
Parsing — Part II 
(Top-down parsing, left-recursion removal) 



Parsing Techniques 
Top-down parsers     (LL(1), recursive descent) 

•  Start at the root of the parse tree and grow toward leaves 
•  Pick a production & try to match the input 
•  Bad “pick” ⇒ may need to backtrack 
•  Some grammars are backtrack-free           (predictive parsing) 

Bottom-up parsers     (LR(1), operator precedence) 

•  Start at the leaves and grow toward root 
•  As input is consumed, encode possibilities in an internal state 
•  Start in a state valid for legal first tokens 
•  Bottom-up parsers handle a large class of grammars 



A top-down parser starts with the root of the parse tree 
The root node is labeled with the goal symbol of the grammar 

Top-down parsing algorithm: 
Construct the root node of the parse tree  
Repeat until the fringe of the parse tree matches the input string 
1  At a node labeled A, select a production with A on its lhs and, for each symbol on 

its rhs, construct the appropriate child 
2  When a terminal symbol is added to the fringe and it doesn’t match the fringe, 

backtrack 
3  Find the next node to be expanded                              (label ∈ NT) 

•  The key is picking the right production in step 1 
→  That choice should be guided by the input string 

Top-down Parsing 



Remember the expression grammar? 

And the input  x – 2 * y  

Version with precedence derived last lecture 



Consider the following parse of x – 2 * y 

This doesn’t terminate                                              (obviously) 
•  Wrong choice of expansion leads to non-termination 
•  Non-termination is a bad property for a parser to have 
•  Parser must make the right choice 

A possible parse 

consuming no input ! 



Left Recursion 

Top-down parsers cannot handle left-recursive grammars 

Formally, 
A grammar is left recursive if ∃ A ∈ NT such that   
∃ a derivation A ⇒+ Aα, for some string α ∈ (NT ∪ T )+ 

Our expression grammar is left recursive 
•  This can lead to non-termination in a top-down parser 
•  For a top-down parser, any recursion must be right recursion 
•  We would like to convert the left recursion to right recursion 

Non-termination is a bad property in any part of a compiler 



Eliminating Left Recursion 
To remove left recursion, we can transform the grammar 

Consider a grammar fragment of the form 
Fee → Fee  α     
         |   β


where neither α nor β start with Fee 

We can rewrite this as  
Fee → β Fie 

Fie  → α Fie 

         |  ε

where Fie is a new non-terminal 

This accepts the same language, but uses only right recursion 



Picking the “Right” Production 

If it picks the wrong production, a top-down parser may backtrack  

Alternative is to look ahead in input & use context to pick correctly 

How much lookahead is needed? 
•  In general, an arbitrarily large amount 

Fortunately, 
•  Large subclasses of CFGs can be parsed with limited lookahead 
•  Most programming language constructs fall in those subclasses 

Among the interesting subclasses are LL(1)  and LR(1)  grammars 



Predictive Parsing 
Basic idea 
Given A → α | β, the parser should be able to choose between α & β


FIRST sets 
For some rhs α∈G, define FIRST(α) as the set of tokens that 

appear as the first symbol in some string that derives from α  

That is, x ∈ FIRST(α) iff  α ⇒* x γ,  for some γ  

We will defer the problem of how to compute FIRST sets until 
we look at the LR(1) table construction algorithm 



Predictive Parsing 
Basic idea 
Given A → α | β, the parser should be able to choose between α & β


FIRST sets 
For some rhs α∈G, define FIRST(α) as the set of tokens that 

appear as the first symbol in some string that derives from α  

That is, x ∈ FIRST(α) iff  α ⇒* x γ,  for some γ  

The LL(1)  Property   
If A → α and A → β both appear in the grammar, we would like  

FIRST(α) ∩ FIRST(β) = ∅

This would allow the parser to make a correct choice with a lookahead 

of exactly one symbol ! This is almost correct 
See the next slide 



Predictive Parsing 

What about ε-productions? 
⇒ They complicate the definition of LL(1) 

If A → α and A → β and ε ∈ FIRST(α), then we need to ensure 
that FIRST(β) is disjoint from FOLLOW(α), too 

Define FIRST+(α) as 

•  FIRST(α) ∪ FOLLOW(α),  if ε ∈ FIRST(α) 

•  FIRST(α), otherwise 

Then, a grammar is LL(1) iff A → α and A → β implies   

 FIRST+(α) ∩ FIRST+(β) = ∅


FOLLOW(α) is the set of
 all words in the grammar
 that can legally appear
 immediately after an α




Predictive Parsing 
Given a grammar that has the LL(1) property 
•  Can write a simple routine to recognize each lhs  
•  Code is both simple & fast 
Consider A → β1 | β2 | β3, with  

FIRST+(β1) ∩ FIRST+ (β2) ∩ FIRST+ (β3) = ∅


Grammars with the LL(1) property are called predictive
 grammars because the parser can “predict” the correct
 expansion at each point in the parse. 

Parsers that capitalize on the LL(1) property are called
 predictive parsers. 



Recursive Descent Parser 

We build a recursive descent parser for the following grammar: 

A → B | CA | a 
B → bB | x 
C → c 

The term descent refers to the direction in which the parse
 tree is built. 



Recursive Descent Parsing 
To actually build a parse tree: 
•  Augment parsing routines to build 

nodes  
•  Node for each symbol on rhs  
•  Action is to receive all rhs nodes, 

make them children of lhs node, 
and return this new node 

To build an abstract syntax tree  
•  Build fewer nodes 
•  Put them together in a different 

order 

B( ) 
     if (lookahead( ) = b)  

        then return new BNode(read( ),B( )); 
    if (lookahead( ) = x) 
        then return new BNode(read( )); 
    throw Exception; 

This is a preview of Chapter 4 

B( ) 
     if (lookahead( ) = b)  

        then return B( ).addOne( ); 
    if (lookahead( ) = x) 
        then return new BNode(0); 
    throw Exception; 



Left Factoring 
What if my grammar does not have the LL(1) property? 
⇒  Sometimes, we can transform the grammar 

How would you rewrite the grammar 

 A → aab | aac | aad 

               ? 



Left Factoring 
What if my grammar does not have the LL(1) property? 
⇒  Sometimes, we can transform the grammar 

How would you rewrite the grammar 

 A → aab | aac | aad 

Rewrite to 
 A → aa A’ 
 A’ → b | c | d 



Question 
By eliminating left recursion  and left factoring, can we transform 

an arbitrary CFG to a form where it meets the LL(1)  condition?  
(and can be parsed predictively with a single token lookahead?) 

Answer 
Given a CFG that doesn’t meet the LL(1) condition, it is undecidable 

whether or not an equivalent LL(1) grammar  exists. 

Example 
{an 0 bn | n ≥ 1}  ∪ {an 1 b2n | n ≥ 1}   has no LL(1) grammar 

Left Factoring                                 (Generality) 



Language that Cannot Be LL(1) 
Example 
            {an 0 bn | n ≥ 1}  ∪ {an 1 b2n | n ≥ 1}   has no LL(1) grammar 

G → aAb   
     | aBbb 

A → aAb  
     |  0 

B → aBbb 
     | 1  

Problem: need an unbounded number of
 a characters before you can
 determine whether you are in the A
 group or the B group. 



Recursive Descent (Summary) 
1.  Build FIRST (and FOLLOW) sets 
2.  Massage grammar to have LL(1) condition 

a.  Remove left recursion 
b.  Left factor it 

3.  Define a procedure for each non-terminal 
a.  Implement a case for each right-hand side 
b.  Call procedures as needed for non-terminals 

4.  Add extra code, as needed 
a.  Perform context-sensitive checking 
b.  Build an IR to record the code 

Can we automate this process? 



Building Top-down Parsers 
Given an LL(1) grammar, and its FIRST & FOLLOW sets … 
•  Emit a routine for each non-terminal 

→ Multiple if-then statements to check alternate rhs’s 
→ Each returns a node on success and throws an error else 
→ Simple, working (, perhaps ugly,) code 

•  This automatically constructs a recursive-descent parser 

Improving matters 
•  Bunch of if-then statements may be slow 

→ Good case statement implementation would be better 

•  What about a table to encode the options? 
→  Interpret the table with a skeleton, as we did in scanning 

I don’t know of a system
 that does this … 



Building Top-down Parsers 
Strategy 
•  Encode knowledge in a table 
•  Use a standard “skeleton” parser to interpret the table 

Example 
•  The non-terminal Factor has three expansions 

→  ( Expr )  or  Identifier  or  Number 

•  Table might look like: 

— 11 10 — — — — Factor 

EOF Num. Id. / * - + 

Reduce by rule 10 on `+ ’ Error on `+ ’ 

Terminal Symbols 

Non-terminal 
Symbols 



Building Top Down Parsers 
Building the complete table 
•  Need a row for every NT & a column for every T 
•  Need an algorithm to build the table 

Filling in TABLE[X,y], X ∈ NT, y ∈ T 
1.  entry is the rule X→ β, if y ∈ FIRST(β ) 

2.  entry is the rule X → ε if y ∈ FOLLOW(X ) and X → ε ∈ G 
3.  entry is error if neither 1 nor 2 define it 

If any entry is defined multiple times, G is not LL(1) 

This is the LL(1) table construction algorithm 



LL(1) Skeleton Parser 

word ← nextWord() 
push EOF onto Stack 
push the start symbol onto Stack 
TOS ← top of Stack 
loop forever 
   if TOS = EOF and word = EOF then 
         report success and exit 
    else if TOS is a terminal or eof then 
       if TOS matches word then 
           pop Stack    // recognized TOS 
           word ← nextWord() 
       else  
            report error looking for TOS 
    else        // TOS is a non-terminal 
       if TABLE[TOS,word] is A→ B1B2…Bk then 
           pop Stack               // get rid of A 
           push Bk, Bk-1, …, B1  on stack  // in that order 
       else report error expanding TOS 
   TOS ← top of Stack 

exit on success 


