
Parsing III
Bottom-up Parsing

Parsing Techniques
Top-down parsers (LL(1), recursive descent)
•  Start at the root of the parse tree and grow toward leaves
•  Pick a production & try to match the input
•  Bad “pick” ⇒ may need to backtrack
•  Some grammars are backtrack-free (predictive parsing)

Bottom-up parsers (LR(1), operator precedence)
•  Start at the leaves and grow toward root
•  As input is consumed, encode possibilities in an internal state
•  Start in a state valid for legal first tokens
•  Bottom-up parsers handle a large class of grammars

Bottom-up Parsing (definitions)

The point of parsing is to construct a derivation

A derivation consists of a series of rewrite steps

S ⇒ γ0 ⇒ γ1 ⇒ γ2 ⇒ … ⇒ γn–1 ⇒ γn ⇒ sentence

•  Each γi is a sentential form
→  If γ contains only terminal symbols, γ is a sentence in L(G)
→  If γ contains ≥ 1 non-terminals, γ is a sentential form

•  To get γi from γi–1, expand some NT A ∈ γi–1 by using A →β

→  Replace the occurrence of A ∈ γi–1 with β to get γi
→  In a leftmost derivation, it would be the first NT A ∈ γi–1

 A left-sentential form occurs in a leftmost derivation.
A right-sentential form occurs in a rightmost derivation.

Bottom-up Parsing
A bottom-up parser builds a derivation by working from
the input sentence back toward the start symbol S

S ⇒ γ0 ⇒ γ1 ⇒ γ2 ⇒ … ⇒ γn–1 ⇒ γn ⇒ sentence

To reduce γi to γi–1 (assuming the production A→β) match some
rhs β against γi then replace β with its corresponding lhs, A.

In terms of the parse tree, this is working from leaves to root
•  Nodes with no parent in a partial tree form its frontier
•  Since each replacement of β with A shrinks the current frontier,
 we call it a reduction.

bottom-up

Finding Reductions
Consider the simple grammar

And the input string abbcde

The trick is scanning the input and finding the next reduction
The mechanism for doing this should be efficient

Finding Reductions (Handles)

The parser must find a substring β of the tree’s frontier that

matches some production A → β that occurs as one step
in the rightmost derivation

We call this substring β a handle

Formally,
A handle is a pair <A→β,k> where A→β ∈ P and k is position in

tree’s current frontier of β’s rightmost (last) symbol.
Replacing β at k with A in the bottom-up parse represents the

next step in the reverse rightmost derivation.

Finding Reductions (Handles)

Critical Insight
If G is unambiguous, then every right-sentential form has a
unique handle.

If we can find those handles, we can build a derivation !

Sketch of Proof:
1  G is unambiguous ⇒ rightmost derivation is unique
2  ⇒ a unique production A → β applied to derive γi from γi–1

3  ⇒ a unique position k at which A→β is applied
4  ⇒ a unique handle <A→β,k>
This all follows from the definitions

Handle-pruning, Bottom-up Parsers
The process of discovering a handle & reducing it to the
appropriate left-hand side is called handle pruning

Handle pruning forms the basis for a bottom-up parsing method

To construct a rightmost derivation
S ⇒ γ0 ⇒ γ1 ⇒ γ2 ⇒ … ⇒ γn–1 ⇒ γn ⇒ sentence

Apply the following simple algorithm
for i ← n to 1 by –1
 Find the handle <Ai →βi , ki > in γi
 Replace βi with Ai to generate γi–1

Handle-pruning, Bottom-up Parsers
One implementation technique is the shift-reduce parser

push INVALID
word ← NextWord()
repeat until (top of stack = Goal and word = EOF)
 if a handle for A→β on top of the stack then
 // reduce β to A
 pop |β| symbols off the stack
 push A onto the stack
 else if (word ≠ EOF) then // shift
 push word
 word ← NextWord()
 else // either no handle or no input

 report an error

Figure 3.11 in EAC

How do errors show up?

•  failure to find a handle

•  hitting EOF & needing to
 shift (final else clause)

Either generates an error

Example

The expression grammar

<id,x> - <num,2> * <id,y>

Example <id,x> - <num,2> * <id,y>

Goal

<id,x>

Term

Fact.

Expr –

Expr

<id,y>

<num,2>

Fact.

Fact. Term

Term

*

Shift-reduce Parsing
Shift reduce parsers are easily built and easily understood

A shift-reduce parser has just four actions
•  Shift — next word is shifted onto the stack
•  Reduce — right end of handle is at top of stack

 Locate left end of handle within the stack
 Pop handle off stack & push appropriate lhs

•  Accept — stop parsing & report success
•  Error — call an error reporting/recovery routine

Accept & Error are simple
Shift is just a push and a call to the scanner
Reduce takes |rhs| pops & 1 push

Handle finding is key
•  handle is on stack
•  finite set of handles
⇒  use a DFA !

An Important Lesson about Handles

To be a handle, a substring of a sentential form γ must have two
properties:
→  It must match the right hand side β of some rule A → β
→  There must be some rightmost derivation from the goal symbol

that produces the sentential form γ with A → β as the last
production applied

•  Simply looking for right hand sides that match strings is not
good enough

•  Critical Question: How can we know when we have found a
handle without generating lots of different derivations?
→  Answer: we use look ahead in the grammar along with tables

produced as the result of analyzing the grammar.
→  LR(1) parsers build a DFA that runs over the stack & finds them

