
Introduction to Parsing

The Front End

Parser
•  Checks the stream of words and their parts of speech

(produced by the scanner) for grammatical correctness
•  Determines if the input is syntactically well formed
•  Guides checking at deeper levels than syntax
•  Builds an IR representation of the code

Think of this as the mathematics of diagramming sentences

Source
code Scanner

IR
Parser

Errors

tokens

The Study of Parsing
The process of discovering a derivation for some sentence
•  Need a mathematical model of syntax — a grammar G
•  Need an algorithm for testing membership in L(G)
•  Need to keep in mind that our goal is building parsers, not

studying the mathematics of arbitrary languages

Roadmap
1  Context-free grammars and derivations
2  Top-down parsing

→  Hand-coded recursive descent parsers

3  Bottom-up parsing
→  Generated LR(1) parsers

Specifying Syntax with a Grammar
Context-free syntax is specified with a context-free grammar

 SheepNoise → SheepNoise baa
 | baa

This CFG defines the set of noises sheep normally make

It is written in a variant of Backus–Naur form

Formally, a grammar is a four tuple, G = (S,N,T,P)
•  S is the start symbol (set of strings in L(G))
•  N is a set of non-terminal symbols (syntactic variables)
•  T is a set of terminal symbols (words)
•  P is a set of productions or rewrite rules (P : N → (N ∪ T)+)

Deriving Syntax
We can use the SheepNoise grammar to create sentences

→  use the productions as rewriting rules

And so on ...

A More Useful Grammar
To explore the uses of CFGs,we need a more complex grammar

•  Such a sequence of rewrites is called a derivation
•  Process of discovering a derivation is called parsing

We denote this derivation: Expr ⇒* id – num * id

Derivations
•  At each step, we choose a non-terminal to replace
•  Different choices can lead to different derivations

Two derivations are of interest
•  Leftmost derivation — replace leftmost NT at each step
•  Rightmost derivation — replace rightmost NT at each step

These are the two systematic derivations
(We don’t care about randomly-ordered derivations!)

The example on the preceding slide was a leftmost derivation
•  Of course, there is also a rightmost derivation
•  Interestingly, it turns out to be different

The Two Derivations for x – 2 * y

In both cases, Expr ⇒* id – num * id
•  The two derivations produce different parse trees
•  The parse trees imply different evaluation orders!

Leftmost derivation Rightmost derivation

Derivations and Parse Trees
Leftmost derivation

G

x

E

E Op

–

2

E

E

E

y

Op

*
This evaluates as x – (2 * y)

Derivations and Parse Trees
Rightmost derivation

x 2

G

E

Op E E

E Op E y

–

*

This evaluates as (x – 2) * y

Derivations and Precedence

These two derivations point out a problem with the grammar:
It has no notion of precedence, or implied order of evaluation

To add precedence
•  Create a non-terminal for each level of precedence
•  Isolate the corresponding part of the grammar
•  Force the parser to recognize high precedence

subexpressions first

For algebraic expressions
•  Multiplication and division, first (level one)
•  Subtraction and addition, next (level two)

Derivations and Precedence
Adding the standard algebraic precedence produces:

This grammar is slightly larger

•  Takes more rewriting to reach
 some of the terminal symbols

•  Encodes expected precedence

•  Produces same parse tree
 under leftmost & rightmost
 derivations

Let’s see how it parses x - 2 * y

level
one

level
two

Derivations and Precedence

The rightmost derivation

This produces x – (2 * y), along with an appropriate parse tree.
Both the leftmost and rightmost derivations give the same expression,
 because the grammar directly encodes the desired precedence.

G

E

– E

T

F

<id,
x>

T

T

F

F *

<num,2>

<id,
y>

Its parse tree

x - 2 * y

Ambiguous Grammars
Our original expression grammar had other problems
•  This grammar allows multiple leftmost derivations for x - 2 * y
•  Hard to automate derivation if > 1 choice
•  The grammar is ambiguous

different choice
 than the first

 time

Two Leftmost Derivations for x – 2 * y

The Difference:
  Different productions chosen on the second step
  Both derivations succeed in producing x - 2 * y

Original choice New choice

Ambiguous Grammars
Definitions
•  If a grammar has more than one leftmost derivation for a

single sentential form, the grammar is ambiguous
•  If a grammar has more than one rightmost derivation for a

single sentential form, the grammar is ambiguous
•  The leftmost and rightmost derivations for a sentential

form may differ, even in an unambiguous grammar

Classic example — the if-then-else problem

Stmt → if Expr then Stmt
 | if Expr then Stmt else Stmt
 | … other stmts …

This ambiguity is entirely grammatical in nature

Ambiguity
This sentential form has two derivations

if Expr1 then if Expr2 then Stmt1 else Stmt2

production 2, then
 production 1

production 1, then
 production 2

Stmt → if Expr then Stmt (1)
 | if Expr then Stmt else Stmt (2)
 | … other stmts …

Removing the ambiguity
•  Must rewrite the grammar to avoid generating the problem
•  Match each else to innermost unmatched if (common sense rule)
With this grammar, the example has only one derivation

Ambiguity

Intuition: binds each else to the innermost if

Ambiguity
 if Expr1 then if Expr2 then Assignment1 else Assignment2

This binds the else controlling Assignment2 to the inner if

Deeper Ambiguity
Ambiguity usually refers to confusion in the CFG

Overloading can create deeper ambiguity
a = f(17)

In many Algol-like languages, f could be either a function or a
subscripted variable

Disambiguating this one requires context
•  Need values of declarations
•  Really an issue of type, not context-free syntax
•  Requires an extra-grammatical solution (not in CFG)
•  Must handle these with a different mechanism

→  Step outside grammar rather than use a more complex grammar

Ambiguity - the Final Word
Ambiguity arises from two distinct sources
•  Confusion in the context-free syntax (if-then-else)

•  Confusion that requires context to resolve (overloading)

Resolving ambiguity
•  To remove context-free ambiguity, rewrite the grammar
•  To handle context-sensitive ambiguity takes cooperation

→  Knowledge of declarations, types, …
→  Accept a superset of L(G) & check it by other means†

→  This is a language design problem

Sometimes, the compiler writer accepts an ambiguous grammar
→  Parsing techniques that “do the right thing”
→  i.e., always select the same derivation

†See Chapter 4

