
Parsing IV
LR(1) Parsers

LR(1) Parsers
•  LR(1) parsers are table-driven, shift-reduce parsers that
 use a limited right context (1 token) for handle recognition
•  LR(1) parsers recognize languages that have an LR(1) grammar

Informal definition:
A grammar is LR(1) if, given a rightmost derivation

S ⇒ γ0 ⇒ γ1 ⇒ γ2 ⇒ … ⇒ γn–1 ⇒ γn ⇒ sentence
We can

1. isolate the handle of each right-sentential form γi, and
2. determine the production by which to reduce,

by scanning γi from left-to-right, going at most 1 symbol beyond
the right end of the handle of γi

LR(1) Parsers
A table-driven LR(1) parser looks like

Tables can be built by hand
However, this is a perfect task to automate

Scanner Table-driven
Parser

ACTION &
GOTO
Tables

Parser
Generator

source
code

grammar

IR

LR(1) Skeleton Parser
stack.push(INVALID);
stack.push(s0);
token = scanner.next_token();
do while (TRUE) {
 s = stack.top();
 if (ACTION[s,token] == “shift si”) then {

 stack.push(token);
 stack.push(si);

 token ← scanner.next_token();
 }

 else if (ACTION[s,token] == “reduce A→β”) then {
 stack.popnum(2*|β|); // pop 2*|β| symbols

 s = stack.top();
 stack.push(A);
 stack.push(GOTO[s,A]);

 }
 else if (ACTION[s,token] == “accept”

 & token == EOF) then ‏
 return;

 else report a syntax error and recover;
}

The skeleton parser

•  uses ACTION & GOTO tables

•  does |words| shifts

•  does |derivation| reductions
•  does 1 accept

•  detects errors by failure of 3
 other cases

To make a parser for L(G), need a set of tables

The grammar

The tables

LR(1) Parsers (parse tables)‏

stack.push(INVALID);
stack.push(s0);
token = scanner.next_token();
do while (TRUE) {
 s = stack.top();
 if (ACTION[s,token] == “shift si”) then {

 stack.push(token);
 stack.push(si);

 token ← scanner.next_token();
 }

 else if (ACTION[s,token] == “reduce A→β”) then {
 stack.popnum(2*|β|); // pop 2*|β| symbols

 s = stack.top();
 stack.push(A);
 stack.push(GOTO[s,A]);

 }
 else if (ACTION[s,token] == “accept”

 & token == EOF) then ‏
 return;

 else report a syntax error and recover;
}

Example Parse 1: The string “baa”

The tables

The grammar

Example Parse 1
The string “baa”

Example Parse 1
The string “baa”

Example Parse 1
The string “baa”

Example Parse 1
The string “baa”

stack.push(INVALID);
stack.push(s0);
token = scanner.next_token();
do while (TRUE) {
 s = stack.top();
 if (ACTION[s,token] == “shift si”) then {

 stack.push(token);
 stack.push(si);

 token ← scanner.next_token();
 }

 else if (ACTION[s,token] == “reduce A→β”) then {
 stack.popnum(2*|β|); // pop 2*|β| symbols

 s = stack.top();
 stack.push(A);
 stack.push(GOTO[s,A]);

 }
 else if (ACTION[s,token] == “accept”

 & token == EOF) then ‏
 return;

 else report a syntax error and recover;
}

Example Parse 2: The string “baa baa”

The tables

The grammar

Example Parse 2
The string “baa baa”

Example Parse 2
The string “baa baa”

Example Parse 2
The string “baa baa”

Example Parse 2
The string “baa baa”

LR(1) Parsers
How does this LR(1) stuff work?
•  Unambiguous grammar ⇒ unique rightmost derivation
•  Keep upper fringe on a stack

→  All active handles include top of stack (TOS)‏
→  Shift inputs until TOS is right end of a handle

•  Language of handles is regular (finite) ‏
→  Build a handle-recognizing DFA
→  ACTION & GOTO tables encode the DFA

•  Final state in DFA ⇒ a reduce action
→  New state is GOTO[state at TOS (after pop), lhs]
→  For SN, this takes the DFA to s1

Building LR(1) Parsers
How do we generate the ACTION and GOTO tables?
•  Use the grammar to build a model of the DFA
•  Use the model to build ACTION & GOTO tables
•  If construction succeeds, the grammar is LR(1) ‏

The Big Picture
•  Model the state of the parser
•  Use two functions goto(s, X) and closure(s) ‏

→  goto() is analogous to Delta() in the subset construction
→  closure() adds information to round out a state

•  Build up the states and transition functions of the DFA
•  Use this information to fill in the ACTION and GOTO tables

LR(1) items
The LR(1) table construction algorithm uses LR(1) items to
represent valid configurations of an LR(1) parser

An LR(1) item is a pair [P, a], where
P is a production A→β with a • at some position in the rhs and a
is a lookahead word (or EOF) ‏

The • in an item indicates the position of the top of the stack
[A→•βγ,a] means that the input seen so far is consistent with the
 use of A →βγ immediately after the symbol on top of the stack

[A →β•γ,a] means that the input seen so far is consistent with A →βγ at
 this point in the parse, and that the parser has already recognized β

[A →βγ•,a] means that the parser has seen βγ, and that a lookahead
 symbol of a is consistent with reducing to A

LR(1) Items
The production A→β, where β = B1B1B1 with lookahead a,
can give rise to 4 items

[A→•B1B2B3,a], [A→B1•B2B3,a], [A→B1B2•B3,a], & [A→B1B2B3•,a]

The set of LR(1) items for a grammar is finite

What’s the point of all these lookahead symbols?
•  Carry them along to choose the correct reduction, if there is

a choice
•  Lookaheads are bookkeeping, unless item has • at right end

→  Has no direct use in [A→β•γ,a]
→  In [A→β•,a], a lookahead of a implies a reduction by A →β

→  For { [A→β•,a],[B→γ•δ,b] }, a ⇒ reduce to A; FIRST(δ) ⇒ shift

⇒ Limited right context is enough to pick the actions

High-level overview
1  Build the canonical collection of sets of LR(1) Items

a  Begin in an appropriate state, CC0

♦  [S’ →•S,EOF], along with any equivalent items
♦ Derive equivalent items as closure(CC0) ‏

b  Repeatedly compute, for each CCk, and each X, goto(CCk,X) ‏
♦  If the set is not already in the collection, add it
♦  Record all the transitions created by goto() ‏

 This eventually reaches a fixed point

2  Fill in the tables from the collection of sets of LR(1) items
The canonical collection completely encodes the
transition diagram for the handle-finding DFA

LR(1) Table Construction

Computing FIRST Sets
Define FIRST as
•  If α ⇒* aβ, a ∈ T, β ∈ (T ∪ NT)*, then a ∈ FIRST(α) ‏
•  If α ⇒* ε, then ε ∈ FIRST(α) ‏

Note: if α = Xβ, FIRST(α) = FIRST(X) ‏

To compute FIRST
•  Use a fixed-point method
•  FIRST(A) ∈ 2(T ∪ ε) ‏

•  Loop is monotonic
⇒ Algorithm halts

Computing Closures
Closure(s) adds all the items implied by items already in s
•  Any item [A→β•Bδ,a] implies [B→•τ,x] for each production

 with B on the lhs, and each x ∈ FIRST(δa) ‏
•  Since βBδ is valid, any way to derive βBδ is valid, too

The algorithm

Closure(s)‏
 while (s is still changing)‏
 ∀ items [A → β •Bδ,a] ∈ s
 ∀ productions B → τ ∈ P
 ∀ b ∈ FIRST(δa) // δ might be ε

 if [B→ • τ,b] ∉ s
 then add [B→ • τ,b] to s

  Another fixed-point algorithm
  Halts because s ⊂ ITEMS

  Closure “fills out” a state

Example From SheepNoise
Initial step builds the item [Goal→•SheepNoise,EOF]
and takes its closure()‏

Closure([Goal→•SheepNoise,EOF]) ‏

CC0 is
{ [Goal→ • SheepNoise,EOF], [SheepNoise→ • baa SheepNoise,EOF],
 [SheepNoise→• baa,EOF]}

Computing Gotos
Goto(s,x) computes the state that the parser would reach
if it recognized an x while in state s
•  Goto({ [A→β•Xδ,a] }, X) produces [A→βX•δ,a]
•  It also includes closure([A→βX•δ,a]) to fill out the state

The algorithm

Goto(s, X)‏
 new ←Ø
 ∀ items [A→β•Xδ,a] ∈ s
 new ← new ∪ [A→βX•δ,a]
 return closure(new) ‏

 Straightforward computation

  Uses closure () ‏

Goto() moves forward

Example from SheepNoise

CC0 is { [Goal→ • SheepNoise,EOF], [SheepNoise→ •baa SheepNoise,EOF],
 [SheepNoise→ • baa,EOF]}

Goto(CC0 , baa) ‏
•  Loop produces

•  Closure adds

Example from SheepNoise

CC0 : { [Goal→ • SheepNoise, EOF], [SheepNoise→ • baa SheepNoise, EOF],
 [SheepNoise→• baa, EOF]}

CC1 = Goto(CC0 , SheepNoise) = {[Goal→ SheepNoise •, EOF]}

CC2 = Goto(CC0 , baa) =
 {[SheepNoise→ baa• SheepNoise, EOF] , [SheepNoise→ baa•, EOF],
[SheepNoise→ • baa, EOF], [SheepNoise→ • baa SheepNoise, EOF]}

CC3 = Goto(CC2 , SheepNoise) = {[SheepNoise→ baa SheepNoise•, EOF] }

Building the Canonical Collection
Start from CC0 = closure([S’→S,EOF]) ‏
Repeatedly construct new states, until all are found

The algorithm

s0 ← closure ([S’→S,EOF]) ‏
S ← { s0 }
k ← 1
while (S is still changing) ‏
 ∀ sj ∈ S and ∀ x ∈ (T ∪ NT) ‏
 sk ← goto(sj,x) ‏
 record sj → sk on x
 if sk ∉ S then

 S ← S ∪ sk
 k ← k + 1

  Fixed-point computation
  Loop adds to S
  S ⊆ 2ITEMS, so S is finite

Example from SheepNoise
Starts with CC0

CC0 : { [Goal→ • SheepNoise, EOF], [SheepNoise→ • baa SheepNoise, EOF],
 [SheepNoise→• baa, EOF]}

Example from SheepNoise
Starts with CC0

CC0 : { [Goal→ • SheepNoise, EOF], [SheepNoise→ • baa SheepNoise, EOF],
 [SheepNoise→• baa, EOF]}

Iteration 1 computes
CC1 = Goto(CC0 , SheepNoise) = { [Goal→ SheepNoise •, EOF]}

CC2 = Goto(CC0 , baa) =
 {[SheepNoise→ baa• SheepNoise, EOF] , [SheepNoise→ baa•, EOF],
[SheepNoise→ • baa, EOF], [SheepNoise→ • baa SheepNoise, EOF]}

Example from SheepNoise
Starts with CC0

CC0 : { [Goal→ • SheepNoise, EOF], [SheepNoise→ • baa SheepNoise, EOF],
 [SheepNoise→• baa, EOF]}

Iteration 1 computes
CC1 = Goto(CC0 , SheepNoise) = { [Goal→ SheepNoise •, EOF]}

CC2 = Goto(CC0 , baa) =
 {[SheepNoise→ baa• SheepNoise, EOF] , [SheepNoise→ baa•, EOF],
[SheepNoise→ • baa, EOF], [SheepNoise→ • baa SheepNoise, EOF]}

Iteration 2 computes

 CC3 = Goto(CC2 , SheepNoise) = { [SheepNoise→ baa SheepNoise•, EOF] }

Example from SheepNoise
Starts with CC0

CC0 : { [Goal→ • SheepNoise, EOF], [SheepNoise→ • baa SheepNoise, EOF],
 [SheepNoise→• baa, EOF]}

Iteration 1 computes
CC1 = Goto(CC0 , SheepNoise) = { [Goal→ SheepNoise •, EOF]}

CC2 = Goto(CC0 , baa) =
 {[SheepNoise→ baa• SheepNoise, EOF] , [SheepNoise→ baa•, EOF],
[SheepNoise→ • baa, EOF], [SheepNoise→ • baa SheepNoise, EOF]}

Iteration 2 computes

 CC3 = Goto(CC2 , SheepNoise) = { [SheepNoise→ baa SheepNoise•, EOF] }

Nothing more to
 compute, since • is
 at the end of item
 in CC3 .

