
Lexical Analysis — Part II: 
Constructing a Scanner from Regular 

Expressions 



Quick Review 

Previous class: 
→  The scanner is the first stage in the front end 
→  Specifications can be expressed using regular expressions 
→  Build tables and code from a DFA 

Scanner 
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Goal 

•  We will show how to construct a finite state automaton to 
recognize any RE 

•  This Lecture 
→  Convert RE to an nondeterministic finite automaton (NFA)  

  Requires ε-transitions to combine regular subexpressions 
→  Convert an NFA to a deterministic finite automaton (DFA) 

  Use Subset construction 
Next Lecture 
→  Minimize the number of states 

  Hopcroft state minimization algorithm 
→  Generate the scanner code 

  Additional code can be inserted 



More Regular Expressions 
•  All strings of 1s and 0s ending in a 1 

( 0 | 1 )* 1 

•  All strings over lowercase letters where the vowels (a,e,i,o,u) 
occur exactly once, in ascending order 

Cons → (b|c|d|f|g|h|j|k|l|m|n|p|q|r|s|t|v|w|x|y|z) 
Cons* a Cons* e Cons* i Cons* o Cons* u Cons*  

•  All strings of 1s and 0s that do not contain three 0s in a row: 



More Regular Expressions 
•  All strings of 1s and 0s ending in a 1 

( 0 | 1 )* 1 

•  All strings over lowercase letters where the vowels (a,e,i,o,u) 
occur exactly once, in ascending order 

Cons → (b|c|d|f|g|h|j|k|l|m|n|p|q|r|s|t|v|w|x|y|z) 
Cons* a Cons* e Cons* i Cons* o Cons* u Cons*  

•  All strings of 1s and 0s that do not contain three 0s in a row: 
( 1* ( ε |01 | 001 ) 1* )* ( ε | 0 | 00 ) 



Non-deterministic Finite Automata 

Each RE corresponds to a deterministic finite automaton (DFA) 
•  May be hard to directly construct the right DFA 

What about an RE such as ( a | b )* abb? 

This is a little different 

•  S1 has two transitions on a  

This is a non-deterministic finite automaton (NFA) 

a , b 

S0  S3 S1  S2  

a b b 



Non-deterministic Finite Automata 

Each RE corresponds to a deterministic finite automaton (DFA) 
•  May be hard to directly construct the right DFA 

What about an RE such as ( a | b )* abb? 

This is a little different 

•  S1 has two transitions on a  

•  S0 has a transition on ε  
This is a non-deterministic finite automaton (NFA) 

a , b 

S0  S1  S4  S2  S3  

ε
 a b b 



Nondeterministic Finite Automata 

•  An NFA accepts a string x iff ∃ a path though the transition 
graph from s0 to a final state such that the edge labels spell x 

•  Transitions on ε consume no input 
•  To “run” the NFA, start in s0 and guess the right transition at 

each choice point with multiple possibilities 
→  Always guess correctly 
→  If some sequence of correct guesses accepts x then accept 

Why study NFAs? 
•  They are the key to automating the RE→DFA construction 

•  We can paste together NFAs with ε-transitions 

NFA NFA becomes an NFA ε



Relationship between NFAs and DFAs 
DFA is a special case of an NFA 

•  DFA has no ε transitions 
•  DFA’s transition function is single-valued 
•  Same rules will work 

DFA can be simulated with an NFA 
→  Obviously 

NFA can be simulated with a DFA                             (less obvious) 
•  Simulate sets of possible states 
•  Possible exponential blowup in the state space 
•  Still, one state per character in the input stream 



Automating Scanner Construction 
To convert a specification into code: 
1  Write down the RE for the input language 
2  Build a big NFA 
3  Build the DFA that simulates the NFA 
4  Systematically shrink the DFA 
5  Turn it into code 

Scanner generators 
•  Lex, Flex, and JLex work along these lines 
•  Algorithms are well-known and well-understood 
•  Key issue is interface to parser       (define all parts of speech) 



Automating Scanner Construction 

RE→ NFA  (Thompson’s construction) 
•  Build an NFA for each term 

•  Combine them with ε-transitions 

NFA → DFA (subset construction) 
•  Build the simulation 

DFA → Minimal DFA 

•  Hopcroft’s algorithm                          

DFA →RE (Not part of the scanner construction)  

•  All pairs, all paths problem 
•  Take the union of all paths from s0 to an accepting state 

minimal
 DFA RE NFA DFA 

The Cycle of  Constructions 



RE →NFA using Thompson’s Construction 
Key idea 
•  NFA pattern for each symbol & each operator 

•  Join them with ε transitions in precedence order 

S0  S1  
a

NFA for a 

S0  S1  
a

S3  S4  
b

NFA for ab 

ε

NFA for a | b 

S0  

S1  S2  
a

S3  S4  
b

S5  

ε

ε ε

ε

S0  S1  
ε
 S3  S4  

ε


NFA for a* 

a

ε


ε

Ken Thompson, CACM, 1968 

S0  S1  
b

NFA for b 

Concatenation Alternation 

Closure 



Example of Thompson’s Construction 
Let’s try a ( b | c )*  

1.  a, b, & c 

2.  b | c 

3.  ( b | c )*   

S0  S1  
a

S0  S1  
b

S0  S1  
c

S2  S3  
b

S4  S5  
c

S1 S6  S0  S7  

ε


ε


ε
 ε


ε
 ε


ε
 ε


S1  S2  
b

S3  S4  
c

S0  S5  

ε


ε


ε


ε




Example of Thompson’s Construction   (cont'd) 

4.  a ( b | c )*  

Of course, a human would design something simpler ... 

S0  S1  
a

b | c 

But, we can automate production of
 the more complex one ... 

S0  S1  
a ε


S4  S5  
b

S6  S7  
c

S3 S8  S2  S9  

ε


ε


ε
 ε


ε
 ε


ε
 ε




NFA →DFA with Subset Construction 
Need to build a simulation of the NFA 

Two key functions 
•  Delta(qi , a)  is set of states reachable from each state 

in qi by a 
→  Returns a set of states, for each n ∈ qi of δi  (n, a)  

•  ε-closure(si) is set of states reachable from si by ε transitions 

The algorithm: 
•  Start state derived from n0 of the NFA 

•  Take its ε-closure q0 = ε-closure(n0)  

•  Compute Delta(q, α) for each  α ∈ Σ, and take its ε-closure 
•  Iterate until no more states are added 

Sounds more complex than it is… 



NFA →DFA with Subset Construction 

The algorithm: 

q0 ← ε-closure(n0 ) 

Q ← {q0} 

WorkList ← {q0}  

while ( WorkList ≠ ф ) 
  remove q from WorkList 
  for each α ∈ Σ

        t← ε-closure(Delta(q,α)) 
      T[q,α] ← t 
      if  ( t ∉ Q ) then 
          add t to Q and WorkList 

Let’s think about why this works 

The algorithm halts: 

1.  Q contains no duplicates 
      (test before adding) 

2.  2Q is finite 
3.  while loop adds to Q, but does          
 not remove from Q (monotone) 

⇒ the loop halts 

Q contains all the reachable 
 NFA states 
It tries each character in each q. 
It builds every possible NFA  
    configuration. 

⇒ Q and T form the DFA 



NFA →DFA with Subset Construction 
Example of a fixed-point computation 
•  Monotone construction of some finite set 
•  Halts when it stops adding to the set 
•  Proofs of halting & correctness are similar 
•  These computations arise in many contexts  

We will see many more fixed-point computations 



q0  q1  
a ε

q4  q5  
b

q6  q7  
c

q3 q8  q2  q9  

ε

ε ε

ε ε

ε ε

Final states 

NFA →DFA with Subset Construction 

Applying the subset construction: 

a ( b | c )* : 
ε



NFA →DFA with Subset Construction 
The DFA for a ( b | c )* 

•  Ends up smaller than the NFA 

•  All transitions are deterministic  

•  Use same code skeleton as before 

s3  

s2  

s0  s1  

c

b
a

b

c

c

b 



Where are we?  Why are we doing this? 

RE → NFA  (Thompson’s construction)    
•  Build an NFA for each term 
•  Combine them with ε-moves 

NFA → DFA (subset construction)   
•  Build the simulation 

DFA → Minimal DFA 
•  Hopcroft’s algorithm                          

DFA → RE 
•  All pairs, all paths problem 
•  Union together paths from s0 to a final state 

Enough theory for today 

minimal
 DFA RE NFA DFA 

The Cycle of  Constructions 



What we expect of the Scanner 

•  Report errors for lexicographically malformed inputs  
→  reject illegal characters, or meaningless character sequences 
→  E.g., ‘#’ or “floop” in COOL 

•  Return an abstract representation of the code 

→  character sequences (e.g., “if” or “loop”) turned into tokens. 
•  Resulting sequence of tokens will be used by the parser 
•  Makes the design of the parser a lot easier. 



How to specify a scanner 

•  A scanner specification (e.g., for JLex), is list of (typically
 short) regular expressions.  

•  Each regular expressions has an action associated with it. 
•  Typically, an action is to return a token. 
•  On a given input string, the scanner will: 

→  find the longest prefix of the input string, that matches
 one of the regular expressions.  

→  will execute the action associated with the matching
 regular expression highest in the list. 

•  Scanner repeats this procedure for the remaining input. 
•  If no match can be found at some point, an error is reported. 



Example of a Specification 

•  Consider the following scanner specification.  
1.  aaa   { return T1 }  
2.  a*b  { return T2 } 
3.  b   { return S } 

•  Given the following input string into the scanner 
aaabbaaa 

the scanner as specified above would output 
   T2 T2 T1 

•  Note that the scanner will report an error for example on the
 string ‘aa’. 



Special Return Tokens 
•  Sometimes one wants to extract information out of  

 what prefix of the input was matched.  
•  Example: 

   “[a-zA-Z0-9]*”   { return STRING(yytext()) } 
•  Above RE matches every string that  

→  starts and ends with quotes, and  
→  has any number of alpha-numerical chars between them. 

•  Associated action returns a string token, which is the exact
 string that the RE matched. 

•  Note that yytext() will also include the quotes. 
•  Furthermore, note that this regular expression does not

 handle escaped characters. 


