Lexical Analysis — Part IT:
Constructing a Scanner from Regular
Expressions

Quick Review

source code parts of speech & words
> Scanner ... »
A
c>\
- code
specifications Scanner and
'| Generator tables

Previous class:
— The scanner is the first stage in the front end
— Specifications can be expressed using regular expressions
— Build tables and code from a DFA

Goal

* We will show how to construct a finite state automaton to
recoghize any RE
* This Lecture
— Convert RE to an nondeterministic finite automaton (NFA)
= Requires e-transitions fo combine regular subexpressions
— Convert an NFA to a deterministic finite automaton (DFA)
= Use Subset construction
Next Lecture
— Minimize the number of states
= Hopcroft state minimization algorithm
— Generate the scanner code
= Additional code can be inserted

38t
e

\WARE
1743
®

More Regular' ExEressions

* All strings of 1s and Os ending ina 1
(01)1

* All strings over lowercase letters where the vowels (a,e,i,ou)
occur exactly once, in ascending order

Cons — (blc|dlflglhljlkllIm|n|plg|r]|s|t|viw]x|y|Z)
Cons a Cons" e Cons i Cons o Cons u Cons

* All strings of 1s and Os that do not contain three Os in a row:

0

[L]
1743
3

More Regular' ExEressions

* All strings of 1s and Os ending ina 1
(01)1

* All strings over lowercase letters where the vowels (a,e,i,ou)
occur exactly once, in ascending order

Cons — (blc|dlflglhljlkllIm|n|plg|r]|s|t|viw]x|y|Z)
Cons a Cons" e Cons i Cons o Cons u Cons

* All strings of 1s and Os that do not contain three Os in a row:
(1"(e|01]001)1") (e|0]00)

Non-deterministic Finite Automata

Each RE corresponds to a deterministic finite automaton (DFA)
* May be hard to directly construct the right DFA

What about an RE suchas (a | b)" abb?
a,b
()=

This is a little different

* 5, has two transitions on a

This is a non-deterministic finite automaton (NFA)

Non-deterministic Finite Automata

Each RE corresponds to a deterministic finite automaton (DFA)
* May be hard to directly construct the right DFA

What about an RE suchas (a | b)" abb?
b

This is a little different

I

* S, has two transitions on a

* Sphas a transition on €
This is a non-deterministic finite automaton (NFA)

38t

Nondeterministic Finite Automata

L]

* An NFA accepts a string x iff 3 a path though the transition
graph from s, to a final state such that the edge labels spell x

* Transitions on € consume no input

* To "run” the NFA, start in s, and guess the right transition at
each choice point with multiple possibilities
— Always guess correctly
— If some sequence of correct guesses accepts x then accept

Why study NFAs?
* They are the key to automating the RE—=DFA construction

* We can paste together NFAs with €-fransitions

0
P

[L]
1743
x

Rela‘rionshiE between NFAs and DFAs

DFA is a special case of an NFA

« DFA has nho € transitions
* DFA's transition function is single-valued
e Same rules will work

DFA can be simulated with an NFA
— Obviously

NFA can be simulated with a DFA (less obvious)
* Simulate sets of possible states

* Possible exponential blowup in the state space

* Still, one state per character in the input stream

0

[L]
1743
x

Au’roma’ring Scanner Construction

To convert a specification into code:

1 Worite down the RE for the input language
2 Build a big NFA

3 Build the DFA that simulates the NFA

4 Systematically shrink the DFA

5 Turn it into code

Scanner generators

* Lex, Flex, and JLex work along these lines

* Algorithms are well-known and well-understood

* Key issue is interface to parser (define all parts of speech)

Automating Scanner Construction

RE— NFA (Thompson’s construction)
* Build an NFA for each term

e Combine them with e-transitions

NFA — DFA (SUb.S'eT Consrr,ucflon) ... !
The Cycle of Constructions :
e Build the simulation

DFA — Minimal DFA 2 Q Q
; minhgal
i —>NFA —DFA — DFA

* Hopcroft's algorithm

DFA —RE (Not part of the scanner construction)
* All pairs, all paths problem
* Take the union of all paths from s, to an accepting state

RE —NFA using Thompson's Construction

Key idea
* NFA pattern for each symbol & each operator
e Join them with € ftransitions in precedence order

NFA for a NFA for b

Concatenation Alternation
(S5 2595

NFA for ab

Closure

()~ 9 OmO e

€
NFA for a”

Ken Thompson, CACM, 1968

Example of Thompson's Construction

Let'strya(b|c)

1. a,b,&c

E

But, we can automate production of
the more complex one ...

NFA —DFA with Subset Construction

Need to build a simulation of the NFA

Two key functions

Delta(q;, a) is set of states reachable from each state
in qi by a
— Returns a set of states, for each n € q; of §; (n,_a)

® ¢-closure(s)) is set of states reachable from s;by & transitions

The algorithm:

Start state derived from ny of the NFA
Take its e-closure q, = €-closure(n,)
Compute Delta(q, o) for each o € 2, and take its €-closure

Iterate until no more states are added

Sounds more complex than it is...

NFA —DFA with Subset Construction

The algorithm:

q, < e-closure(n,)

Q < {qo}
WorkList < {q,}

while (WorkList # ¢)
remove q from WorkList
for each a X
t— e-closure(Delta(q,a))
T[q,a] < t
if (tZ Q) then
add t to Q and WorkList

Let’s think about why this works

The algorithm halts:
1. Q contains no duplicates
(test before adding)
2. 29js finite
3. while loop adds to Q, but does
not remove from Q (monotone)

= the loop halts
Q contains all the reachable
NFA states

It tries each character in each q.

It builds every possible NFA
configuration.

= Q and T form the DFA

NFA —DFA with Subset Construction

Example of a fixed-point computation

* Monotone construction of some finite set

* Halts when it stops adding to the set

* Proofs of halting & correctness are similar
* These computations arise in many contexts

We will see many more fixed-point computations

NFA —DFA with Subset Construction

Applying the subset construction:

e-closure(Delta(q,*))

NFA states a b C
So do 91, 92, 93, none none
d4, 96, 9o
Sy 491, 92, 93, none ds, ds, Qo, 47, s, Qo,
94, 96, g 43, 94, 9e 43, 94, 9e
S ds, s, A none S S3
93, 94, G N[\
S3 4z, gs; (;'97\ none S S3
ds, 94, e \\
ﬁ Final states

NFA —DFA with Subset Construction

The DFA fora(b | c)
* Ends up smaller than the NFA

 All transitions are deterministic

 Use same code skeleton as before

0 a b C
So S4 - -
S4 - Sy S3
Sy - Sy S3
S3 - Sy S3

Where are we? Why are we doing this?

RE — NFA (Thompson’s construction) 4
e Build an NFA for each term

e Combine them with e-moves

NFA — DFA (subset construction) ¥

° Bu”d The Simula'rion i
i The Cycle of Constructions ’

DFA — Minimal DFA

* Hopcroft's algorithm Q Q
! minkgal
; —>NFA —DFA — DFA

DFA — RE
* All pairs, all paths problem
* Union together paths from s, to a final state

...

Enough theory for today

What we eerc‘r of the Scanner

0

[L]
1743
3

Report errors for lexicographically malformed inputs
— reject illegal characters, or meaningless character sequences
— E.g., # or "floop" in COOL

Return an abstract representation of the code

— character sequences (e.g., "if" or "loop") turned into tokens.

Resulting sequence of tokens will be used by the parser
Makes the design of the parser a lot easier.

38t
e

\WARE
1743
®

How to sEecifx a scanhner

* A scanner specification (e.g., for JLex), is list of (typically
short) reqular expressions.

* Each regular expressions has an action associated with it.
* Typically, an action is to return a token.
* Onagiven input string, the scanner will:

— find the longest prefix of the input string, that matches
one of the regular expressions.

— will execute the action associated with the matching
regular expression highest in the list.

* Scanner repeats this procedure for the remaining input.
* If no match can be found at some point, an error is reported.

38t
i

\WARE
1743
®

ExamEle of a SEecifica’rion

* Consider the following scanner specification.

1. aaa { return T1}
2. a*b { return T2}
3. b { return S}

* Given the following input string into the scanner
aaabbaaa
the scanner as specified above would output
T2 T2 T1

* Note that the scanner will report an error for example on the
string 'ad’.

Special Return Tokens

* Sometimes one wants to extract information out of
what prefix of the input was matched.
* Example:
“[a-zA-ZO-9T*" { return STRING(yytext()) }
* Above RE matches every string that
— starts and ends with quotes, and
— has any number of alpha-numerical chars between them.

* Associated action returns a string token, which is the exact
string that the RE matched.

* Note that yytext() will also include the quotes.

* Furthermore, note that this regular expression does not
handle escaped characters.

