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Lexical Analysis: 
DFA Minimization & Wrap Up 



Automating Scanner Construction 
PREVIOUSLY 
RE→NFA  (Thompson’s construction)  
•  Build an NFA for each term 

•  Combine them with ε-moves 
NFA →DFA (subset construction)  
•  Build the simulation 
TODAY 
Some Project Related Material 

DFA →Minimal DFA 

•  Hopcroft’s algorithm                          

minimal
 DFA RE NFA DFA 

The Cycle of  Constructions 



What we expect of the Scanner 

•  Report errors for lexicographically malformed inputs  
→  reject illegal characters, or meaningless character sequences 

•  Return an abstract representation of the code 
→  character sequences (e.g., “if” or “loop”) turned into tokens. 

•  Resulting sequence of tokens will be used by the parser 
•  Makes the design of the parser a lot easier. 



How to specify a scanner 

•  A scanner specification (e.g., for JLex), is list of (typically 
short) regular expressions.  

•  Each regular expressions has an action associated with it. 
•  Typically, an action is to return a token. 
•  On a given input string, the scanner will: 

→  find the longest prefix of the input string, that matches 
one of the regular expressions.  

→  will execute the action associated with the matching 
regular expression highest in the list. 

•  Scanner repeats this procedure for the remaining input. 
•  If no match can be found at some point, an error is reported. 



Example of a Specification 

•  Consider the following scanner specification.  
1.  aaa   { return T1 }  
2.  a*b  { return T2 } 
3.  b   { return S } 

•  Given the following input string into the scanner 
aaabbaaa 

the scanner as specified above would output 
   T2 T2 T1 

•  Note that the scanner will report an error for example on the 
string ‘aa’. 

•  Rule 3 is redundant! 



Special Return Tokens 
•  Sometimes one wants to extract information out of  

 what prefix of the input was matched.  
•  Example: 

   “[a-zA-Z0-9]*”   { return STRING(yytext()) } 
•  Above RE matches every string that  

→  starts and ends with quotes, and  
→  has any number of alpha-numerical chars between them. 

•  Associated action returns a string token, which is the exact 
string that the RE matched. 

•  Note that yytext() will also include the quotes. 
•  Note this RE doesn’t handle escaped characters, special 

characters (e.g., punctuation characters), etc.  



Quiz 

•  Consider the following scanner specification.  
1.  bab  { return T1 }  
2.  ba+  { return T2 } 
3.  b   { return S1 } 
4.  a   { return S2 } 

•  Given the following input string into the scanner 
baabbabaa 

the scanner as specified above would output 

     What? 



Example of a Specification 

•  Consider the following scanner specification.  
1.  bab  { return T1 }  
2.  ba+  { return T2 } 
3.  b   { return S1 } 
4.  a   { return S2 } 

•  Given the following input string into the scanner 
baabbabaa 

the scanner as specified above would output 
   T2 S1 T1 S2 S2 



DFA Minimization 
Details of the algorithm 
•  Group states into maximal size sets, optimistically 
•  Iteratively subdivide those sets, as needed  
•  States that remain grouped together are equivalent 

Initial partition, P0 , has two sets: {DF} & {D-DF} 
(DFA =(Q,Σ,δ,q0,F))  

Splitting a set (“partitioning a set by a”) 
•  Assume qi, & qj ∈ p, and δ(qi,a) = qx, &  δ(qj,a) = qy  
•  If qx & qy are not in the same set, then p must be split 

→  qi has transition on a, qj does not ⇒ a splits p 

•  One state in the final DFA cannot have two transitions on a 



DFA Minimization 
The algorithm 

P ← { DF, {D-DF}} 
while ( P is still changing) 
    T ← Ø 
    for each set p ∈ P 

 T ← T ∪ Split(p) 
     P ← T 

Split(S) 
 for each α ∈ Σ
    if α splits S into s1 and s2 

             then return { s1,s2} 
  return S 

Why does this work? 
•  Partition P ∈ 2D 

•  Starts with 2 subsets of D 
{DF} and {D-DF} 

•  While loop takes Pi→Pi+1 by 
splitting 1 or more sets 

•  Pi+1 is at least one step closer 
to the partition with |D| sets 

•  Maximum of |D| splits 
Note that 
•  Partitions are never combined 
•  Initial partition ensures that 

final states are intact 

This is a fixed-point algorithm! 



Key Idea: Splitting S around α  
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α

The algorithm partitions S around α 

Original set S 

α

Q 

α
S  has transitions
 on α to R, Q, & T 



Key Idea: Splitting S around α  
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Could we split S2 further? 

S2 is everything
 in S - S1 



DFA Minimization 
What about  a ( b | c )* ? 

First, the subset construction: 
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Final states 



DFA Minimization 
Then, apply the minimization algorithm 

To produce the minimal DFA 
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s0  s1  
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b | c 
In lecture 4, we observed that a human
 would design a simpler automaton than
 Thompson’s construction & the subset
 construction did. 

Minimizing that DFA produces the one
 that a human would design!  

final states 



Abbreviated Register Specification 
Start with a regular expression 

r0 | r1 | r2 | r3 | r4 | r5 | r6 | r7 | r8 | r9 

minimal
 DFA RE NFA DFA 

The Cycle of  Constructions 



Abbreviated Register Specification 
Thompson’s construction produces 

r 0
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r 2
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r 9

… … 

s0 sf 

ε

ε

ε

ε

ε

ε

εε
ε

ε

ε

ε ε

ε
ε

ε

ε

ε

ε
ε

… 

minimal
 DFA RE NFA DFA 

The Cycle of  Constructions 

To make it fit, we’ve eliminated the ε
-transition between “r” and “0...9”. 



Abbreviated Register Specification 
The subset construction builds 

This is a DFA, but it has a lot of states … 

r 
0

sf0 

s0 

sf1 1 
sf2 2

sf9 

sf8 

… 
9

8

minimal
 DFA RE NFA DFA 

The Cycle of  Constructions 



Abbreviated Register Specification 
The DFA minimization algorithm builds 

This looks like what a skilled compiler writer would do! 

r 
s0 sf 

0,1,2,3,4, 
5,6,7,8,9 

minimal
 DFA RE NFA DFA 

The Cycle of  Constructions 



Limits of Regular Languages 
Advantages of Regular Expressions 

•  Simple & powerful notation for specifying patterns 

•  Automatic construction of fast recognizers 

•  Many kinds of syntax can be specified with REs 

Example — an expression grammar 
Term →  [a-zA-Z] ([a-zA-z] | [0-9])* 

Op      →  + | - | * | / 
Expr   →  ( Term Op )* Term 

Of course, this would generate a DFA … 

If REs are so useful … 
Why not use them for everything? 



Limits of Regular Languages 
Not all languages are regular 

RL’s ⊂ CFL’s  ⊂ CSL’s 

You cannot construct DFA’s to recognize these languages 
•  L =  { pkqk }                                           (parenthesis languages) 

This is not a regular language                      (nor an RE) 

But, this is a little subtle.  You can construct DFA’s for 
•  Strings with alternating 0’s and 1’s                

( ε | 1 ) ( 01 )* ( ε | 0 )  

•  Strings with an even number of 0’s and 1’s                       
RE’s can count bounded sets and bounded differences 



What can be so hard? 
Poor language design can complicate scanning 
•  Reserved words are important 

if then then then = else; else else = then          (PL/I) 

•  Insignificant blanks                                    (Fortran & Algol68) 
do 10 i = 1,25 
do 10 i = 1.25 

•  String constants with special characters   (C, C++, Java, …) 
newline, tab, quote, comment delimiters, … 

•  Finite closures                                           (Fortran 66 & Basic) 
→  Limited identifier length 
→  Adds states to count length 



Building Faster Scanners from the DFA 

Table-driven recognizers waste effort 
•  Read (& classify) the next character 
•  Find the next state  
•  Assign to the state variable  
•  Trip through case logic in action()  
•  Branch back to the top 

We can do better 
•  Encode state & actions in the code  
•  Do transition tests locally 
•  Generate ugly, spaghetti-like code 
•  Takes (many) fewer operations per input character 

char ← next character; 
state ← s0 ; 
call action(state,char); 
while (char ≠ eof) 
   state ← δ(state,char); 
   call action(state,char); 
   char ← next character; 

if  Τ(state) = final then  
   report acceptance; 
else 
    report failure; 



Building Faster Scanners from the DFA 

A direct-coded recognizer for  r Digit Digit* 

•  Many fewer operations per character 
•  Almost no memory operations 
•  Even faster with careful use of fall-through cases  

      goto s0; 
s0: word ← Ø; 
      char  ← next character; 
      if (char = ‘r’) 
         then goto s1; 
         else goto se; 
s1: word ← word + char; 
      char ← next character; 
      if (‘0’ ≤ char ≤  ‘9’)  
         then goto s2; 
         else goto se; 

s2: word ← word + char; 
      char  ← next character; 
      if (‘0’ ≤ char ≤  ‘9’)  
         then goto s2; 
         else if (char = eof) 
             then report success; 
             else goto se; 
se: print error message; 
      return failure; 



Building Faster Scanners 
Hashing keywords versus encoding them directly 

•  Some (well-known) compilers recognize keywords as 
identifiers and check them in a hash table            

•  Encoding keywords in the DFA is a better idea 
→  O(1) cost per transition 
→  Avoids hash lookup on each identifier 

It is hard to beat a well-implemented DFA scanner 



Building Scanners 
The point 
•  All this technology lets us automate scanner construction 
•  Implementer writes down the regular expressions 
•  Scanner generator builds NFA, DFA, minimal DFA, and then 

writes out the (table-driven or direct-coded) code 
•  This reliably produces fast, robust scanners 

For most modern language features, this works 
•  You should think twice before introducing a feature that 

defeats a DFA-based scanner 
•  The ones we’ve seen (e.g., insignificant blanks, non-reserved 

keywords) have not proven particularly useful or long lasting 


