
Lexical Analysis — Part II:
Constructing a Scanner from Regular

Expressions

Quick Review

Previous class:
→  The scanner is the first stage in the front end
→  Specifications can be expressed using regular expressions
→  Build tables and code from a DFA

Scanner

Scanner
Generator

specifications

source code parts of speech & words

code
 and

 tables

Goal

•  We will show how to construct a finite state automaton to
recognize any RE

•  This Lecture
→  Convert RE to an nondeterministic finite automaton (NFA)

  Requires ε-transitions to combine regular subexpressions
→  Convert an NFA to a deterministic finite automaton (DFA)

  Use Subset construction
Next Lecture
→  Minimize the number of states

  Hopcroft state minimization algorithm
→  Generate the scanner code

  Additional code can be inserted

More Regular Expressions
•  All strings of 1s and 0s ending in a 1

(0 | 1)* 1

•  All strings over lowercase letters where the vowels (a,e,i,o,u)
occur exactly once, in ascending order

Cons → (b|c|d|f|g|h|j|k|l|m|n|p|q|r|s|t|v|w|x|y|z)
Cons* a Cons* e Cons* i Cons* o Cons* u Cons*

•  All strings of 1s and 0s that do not contain three 0s in a row:

More Regular Expressions
•  All strings of 1s and 0s ending in a 1

(0 | 1)* 1

•  All strings over lowercase letters where the vowels (a,e,i,o,u)
occur exactly once, in ascending order

Cons → (b|c|d|f|g|h|j|k|l|m|n|p|q|r|s|t|v|w|x|y|z)
Cons* a Cons* e Cons* i Cons* o Cons* u Cons*

•  All strings of 1s and 0s that do not contain three 0s in a row:
(1* (ε |01 | 001) 1*)* (ε | 0 | 00)

Non-deterministic Finite Automata

Each RE corresponds to a deterministic finite automaton (DFA)
•  May be hard to directly construct the right DFA

What about an RE such as (a | b)* abb?

This is a little different

•  S1 has two transitions on a

This is a non-deterministic finite automaton (NFA)

a , b

S0 S3 S1 S2

a b b

Non-deterministic Finite Automata

Each RE corresponds to a deterministic finite automaton (DFA)
•  May be hard to directly construct the right DFA

What about an RE such as (a | b)* abb?

This is a little different

•  S1 has two transitions on a

•  S0 has a transition on ε
This is a non-deterministic finite automaton (NFA)

a , b

S0 S1 S4 S2 S3

ε
 a b b

Nondeterministic Finite Automata

•  An NFA accepts a string x iff ∃ a path though the transition
graph from s0 to a final state such that the edge labels spell x

•  Transitions on ε consume no input
•  To “run” the NFA, start in s0 and guess the right transition at

each choice point with multiple possibilities
→  Always guess correctly
→  If some sequence of correct guesses accepts x then accept

Why study NFAs?
•  They are the key to automating the RE→DFA construction

•  We can paste together NFAs with ε-transitions

NFA NFA becomes an NFA ε

Relationship between NFAs and DFAs
DFA is a special case of an NFA

•  DFA has no ε transitions
•  DFA’s transition function is single-valued
•  Same rules will work

DFA can be simulated with an NFA
→  Obviously

NFA can be simulated with a DFA (less obvious)
•  Simulate sets of possible states
•  Possible exponential blowup in the state space
•  Still, one state per character in the input stream

Automating Scanner Construction
To convert a specification into code:
1  Write down the RE for the input language
2  Build a big NFA
3  Build the DFA that simulates the NFA
4  Systematically shrink the DFA
5  Turn it into code

Scanner generators
•  Lex, Flex, and JLex work along these lines
•  Algorithms are well-known and well-understood
•  Key issue is interface to parser (define all parts of speech)

Automating Scanner Construction

RE→ NFA (Thompson’s construction)
•  Build an NFA for each term

•  Combine them with ε-transitions

NFA → DFA (subset construction)
•  Build the simulation

DFA → Minimal DFA

•  Hopcroft’s algorithm

DFA →RE (Not part of the scanner construction)

•  All pairs, all paths problem
•  Take the union of all paths from s0 to an accepting state

minimal
 DFA RE NFA DFA

The Cycle of Constructions

RE →NFA using Thompson’s Construction
Key idea
•  NFA pattern for each symbol & each operator

•  Join them with ε transitions in precedence order

S0 S1
a

NFA for a

S0 S1
a

S3 S4
b

NFA for ab

ε

NFA for a | b

S0

S1 S2
a

S3 S4
b

S5

ε

ε ε

ε

S0 S1
ε
 S3 S4

ε

NFA for a*

a

ε

ε

Ken Thompson, CACM, 1968

S0 S1
b

NFA for b

Concatenation Alternation

Closure

Example of Thompson’s Construction
Let’s try a (b | c)*

1. a, b, & c

2. b | c

3. (b | c)*

S0 S1
a

S0 S1
b

S0 S1
c

S2 S3
b

S4 S5
c

S1 S6 S0 S7

ε

ε

ε
 ε

ε
 ε

ε
 ε

S1 S2
b

S3 S4
c

S0 S5

ε

ε

ε

ε

Example of Thompson’s Construction (cont'd)

4. a (b | c)*

Of course, a human would design something simpler ...

S0 S1
a

b | c

But, we can automate production of
 the more complex one ...

S0 S1
a ε

S4 S5
b

S6 S7
c

S3 S8 S2 S9

ε

ε

ε
 ε

ε
 ε

ε
 ε

NFA →DFA with Subset Construction
Need to build a simulation of the NFA

Two key functions
•  Delta(qi , a) is set of states reachable from each state

in qi by a
→  Returns a set of states, for each n ∈ qi of δi (n, a)

•  ε-closure(si) is set of states reachable from si by ε transitions

The algorithm:
•  Start state derived from n0 of the NFA

•  Take its ε-closure q0 = ε-closure(n0)

•  Compute Delta(q, α) for each α ∈ Σ, and take its ε-closure
•  Iterate until no more states are added

Sounds more complex than it is…

NFA →DFA with Subset Construction

The algorithm:

q0 ← ε-closure(n0)

Q ← {q0}

WorkList ← {q0}

while (WorkList ≠ ф)
 remove q from WorkList
 for each α ∈ Σ

 t← ε-closure(Delta(q,α))
 T[q,α] ← t
 if (t ∉ Q) then
 add t to Q and WorkList

Let’s think about why this works

The algorithm halts:

1. Q contains no duplicates
 (test before adding)

2. 2Q is finite
3. while loop adds to Q, but does
 not remove from Q (monotone)

⇒ the loop halts

Q contains all the reachable
 NFA states
It tries each character in each q.
It builds every possible NFA
 configuration.

⇒ Q and T form the DFA

NFA →DFA with Subset Construction
Example of a fixed-point computation
•  Monotone construction of some finite set
•  Halts when it stops adding to the set
•  Proofs of halting & correctness are similar
•  These computations arise in many contexts

We will see many more fixed-point computations

q0 q1
a ε

q4 q5
b

q6 q7
c

q3 q8 q2 q9

ε

ε ε

ε ε

ε ε

Final states

NFA →DFA with Subset Construction

Applying the subset construction:

a (b | c)* :
ε

NFA →DFA with Subset Construction
The DFA for a (b | c)*

•  Ends up smaller than the NFA

•  All transitions are deterministic

•  Use same code skeleton as before

s3

s2

s0 s1

c

b
a

b

c

c

b

Where are we? Why are we doing this?

RE → NFA (Thompson’s construction) 
•  Build an NFA for each term
•  Combine them with ε-moves

NFA → DFA (subset construction) 
•  Build the simulation

DFA → Minimal DFA
•  Hopcroft’s algorithm

DFA → RE
•  All pairs, all paths problem
•  Union together paths from s0 to a final state

Enough theory for today

minimal
 DFA RE NFA DFA

The Cycle of Constructions

What we expect of the Scanner

•  Report errors for lexicographically malformed inputs
→  reject illegal characters, or meaningless character sequences
→  E.g., ‘#’ or “floop” in COOL

•  Return an abstract representation of the code

→  character sequences (e.g., “if” or “loop”) turned into tokens.
•  Resulting sequence of tokens will be used by the parser
•  Makes the design of the parser a lot easier.

How to specify a scanner

•  A scanner specification (e.g., for JLex), is list of (typically
 short) regular expressions.

•  Each regular expressions has an action associated with it.
•  Typically, an action is to return a token.
•  On a given input string, the scanner will:

→  find the longest prefix of the input string, that matches
 one of the regular expressions.

→  will execute the action associated with the matching
 regular expression highest in the list.

•  Scanner repeats this procedure for the remaining input.
•  If no match can be found at some point, an error is reported.

Example of a Specification

•  Consider the following scanner specification.
1.  aaa { return T1 }
2.  a*b { return T2 }
3.  b { return S }

•  Given the following input string into the scanner
aaabbaaa

the scanner as specified above would output
 T2 T2 T1

•  Note that the scanner will report an error for example on the
 string ‘aa’.

Special Return Tokens
•  Sometimes one wants to extract information out of

 what prefix of the input was matched.
•  Example:

 “[a-zA-Z0-9]*” { return STRING(yytext()) }
•  Above RE matches every string that

→  starts and ends with quotes, and
→  has any number of alpha-numerical chars between them.

•  Associated action returns a string token, which is the exact
 string that the RE matched.

•  Note that yytext() will also include the quotes.
•  Furthermore, note that this regular expression does not

 handle escaped characters.

