Parsing ITI
Bottom-up Parsing

Parsing Techniques

Top-down parsers (LL(1), recursive descent)

Start at the root of the parse tree and grow toward leaves
Pick a production & try to match the input

Bad "pick” = may need to backtrack

Some grammars are backtrack-free (predictive parsing)

Bottom-up parsers (LR(1), operator precedence)

Start at the leaves and grow toward root

As input is consumed, encode possibilities in an internal state
Start in a state valid for legal first tokens

Bottom-up parsers handle a large class of grammars

Bottom-up Parsing (definitions)

The point of parsing is to construct a derivation

A derivation consists of a series of rewrite steps
S=v =V =Y = .. = Y1 =Y, = Sentence

* Each y;is a sentential form
— If y contains only terminal symbols, y is a sentence in L(6)
— If y contains > 1 non-terminals, y is a sentential form

* To gety, from y_,, expand some NT A €y, by using A —p
— Replace the occurrence of A€y, with p to get vy,
— Inaleftmost derivation, it would be the first NT A ey, ,

A left-sentential form occurs in a leftmost derivation.
A right-sentential form occurs in a rightmost derivation.

Bottom-up Parsing

A bottom-up parser builds a derivation by working from
the input sentence back tfoward the start symbol S

S=v =V =Y = .. = Y1 =Y,= Sentence
< bottom-up

To reduce y; to y.; (assuming the production A—[) match some
rhs B against y;, then replace p with its corresponding /hs, A.

In terms of the parse tree, this is working from leaves to root
* Nodes with no parent in a partial tree form its frontier

* Since each replacement of g with A shrinks the current frontier,
we call it a reduction.

Finding Reductions

Consider the simple grammar

1| Goal ~ aABe Sentential | Next Reduction
21 A T Abc Form Prod'n | Pos'n
3 | b abbcde 3 2
> 7 a A bcde 2 4
HoE d a Ade 4 3
And the input string abbcde aABe 1 4
Goal — —

The trick is scanning the input and finding the next reduction
The mechanism for doing this should be efficient

Finding Reductions (Handles)

The parser must find a substring 8 of the tree's frontier that

matches some production A — 3 that occurs as one step
in the rightmost derivation

We call this substring a handle

Formally,
A handle is a pair <A—f k> where A—f € Pand k is position in
tree's current frontier of f's rightmost (last) symbol.

Replacing p at k with A in the bottom-up parse represents the
next step in the reverse rightmost derivation.

Finding Reductions (Handles)

Critical Insight

If G is unambiguous, then every right-sentential form has a
unigue handle.

If we can find those handles, we can build a derivation |

Sketch of Proof:
1 & is unambiguous = rightmost derivation is unique

2 = aunique production A — B applied to derive y; from y4
3 = aunique position k at which A—f is applied

4 = a unique handle <A—p k>

This all follows from the definitions

Handle-pruning, Bottom-up Parsers

The process of discovering a handle & reducing it to the
appropriate left-hand side is called handle pruning

Handle pruning forms the basis for a bottom-up parsing method

To construct a rightmost derivation
S=Y =7V =7V = .. =Yu1=7Y,= Sentence

Apply the following simple algorithm
fori < ntolby-1
Find the handle <A —p., k> iny,
Replace 5, with A, to generate v,

Handle-pruning, Bottom-up Parsers

One implementation technique is the shift-reduce parser

push INVALID

word < NextWord()

repeat until (top of stack = Goal and word = EOF)
if a handle for A—p on top of the stack then

How do errors show up?

// reduce B to A * failure to find a handle
pop |B| symbols of f the stack - ,
push A onto the stack /|| ¢ hitting EOF & needing to

push word Either generates an error
word <— NextWord() 9

else // either no handle or no input
report an error

else if (word = EOF) then // shift / shift (final else clause)

Figure 3.11 in EAC

Example

O 00 NO Ol W N -

—
o

Goal
Expr

Term

Factor

—— == ==

Expr
Expr + Term
Expr - Term
Term

Term * Factor
Term / Factor
Factor
humber

id

(Expr)

The expression grammar

<id,x> - <num,2> * <id,y>

Example <id, x> - <num,2> * <id y>

Stack Input Action
g id—num*id| shift
id —num * i red. 9
$ Factor -num*id| red.7
$ Term —num*id| red. 4
$ Expr —num*id| shift
$ Expr- num*id| shift
$ Expr— num ~ *id| red.8
$ Expr— Factor *id| red. 7
$ Expr— Term *id| shift
$ Expr—- Term* id| shift
$ Expr— Term* id red. 9
$ Expr— Term* Factor red. 5
$ Expr— Term red. 3
$ Expr red. 1
$ Goal accept

H--,
Bt 92

<id,x> <num,2>

(Form)
s

<id,y>

Shift-reduce Parsing

Shift reduce parsers are easily built and easily understood

A shift-reduce parser has just four actions
* Shift — next word is shifted onto the stack

* Reduce — right end of handle is at top of stack
Locate left end of handle within the stack
Pop handle off stack & push appropriate /hs

* Accept — stop parsing & report success
* Error — call an error reporting/recovery routine

Accept & Error are simple
Shiftis just a push and a call to the scanner
Reduce takes |rhs| pops & 1 push

Handle finding is key
* handle is on stack

* finite set of handles
— use a DFA |

An Important Lesson about Handles

To be a handle, a substring of a sentential form y must have two
properties:
— It must match the right hand side § of some rule A —
— There must be some rightmost derivation from the goal symbol

that produces the sentential form y with A — as the last
production applied

* Simply looking for right hand sides that match strings is not
good enough

* Critical Question: How can we know when we have found a
handle without generating lots of different derivations?

— Answer: we use look ahead in the grammar along with tables
produced as the result of analyzing the grammar.
— LR(1) parsers build a DFA that runs over the stack & finds them

