
Wednesday, October 1, 6:00-7:30pm
Gore Hall Room 103

Bring your resume for a chance to win great
prizes!! FREE FOOD will be provided!

Career Services &

 present:

udacm.org 

Lexical Analysis:
DFA Minimization & Wrap Up

Automating Scanner Construction
PREVIOUSLY
RE→NFA (Thompson’s construction)
•  Build an NFA for each term

•  Combine them with ε-moves
NFA →DFA (subset construction)
•  Build the simulation
TODAY
Some Project Related Material

DFA →Minimal DFA

•  Hopcroft’s algorithm

minimal
 DFA RE NFA DFA

The Cycle of Constructions

What we expect of the Scanner

•  Report errors for lexicographically malformed inputs
→  reject illegal characters, or meaningless character sequences

•  Return an abstract representation of the code
→  character sequences (e.g., “if” or “loop”) turned into tokens.

•  Resulting sequence of tokens will be used by the parser
•  Makes the design of the parser a lot easier.

How to specify a scanner

•  A scanner specification (e.g., for JLex), is list of (typically
short) regular expressions.

•  Each regular expressions has an action associated with it.
•  Typically, an action is to return a token.
•  On a given input string, the scanner will:

→  find the longest prefix of the input string, that matches
one of the regular expressions.

→  will execute the action associated with the matching
regular expression highest in the list.

•  Scanner repeats this procedure for the remaining input.
•  If no match can be found at some point, an error is reported.

Example of a Specification

•  Consider the following scanner specification.
1.  aaa { return T1 }
2.  a*b { return T2 }
3.  b { return S }

•  Given the following input string into the scanner
aaabbaaa

the scanner as specified above would output
 T2 T2 T1

•  Note that the scanner will report an error for example on the
string ‘aa’.

•  Rule 3 is redundant!

Special Return Tokens
•  Sometimes one wants to extract information out of

 what prefix of the input was matched.
•  Example:

 “[a-zA-Z0-9]*” { return STRING(yytext()) }
•  Above RE matches every string that

→  starts and ends with quotes, and
→  has any number of alpha-numerical chars between them.

•  Associated action returns a string token, which is the exact
string that the RE matched.

•  Note that yytext() will also include the quotes.
•  Note this RE doesn’t handle escaped characters, special

characters (e.g., punctuation characters), etc.

Quiz

•  Consider the following scanner specification.
1.  bab { return T1 }
2.  ba+ { return T2 }
3.  b { return S1 }
4.  a { return S2 }

•  Given the following input string into the scanner
baabbabaa

the scanner as specified above would output

 What?

Example of a Specification

•  Consider the following scanner specification.
1.  bab { return T1 }
2.  ba+ { return T2 }
3.  b { return S1 }
4.  a { return S2 }

•  Given the following input string into the scanner
baabbabaa

the scanner as specified above would output
 T2 S1 T1 S2 S2

DFA Minimization
Details of the algorithm
•  Group states into maximal size sets, optimistically
•  Iteratively subdivide those sets, as needed
•  States that remain grouped together are equivalent

Initial partition, P0 , has two sets: {DF} & {D-DF}
(DFA =(Q,Σ,δ,q0,F))

Splitting a set (“partitioning a set by a”)
•  Assume qi, & qj ∈ p, and δ(qi,a) = qx, & δ(qj,a) = qy
•  If qx & qy are not in the same set, then p must be split

→  qi has transition on a, qj does not ⇒ a splits p

•  One state in the final DFA cannot have two transitions on a

DFA Minimization
The algorithm

P ← { DF, {D-DF}}
while (P is still changing)
 T ← Ø
 for each set p ∈ P

 T ← T ∪ Split(p)
 P ← T

Split(S)
 for each α ∈ Σ
 if α splits S into s1 and s2

 then return { s1,s2}
 return S

Why does this work?
•  Partition P ∈ 2D

•  Starts with 2 subsets of D
{DF} and {D-DF}

•  While loop takes Pi→Pi+1 by
splitting 1 or more sets

•  Pi+1 is at least one step closer
to the partition with |D| sets

•  Maximum of |D| splits
Note that
•  Partitions are never combined
•  Initial partition ensures that

final states are intact

This is a fixed-point algorithm!

Key Idea: Splitting S around α

S

T

R

α

The algorithm partitions S around α

Original set S

α

Q

α
S has transitions
 on α to R, Q, & T

Key Idea: Splitting S around α

T

R

α

Original set S

α

Q

α

S1

S2

Could we split S2 further?

S2 is everything
 in S - S1

DFA Minimization
What about a (b | c)* ?

First, the subset construction:

q0 q1
a ε

q4 q5

b

q6 q7
c

q3 q8 q2 q9

ε

ε

ε ε

ε ε

ε ε

s3

s2

s0 s1

c

b
a

b

b

c

c

Final states

DFA Minimization
Then, apply the minimization algorithm

To produce the minimal DFA

s3

s2

s0 s1

c

b
a

b

b

c

c

s0 s1

a

b | c
In lecture 4, we observed that a human
 would design a simpler automaton than
 Thompson’s construction & the subset
 construction did.

Minimizing that DFA produces the one
 that a human would design!

final states

Abbreviated Register Specification
Start with a regular expression

r0 | r1 | r2 | r3 | r4 | r5 | r6 | r7 | r8 | r9

minimal
 DFA RE NFA DFA

The Cycle of Constructions

Abbreviated Register Specification
Thompson’s construction produces

r 0

r 1

r 2

r 8

r 9

… …

s0 sf

ε

ε

ε

ε

ε

ε

εε
ε

ε

ε

ε ε

ε
ε

ε

ε

ε

ε
ε

…

minimal
 DFA RE NFA DFA

The Cycle of Constructions

To make it fit, we’ve eliminated the ε
-transition between “r” and “0...9”.

Abbreviated Register Specification
The subset construction builds

This is a DFA, but it has a lot of states …

r
0

sf0

s0

sf1 1
sf2 2

sf9

sf8

…
9

8

minimal
 DFA RE NFA DFA

The Cycle of Constructions

Abbreviated Register Specification
The DFA minimization algorithm builds

This looks like what a skilled compiler writer would do!

r
s0 sf

0,1,2,3,4,
5,6,7,8,9

minimal
 DFA RE NFA DFA

The Cycle of Constructions

Limits of Regular Languages
Advantages of Regular Expressions

•  Simple & powerful notation for specifying patterns

•  Automatic construction of fast recognizers

•  Many kinds of syntax can be specified with REs

Example — an expression grammar
Term → [a-zA-Z] ([a-zA-z] | [0-9])*

Op → + | - | * | /
Expr → (Term Op)* Term

Of course, this would generate a DFA …

If REs are so useful …
Why not use them for everything?

Limits of Regular Languages
Not all languages are regular

RL’s ⊂ CFL’s ⊂ CSL’s

You cannot construct DFA’s to recognize these languages
•  L = { pkqk } (parenthesis languages)

This is not a regular language (nor an RE)

But, this is a little subtle. You can construct DFA’s for
•  Strings with alternating 0’s and 1’s

(ε | 1) (01)* (ε | 0)

•  Strings with an even number of 0’s and 1’s
RE’s can count bounded sets and bounded differences

What can be so hard?
Poor language design can complicate scanning
•  Reserved words are important

if then then then = else; else else = then (PL/I)

•  Insignificant blanks (Fortran & Algol68)
do 10 i = 1,25
do 10 i = 1.25

•  String constants with special characters (C, C++, Java, …)
newline, tab, quote, comment delimiters, …

•  Finite closures (Fortran 66 & Basic)
→  Limited identifier length
→  Adds states to count length

Building Faster Scanners from the DFA

Table-driven recognizers waste effort
•  Read (& classify) the next character
•  Find the next state
•  Assign to the state variable
•  Trip through case logic in action()
•  Branch back to the top

We can do better
•  Encode state & actions in the code
•  Do transition tests locally
•  Generate ugly, spaghetti-like code
•  Takes (many) fewer operations per input character

char ← next character;
state ← s0 ;
call action(state,char);
while (char ≠ eof)
 state ← δ(state,char);
 call action(state,char);
 char ← next character;

if Τ(state) = final then
 report acceptance;
else
 report failure;

Building Faster Scanners from the DFA

A direct-coded recognizer for r Digit Digit*

•  Many fewer operations per character
•  Almost no memory operations
•  Even faster with careful use of fall-through cases

 goto s0;
s0: word ← Ø;
 char ← next character;
 if (char = ‘r’)
 then goto s1;
 else goto se;
s1: word ← word + char;
 char ← next character;
 if (‘0’ ≤ char ≤ ‘9’)
 then goto s2;
 else goto se;

s2: word ← word + char;
 char ← next character;
 if (‘0’ ≤ char ≤ ‘9’)
 then goto s2;
 else if (char = eof)
 then report success;
 else goto se;
se: print error message;
 return failure;

Building Faster Scanners
Hashing keywords versus encoding them directly

•  Some (well-known) compilers recognize keywords as
identifiers and check them in a hash table

•  Encoding keywords in the DFA is a better idea
→  O(1) cost per transition
→  Avoids hash lookup on each identifier

It is hard to beat a well-implemented DFA scanner

Building Scanners
The point
•  All this technology lets us automate scanner construction
•  Implementer writes down the regular expressions
•  Scanner generator builds NFA, DFA, minimal DFA, and then

writes out the (table-driven or direct-coded) code
•  This reliably produces fast, robust scanners

For most modern language features, this works
•  You should think twice before introducing a feature that

defeats a DFA-based scanner
•  The ones we’ve seen (e.g., insignificant blanks, non-reserved

keywords) have not proven particularly useful or long lasting

