

Parsing III Bottom-up Parsing

Parsing Techniques

Top-down parsers (LL(1), recursive descent)

- Start at the root of the parse tree and grow toward leaves
- Pick a production & try to match the input
- Bad "pick" ⇒ may need to backtrack
- Some grammars are backtrack-free

(predictive parsing)

Bottom-up parsers (LR(1), operator precedence)

- Start at the leaves and grow toward root
- As input is consumed, encode possibilities in an internal state
- Start in a state valid for legal first tokens
- Bottom-up parsers handle a large class of grammars

(definitions)

The point of parsing is to construct a <u>derivation</u> A derivation consists of a series of rewrite steps

$$\mathcal{S} \Rightarrow \gamma_{0} \Rightarrow \gamma_{1} \Rightarrow \gamma_{2} \Rightarrow ... \Rightarrow \gamma_{n-1} \Rightarrow \gamma_{n} \Rightarrow \textit{sentence}$$

- Each γ_i is a sentential form
 Jf γ contains only terminal symbols, γ is a sentence in L(G)
 Jf γ contains ≥ 1 non-terminals, γ is a sentential form
- To get γ_i from γ_{i-1} , expand some NT $A \in \gamma_{i-1}$ by using $A \rightarrow \beta$
 - \twoheadrightarrow Replace the occurrence of $\textbf{\textit{A}} \in \gamma_{i\text{-}1}$ with β to get γ_i
 - \twoheadrightarrow In a leftmost derivation, it would be the first NT $\textbf{\textit{A}} \in \gamma_{i-1}$

A left-sentential form occurs in a <u>leftmost</u> derivation. A right-sentential form occurs in a <u>rightmost</u> derivation.

A bottom-up parser builds a derivation by working from the input sentence back toward the start symbol S

$$S \Rightarrow \gamma_{0} \Rightarrow \gamma_{1} \Rightarrow \gamma_{2} \Rightarrow ... \Rightarrow \gamma_{n-1} \Rightarrow \gamma_{n} \Rightarrow sentence$$

bottom-up

To reduce γ_i to γ_{i-1} (assuming the production $A \rightarrow \beta$) match some rhs β against γ_i then replace β with its corresponding *lhs*, A.

In terms of the parse tree, this is working from leaves to root

- Nodes with no parent in a partial tree form its *frontier*
- Since each replacement of β with A shrinks the current frontier, we call it a *reduction*.

Finding Reductions

Consider the simple grammar

1	Goal	\rightarrow	<u>a</u> A B <u>e</u>
2	A	\rightarrow	<u>А <u>b</u> с</u>
3			<u>b</u>
4	В	\rightarrow	<u>d</u>

And the input string <u>abbcde</u>

Sentential	Next Reduction			
Form	Prod'n	Pos'n		
abbcde	3	2		
<u>a</u> A <u>bcde</u>	2	4		
<u>a</u> A <u>de</u>	4	3		
<u>a</u> A B <u>e</u>	1	4		
Goal		—		

The trick is scanning the input and finding the next reduction The mechanism for doing this should be efficient

(Handles)

The parser must find a substring β of the tree's frontier that

matches some production ${\rm A} \to \beta$ that occurs as one step in the rightmost derivation

We call this substring β a *handle*

Formally,

A handle is a pair $\langle A \rightarrow \beta, k \rangle$ where $A \rightarrow \beta \in P$ and k is position in tree's current frontier of β 's rightmost (last) symbol.

Replacing β at k with A in the bottom-up parse represents the next step in the reverse rightmost derivation.

Critical Insight

If G is unambiguous, then every right-sentential form has a unique handle.

If we can find those handles, we can build a derivation !

Sketch of Proof:

- 1 G is unambiguous \Rightarrow rightmost derivation is unique
- 2 \Rightarrow a unique production $A \rightarrow \beta$ applied to derive γ_i from γ_{i-1}
- 3 \Rightarrow a unique position k at which $A \rightarrow \beta$ is applied
- 4 \Rightarrow a unique handle $\langle A \rightarrow \beta, k \rangle$

This all follows from the definitions

Handle-pruning, Bottom-up Parsers

The process of discovering a handle & reducing it to the appropriate left-hand side is called *handle pruning*

Handle pruning forms the basis for a bottom-up parsing method

To construct a rightmost derivation $S \Rightarrow \gamma_0 \Rightarrow \gamma_1 \Rightarrow \gamma_2 \Rightarrow ... \Rightarrow \gamma_{n-1} \Rightarrow \gamma_n \Rightarrow \text{sentence}$

Apply the following simple algorithm for $i \leftarrow n$ to 1 by -1 Find the handle $\langle A_i \rightarrow \beta_i, \mathbf{k}_i \rangle$ in γ_i Replace β_i with A_i to generate γ_{i-1}

Handle-pruning, Bottom-up Parsers

One implementation technique is the *shift-reduce parser*

push INVALID word $\leftarrow NextWord()$ repeat until (top of stack = Goal and word = EOF) How do errors show up? if a handle for $A \rightarrow \beta$ on top of the stack then // reduce β to A failure to find a handle pop $|\beta|$ symbols off the stack hitting EOF & needing to push A onto the stack shift (final else clause) else if (word = EOF) then // shift push word Either generates an error word ← NextWord() else // either no handle or no input report an error

Example

1	Goal	\rightarrow	Expr
2	Expr	\rightarrow	Expr + Term
3			Expr - Term
4			Term
5	Term	\rightarrow	Term * Factor
6			Term / Factor
7			Factor
8	Factor	\rightarrow	number
9			<u>id</u>
10			<u>(</u> Expr)

<id,x> - <num,2> * <id,y>

The expression grammar

Shift reduce parsers are easily built and easily understood

A shift-reduce parser has just four actions

- Shift next word is shifted onto the stack
- Reduce right end of handle is at top of stack
 Locate left end of handle within the stack
 Pop handle off stack & push appropriate *lhs*
- Accept stop parsing & report success
- *Error* call an error reporting/recovery routine

Accept & Error are simple Shift is just a push and a call to the scanner Reduce takes |*rhs*| pops & 1 push

Handle finding is key
handle is on stack
finite set of handles
⇒ use a DFA !

To be a handle, a substring of a sentential form γ must have two properties:

- \rightarrow It must match the right hand side β of some rule $A \rightarrow \beta$
- → There must be some rightmost derivation from the goal symbol that produces the sentential form γ with $A \rightarrow \beta$ as the last production applied
- Simply looking for right hand sides that match strings is not good enough
- Critical Question: How can we know when we have found a handle without generating lots of different derivations?
 - → Answer: we use look ahead in the grammar along with tables produced as the result of analyzing the grammar.
 - \rightarrow LR(1) parsers build a DFA that runs over the stack & finds them