
Parsing — Part II
(Top-down parsing, left-recursion removal)

Parsing Techniques
Top-down parsers (LL(1), recursive descent)

•  Start at the root of the parse tree and grow toward leaves
•  Pick a production & try to match the input
•  Bad “pick” ⇒ may need to backtrack
•  Some grammars are backtrack-free (predictive parsing)

Bottom-up parsers (LR(1), operator precedence)

•  Start at the leaves and grow toward root
•  As input is consumed, encode possibilities in an internal state
•  Start in a state valid for legal first tokens
•  Bottom-up parsers handle a large class of grammars

A top-down parser starts with the root of the parse tree
The root node is labeled with the goal symbol of the grammar

Top-down parsing algorithm:
Construct the root node of the parse tree
Repeat until the fringe of the parse tree matches the input string
1  At a node labeled A, select a production with A on its lhs and, for each symbol on

its rhs, construct the appropriate child
2  When a terminal symbol is added to the fringe and it doesn’t match the fringe,

backtrack
3  Find the next node to be expanded (label ∈ NT)

•  The key is picking the right production in step 1
→  That choice should be guided by the input string

Top-down Parsing

Remember the expression grammar?

And the input x – 2 * y

Version with precedence derived last lecture

Consider the following parse of x – 2 * y

This doesn’t terminate (obviously)
•  Wrong choice of expansion leads to non-termination
•  Non-termination is a bad property for a parser to have
•  Parser must make the right choice

A possible parse

consuming no input !

Left Recursion

Top-down parsers cannot handle left-recursive grammars

Formally,
A grammar is left recursive if ∃ A ∈ NT such that
∃ a derivation A ⇒+ Aα, for some string α ∈ (NT ∪ T)+

Our expression grammar is left recursive
•  This can lead to non-termination in a top-down parser
•  For a top-down parser, any recursion must be right recursion
•  We would like to convert the left recursion to right recursion

Non-termination is a bad property in any part of a compiler

Eliminating Left Recursion
To remove left recursion, we can transform the grammar

Consider a grammar fragment of the form
Fee → Fee α
 | β

where neither α nor β start with Fee

We can rewrite this as
Fee → β Fie

Fie → α Fie

 | ε
where Fie is a new non-terminal

This accepts the same language, but uses only right recursion

Picking the “Right” Production

If it picks the wrong production, a top-down parser may backtrack

Alternative is to look ahead in input & use context to pick correctly

How much lookahead is needed?
•  In general, an arbitrarily large amount

Fortunately,
•  Large subclasses of CFGs can be parsed with limited lookahead
•  Most programming language constructs fall in those subclasses

Among the interesting subclasses are LL(1) and LR(1) grammars

Predictive Parsing
Basic idea
Given A → α | β, the parser should be able to choose between α & β

FIRST sets
For some rhs α∈G, define FIRST(α) as the set of tokens that

appear as the first symbol in some string that derives from α

That is, x ∈ FIRST(α) iff α ⇒* x γ, for some γ

We will defer the problem of how to compute FIRST sets until
we look at the LR(1) table construction algorithm

Predictive Parsing
Basic idea
Given A → α | β, the parser should be able to choose between α & β

FIRST sets
For some rhs α∈G, define FIRST(α) as the set of tokens that

appear as the first symbol in some string that derives from α

That is, x ∈ FIRST(α) iff α ⇒* x γ, for some γ

The LL(1) Property
If A → α and A → β both appear in the grammar, we would like

FIRST(α) ∩ FIRST(β) = ∅
This would allow the parser to make a correct choice with a lookahead

of exactly one symbol ! This is almost correct
See the next slide

Predictive Parsing

What about ε-productions?
⇒ They complicate the definition of LL(1)

If A → α and A → β and ε ∈ FIRST(α), then we need to ensure
that FIRST(β) is disjoint from FOLLOW(α), too

Define FIRST+(α) as

•  FIRST(α) ∪ FOLLOW(α), if ε ∈ FIRST(α)

•  FIRST(α), otherwise

Then, a grammar is LL(1) iff A → α and A → β implies

 FIRST+(α) ∩ FIRST+(β) = ∅

FOLLOW(α) is the set of
 all words in the grammar
 that can legally appear
 immediately after an α

Predictive Parsing
Given a grammar that has the LL(1) property
•  Can write a simple routine to recognize each lhs
•  Code is both simple & fast
Consider A → β1 | β2 | β3, with

FIRST+(β1) ∩ FIRST+ (β2) ∩ FIRST+ (β3) = ∅

Grammars with the LL(1) property are called predictive
 grammars because the parser can “predict” the correct
 expansion at each point in the parse.

Parsers that capitalize on the LL(1) property are called
 predictive parsers.

Recursive Descent Parser

We build a recursive descent parser for the following grammar:

A → B | CA | a
B → bB | x
C → c

The term descent refers to the direction in which the parse
 tree is built.

Recursive Descent Parsing
To actually build a parse tree:
•  Augment parsing routines to build

nodes
•  Node for each symbol on rhs
•  Action is to receive all rhs nodes,

make them children of lhs node,
and return this new node

To build an abstract syntax tree
•  Build fewer nodes
•  Put them together in a different

order

B()
 if (lookahead() = b)

 then return new BNode(read(),B());
 if (lookahead() = x)
 then return new BNode(read());
 throw Exception;

This is a preview of Chapter 4

B()
 if (lookahead() = b)

 then return B().addOne();
 if (lookahead() = x)
 then return new BNode(0);
 throw Exception;

Left Factoring
What if my grammar does not have the LL(1) property?
⇒  Sometimes, we can transform the grammar

How would you rewrite the grammar

 A → aab | aac | aad

 ?

Left Factoring
What if my grammar does not have the LL(1) property?
⇒  Sometimes, we can transform the grammar

How would you rewrite the grammar

 A → aab | aac | aad

Rewrite to
 A → aa A’
 A’ → b | c | d

Question
By eliminating left recursion and left factoring, can we transform

an arbitrary CFG to a form where it meets the LL(1) condition?
(and can be parsed predictively with a single token lookahead?)

Answer
Given a CFG that doesn’t meet the LL(1) condition, it is undecidable

whether or not an equivalent LL(1) grammar exists.

Example
{an 0 bn | n ≥ 1} ∪ {an 1 b2n | n ≥ 1} has no LL(1) grammar

Left Factoring (Generality)

Language that Cannot Be LL(1)
Example
 {an 0 bn | n ≥ 1} ∪ {an 1 b2n | n ≥ 1} has no LL(1) grammar

G → aAb
 | aBbb

A → aAb
 | 0

B → aBbb
 | 1

Problem: need an unbounded number of
 a characters before you can
 determine whether you are in the A
 group or the B group.

Recursive Descent (Summary)
1.  Build FIRST (and FOLLOW) sets
2.  Massage grammar to have LL(1) condition

a.  Remove left recursion
b.  Left factor it

3.  Define a procedure for each non-terminal
a.  Implement a case for each right-hand side
b.  Call procedures as needed for non-terminals

4.  Add extra code, as needed
a.  Perform context-sensitive checking
b.  Build an IR to record the code

Can we automate this process?

Building Top-down Parsers
Given an LL(1) grammar, and its FIRST & FOLLOW sets …
•  Emit a routine for each non-terminal

→ Multiple if-then statements to check alternate rhs’s
→ Each returns a node on success and throws an error else
→ Simple, working (, perhaps ugly,) code

•  This automatically constructs a recursive-descent parser

Improving matters
•  Bunch of if-then statements may be slow

→ Good case statement implementation would be better

•  What about a table to encode the options?
→  Interpret the table with a skeleton, as we did in scanning

I don’t know of a system
 that does this …

Building Top-down Parsers
Strategy
•  Encode knowledge in a table
•  Use a standard “skeleton” parser to interpret the table

Example
•  The non-terminal Factor has three expansions

→  (Expr) or Identifier or Number

•  Table might look like:

— 11 10 — — — — Factor

EOF Num. Id. / * - +

Reduce by rule 10 on `+ ’ Error on `+ ’

Terminal Symbols

Non-terminal
Symbols

Building Top Down Parsers
Building the complete table
•  Need a row for every NT & a column for every T
•  Need an algorithm to build the table

Filling in TABLE[X,y], X ∈ NT, y ∈ T
1.  entry is the rule X→ β, if y ∈ FIRST(β)

2.  entry is the rule X → ε if y ∈ FOLLOW(X) and X → ε ∈ G
3.  entry is error if neither 1 nor 2 define it

If any entry is defined multiple times, G is not LL(1)

This is the LL(1) table construction algorithm

LL(1) Skeleton Parser

word ← nextWord()
push EOF onto Stack
push the start symbol onto Stack
TOS ← top of Stack
loop forever
 if TOS = EOF and word = EOF then
 report success and exit
 else if TOS is a terminal or eof then
 if TOS matches word then
 pop Stack // recognized TOS
 word ← nextWord()
 else
 report error looking for TOS
 else // TOS is a non-terminal
 if TABLE[TOS,word] is A→ B1B2…Bk then
 pop Stack // get rid of A
 push Bk, Bk-1, …, B1 on stack // in that order
 else report error expanding TOS
 TOS ← top of Stack

exit on success

