Association for
Computing Machinery
udacm.org

Career Services &

present:

Microsoft

Wednesday, October 1, 6:00-7:30pm
Gore Hall Room 103

Bring your resume for a chance to win great
prizes!! FREE FOOD will be provided!

Lexical Analysis:
DFA Minimization & Wrap Up

Automating Scanner Construction

PREVIOUSLY
RE—NFA (Thompson’s construction) The Cycle of Constructions

e Build an NFA for each term Q Q
* Combine them with e-moves ~— »NFA —>DFA _>””'3gAa’

NFA —DFA (subset construction)

* Build the simulation

TODAY
Some Project Related Material

DFA —Minimal DFA
* Hopcroft's algorithm

0

[L]
1743
3

What we eerc‘r of the Scanner

Report errors for lexicographically malformed inputs

— reject illegal characters, or meaningless character sequences
Return an abstract representation of the code

— character sequences (e.g., "if" or "loop") tfurned into tokens.
Resulting sequence of tokens will be used by the parser
Makes the design of the parser a lot easier.

38t
e

\WARE
1743
®

How to sEecifx a scanhner

* A scanner specification (e.g., for JLex), is list of (typically
short) reqular expressions.

* Each regular expressions has an action associated with it.
* Typically, an action is to return a token.
* Onagiven input string, the scanner will:

— find the longest prefix of the input string, that matches
one of the regular expressions.

— will execute the action associated with the matching
regular expression highest in the list.

* Scanner repeats this procedure for the remaining input.
* If no match can be found at some point, an error is reported.

38t
i

\WARE
1743
®

ExamEle of a SEecifica’rion

* Consider the following scanner specification.
1. aaa { return T1}
2. a*b { return T2}
3. b { return S}
* Given the following input string into the scanner
aaabbaaa
the scanner as specified above would output
T2 T2 T1

* Note that the scanner will report an error for example on the
string 'ad’.
* Rule 3 is redundant!

Special Return Tokens

* Sometimes one wants to extract information out of
what prefix of the input was matched.
* Example:
“[a-zA-ZO-9T*" { return STRING(yytext()) }
* Above RE matches every string that
— starts and ends with quotes, and
— has any number of alpha-numerical chars between them.

* Associated action returns a string token, which is the exact
string that the RE matched.

* Note that yytext() will also include the quotes.

* Note this RE doesn't handle escaped characters, special
characters (e.g., punctuation characters), etc.

Quiz

* Consider the following scanner specification.
1. bab { return T1}

2. ba' { return T2 }

3. b { return S1}
4. a { return S2}
* Given the following input string into the scanner
baabbabaa

the scanner as specified above would output

What?

0
P

[L]
1743
3

ExamEle of a SEecificaTion

* Consider the following scanner specification.
1. bab { return T1}
2. ba' { return T2 }

3. b { return S1}
4. a { return S2}
* Given the following input string into the scanner
baabbabaa

the scanner as specified above would output
T2 S1T1S2 52

DFA Minimization

Details of the algorithm

* Group states intfo maximal size sets, optimistically

e Tteratively subdivide those sets, as needed

* States that remain grouped together are equivalent

Initial partition, P,, has two sets: {D.} & {D-D.}
(DFA =(Q,2,6,90.F))

Splitting a set ("partitioning a set by a")

°* Assume g, & g;€ p, and 8(¢;0) = ¢,, & d(g;0) = g,

* If ¢, & g, are not in the same set, then p must be split
— q; has transition on a, q; does not = a splits p

 QOne state in the final DFA cannot have two transitions on a

DFA Minimization

The algorithm

P < { Dy, {D-DJ]
while (P is still changing)
T<—g
for each set p € P
T < T U Split(p)
P—T

Split(S)
foreacha €%
if a splits S into s;and s
then return { s,,s,)}
return S

This is a fixed-point algorithm!

Why does this work?

* Partition Pe2b

* Starts with 2 subsets of D
{D:} and {D-D.}

* While loop takes P—P,; by
splitting 1 or more sets

* P.,is at least one step closer
to the partition with | D| sets

* Maximum of |D| splits
Note that

* Partitions are never combined
* TInitial partition ensures that
final states are intact

Key Idea: Splitting S around o

Original set S

\

-

J
a

- @
y

The algorithm partitions S around o

.

S has transitions
onatoR Q &T

Key Idea: Splitting S around o

Original set S

/ o

S
/"
/ ¢
S, is everything

ins -,

Could we split S, further?

DFA Minimization
What about a(b|c) ?

First, the subset construction:

e-closure(Delta(s,*))

NFA states a b c
So Qo g+ 4z Qs none none
Q4 96, Q9
S1 d+, 42, 5 none ds, 4s, Qo, 47, gs, Qo,
Q4 QG, J Q3 44, Qs Q3 94, Qs
S2 | Qs (78,.,(none S S3
43 44 Qe k
Sz | Q7 Qs Qg)v\ \N&\@\ S2 S3
Q3 94 Qs
ﬁ Final states

DFA Minimization

Then, apply the minimization algorithm

Split on
Current Partition a b

P, {@} none | none

| final states

To produce the minimal DFA

blc

oo

In lecture 4, we observed that a human
would design a simpler automaton than
Thompson's construction & the subset
construction did.

Minimizing that DFA produces the one
that a human would design!

Abbreviated Reqgister Specification

Start with a regular expression
rO|lrli|r2|r3|rd|r5|r6|r7|r8 | r9
N -/
—

The Cycle of Constructions

min@
NFA —DFA — DFA

Abbreviated Reqgister Specification

Thompson's construction produces

To make it fit, we've eliminated the ¢
-transition between "r" and "0...9".

/

The Cycle

of Constructions

(L

min@
—>DFA — DFA

38t
i

\WARE
1743
3

Abbreviated Regis’rer SEecifica’rion

The subset construction builds

This is a DFA, but it has a lot of states ..

The Cycle of Constructions

Q»NFA J”g@

38t
i

\WARE
1743
3

Abbreviated Regis’rer SEecifica’rion

The DFA minimization algorithm builds

012,34,

@ r 05!6,7!8,9 @

This looks like what a skilled compiler writer would do!

The Cycle of Constructions

Q»NFA —>DFA %@

Limits of Reqular Languages

Advantages of Regular Expressions
* Simple & powerful notation for specifying patterns
* Automatic construction of fast recognizers

* Many kinds of syntax can be specified with REs

Example — an expression grammar
Term — [a-zA-Z] ([a-zA-z] | [0-9])"
Op —+|-]1*]|/
Expr — (Term Op)" Term

Of course, this would generate a DFA ...

If REs are so useful ...
Why not use them for everything?

Limits of Regular Languages

Not all languages are regular
RL's CCFL's CCSL's

You cannot construct DFA's to recognize these languages
o L= {pkg-} (parenthesis languages)
This is not a reqular language (nor an RE)

But, this is a little subtle. You can construct DFA's for

* Strings with alternating O's and 1's
(e1)(01)(el0)

* Strings with an even number of O's and 1's

RE's can count bounded sets and bounded differences

What can be so hard?

Poor language design can complicate scanning
* Reserved words are important

if then then then = else; else else = then (PL/I)

* Insignificant blanks (Fortran & Algol68)
do10i=1,25
do10i =125

* String constants with special characters (C, C++, Java, ..)
newline, tab, quote, comment delimiters, ...

* Finite closures (Fortran 66 & Basic)
— Limited identifier length
— Adds states to count length

Building Faster Scanners from the DFA

Table-driven recognizers waste effort

Read (& classify) the next character
Find the next state

Assign to the state variable

Trip through case logic in action()
Branch back to the top

We can do better

Encode state & actions in the code
Do transition tests locally
Generate ugly, spaghetti-like code

0

[L]
1743
3

char <— next character;
state < s,,.
call action(state,char);
while (char = eof)
state < o(state,char),
call action(state,char);
char <— next character;

if T(state) = final then
report acceptance,
else
report failure;

Takes (many) fewer operations per input character

Building Faster Scanners from the DFA

A direct-coded recognizer for r Digit Digit’

* Many fewer operations per character

* Almost no memory operations

* Even faster with careful use of fall-through cases

goto sy
Sy word < 2,
char < next character,

s2: word < word + char;
. . char < next character;
if (char = r’) | if (0'< char< '9)

then goto s, then goto s,

else goto s, else if (char = eof)

s.. word < word + char;
! then report success;
char < next character;
else goto s,;

if (O'<char< '9)
then goto s,
else goto s,,

S,: print error message;
return failure;

Building Faster Scanners

Hashing keywords versus encoding them directly

* Some (well-known) compilers recognize keywords as
identifiers and check them in a hash table

* Encoding keywords in the DFA is a better idea
— O(1) cost per transition
— Avoids hash lookup on each identifier

It is hard to beat a well-implemented DFA scanner

Building Scanners

The point
* All this technology lets us automate scanner construction
* Implementer writes down the reqular expressions

* Scanner generator builds NFA, DFA, minimal DFA, and then
writes out the (table-driven or direct-coded) code

* This reliably produces fast, robust scanners

For most modern language features, this works

* You should think twice before introducing a feature that
defeats a DFA-based scanner

* The ones we've seen (e.g., insignificant blanks, non-reserved
keywords) have not proven particularly useful or long lasting

