 
     ∀ items [A → β •Bδ,a] ∈ s 
        ∀ productions B → τ  ∈ P 
          ∀ b  ∈ FIRST(δa) // δ might be ε

            if  [B→ • τ,b] ∉ s 
                then add [B→ • τ,b] to s 

  Another fixed-point algorithm 
  Halts because s ⊂ ITEMS 

  Closure “fills out” a state 



Example From SheepNoise 
Initial step builds the item [Goal→•SheepNoise,EOF] 
and takes its closure( )‏ 

Closure( [Goal→•SheepNoise,EOF] )  ‏

CC0  is  
{ [Goal→ • SheepNoise,EOF], [SheepNoise→ • baa SheepNoise,EOF],  
   [SheepNoise→• baa,EOF]} 



Computing Gotos 
Goto(s,x) computes the state that the parser would reach  
if it recognized an x  while in state s 
•  Goto( { [A→β•Xδ,a] }, X ) produces [A→βX•δ,a]        
•  It also includes closure( [A→βX•δ,a] ) to fill out the state 

The algorithm 

Goto( s, X )‏ 
    new ←Ø 
     ∀ items [A→β•Xδ,a] ∈ s 
        new ← new ∪ [A→βX•δ,a] 
     return closure(new)  ‏

 Straightforward computation 

  Uses closure ( )  ‏

Goto() moves forward 



Example from SheepNoise 

CC0  is { [Goal→ • SheepNoise,EOF], [SheepNoise→ •baa SheepNoise,EOF],  
        [SheepNoise→ • baa,EOF]} 

Goto( CC0 , baa )  ‏
•  Loop produces 

•  Closure adds 



Example from SheepNoise 

CC0 : { [Goal→ • SheepNoise, EOF], [SheepNoise→ • baa SheepNoise, EOF],  
   [SheepNoise→• baa, EOF]} 

CC1  = Goto(CC0 , SheepNoise) = {[Goal→ SheepNoise •, EOF]} 

CC2  = Goto(CC0 , baa) =  
 {[SheepNoise→ baa• SheepNoise, EOF] , [SheepNoise→ baa•, EOF], 
[SheepNoise→  • baa, EOF], [SheepNoise→  • baa SheepNoise, EOF]} 

CC3  = Goto(CC2 , SheepNoise) = {[SheepNoise→ baa SheepNoise•, EOF] } 



Building the Canonical Collection 
Start from CC0 = closure( [S’→S,EOF ] )  ‏
Repeatedly construct new states, until all are found 

The algorithm 

s0 ←  closure ( [S’→S,EOF] )  ‏
S  ←  { s0  } 
k  ←  1 
while ( S is still changing )  ‏
   ∀ sj ∈ S and ∀ x ∈ ( T ∪ NT )  ‏
         sk ←  goto(sj,x)  ‏
         record sj → sk on x 
    if  sk ∉ S then  

   S ← S ∪ sk 
     k ← k + 1 

  Fixed-point computation 
  Loop adds to S 
  S ⊆ 2ITEMS, so S is finite 



Example from SheepNoise 
Starts with CC0 

CC0 : { [Goal→ • SheepNoise, EOF], [SheepNoise→ • baa SheepNoise, EOF],  
   [SheepNoise→• baa, EOF]} 



Example from SheepNoise 
Starts with CC0 

CC0 : { [Goal→ • SheepNoise, EOF], [SheepNoise→ • baa SheepNoise, EOF],  
   [SheepNoise→• baa, EOF]} 

Iteration 1 computes 
CC1  = Goto(CC0 , SheepNoise) = { [Goal→ SheepNoise •, EOF]}  

CC2  = Goto(CC0 , baa) =  
 {[SheepNoise→ baa• SheepNoise, EOF] , [SheepNoise→ baa•, EOF], 
[SheepNoise→  • baa, EOF], [SheepNoise→  • baa SheepNoise, EOF]} 



Example from SheepNoise 
Starts with CC0 

CC0 : { [Goal→ • SheepNoise, EOF], [SheepNoise→ • baa SheepNoise, EOF],  
   [SheepNoise→• baa, EOF]} 

Iteration 1 computes 
CC1  = Goto(CC0 , SheepNoise) = { [Goal→ SheepNoise •, EOF]} 

CC2  = Goto(CC0 , baa) =  
 {[SheepNoise→ baa• SheepNoise, EOF] , [SheepNoise→ baa•, EOF], 
[SheepNoise→  • baa, EOF], [SheepNoise→  • baa SheepNoise, EOF]} 

Iteration 2 computes 

 CC3  = Goto(CC2 , SheepNoise) = { [SheepNoise→ baa SheepNoise•, EOF] } 



Example from SheepNoise 
Starts with CC0 

CC0 : { [Goal→ • SheepNoise, EOF], [SheepNoise→ • baa SheepNoise, EOF],  
   [SheepNoise→• baa, EOF]} 

Iteration 1 computes 
CC1  = Goto(CC0 , SheepNoise) = { [Goal→ SheepNoise •, EOF]} 

CC2  = Goto(CC0 , baa) =  
 {[SheepNoise→ baa• SheepNoise, EOF] , [SheepNoise→ baa•, EOF], 
[SheepNoise→  • baa, EOF], [SheepNoise→  • baa SheepNoise, EOF]} 

Iteration 2 computes 

 CC3  = Goto(CC2 , SheepNoise) = { [SheepNoise→ baa SheepNoise•, EOF] } 

Nothing more to
 compute, since • is
 at the end of item
 in CC3 . 


