
Lexical Analysis - An Introduction

The Front End

The purpose of the front end is to deal with the input language
•  Perform a membership test: code ∈ source language?
•  Is the program well-formed (semantically) ?
•  Build an IR version of the code for the rest of the compiler

The front end is not monolithic

Source
code

Front
End

Errors

Machine
code

Back
End

IR

The Front End

Scanner
•  Maps stream of characters into words

→  Basic unit of syntax
→  x = x + y ; becomes
 <id,x> <eq,=> <id,x> <pl,+> <id,y> <sc,; >

•  Characters that form a word are its lexeme
•  Its part of speech (or syntactic category) is called its token type
•  Scanner discards white space & (often) comments

Source
code Scanner

IR
Parser

Errors

tokens

Speed is an issue in
 scanning
⇒ use a specialized
 recognizer

The Front End

Parser
•  Checks stream of classified words (parts of speech) for

grammatical correctness
•  Determines if code is syntactically well-formed
•  Guides checking at deeper levels than syntax
•  Builds an IR representation of the code

We’ll come back to parsing in a couple of lectures

Source
code Scanner

IR
Parser

Errors

tokens

The Big Picture

Why study lexical analysis?
•  We want to avoid writing scanners by hand
•  We want to harness the theory from classes like CISC 303
Goals:

→  To simplify specification & implementation of scanners
→  To understand the underlying techniques and technologies

Scanner

Scanner
Generator

specifications

source code Tokens <type, lexeme>

tables
 or code

Regular
 Expressions

Where is Lexical Analysis used?

•  For traditional languages but where else…
•  Web page “compilation”

•  Lexical Analysis of HTML, XML, etc.
•  Natural Language Processing
•  Game Scripting Engines
•  OS Shell Command Line
•  Find
•  Prototyping high-level languages

•  JavaScript, Perl, Python

Recognizing Words

•  Finite Automaton (FA) – recognizers that can scan a stream of
symbols to find lexemes (words)

•  An FA is a five-tuple (S,Σ,∂,s0 ,SF) where
•  S is the set of states

•  Σ is the alphabet
•  ∂ a set of transition functions where each takes a state and a
character and returns another state

•  s0 is the start state
•  SF is the set of final states

S0 S1

r

(0|1|2| … 9)

accepting state

(0|1|2| … 9)

Recognizer for Register

S2

Regular Expressions
Regular expressions (REs) describe regular languages

Regular Expression (over alphabet Σ)

•  ε is a RE denoting the set {ε}

•  If a is in Σ, then a is a RE denoting {a}
•  If x and y are REs denoting L(x) and L(y) then

→ Alternation : x |y is an RE denoting L(x) ∪ L(y)
→  Concatenation: xy is an RE denoting L(x)L(y)
→  Closure: x* is an RE denoting L(x)*

Precedence is
 closure, then
 concatenation,
 then alternation

Examples of Regular Expressions
Identifiers:

Letter → (a|b|c| … |z|A|B|C| … |Z)
Digit → (0|1|2| … |9)
Identifier → Letter (Letter | Digit)*

Numbers:
Integer → (+|-|ε) (0| (1|2|3| … |9)(Digit *))
Fraction → Integer / Integer
Decimal → Integer . Digit *

Real → (Integer | Decimal) E (+|-|ε) Digit *

Numbers can get much more complicated!

Regular Expressions (the point)

Regular expressions can be used to specify the words to be
translated to parts of speech by a lexical analyzer

Using results from automata theory and theory of algorithms, we
can automatically build recognizers from regular expressions

 Some of you may have seen this construction for string pattern
matching

⇒ We study REs and associated theory to automate scanner
construction !

Consider the problem of recognizing register names

Register → r (0|1|2| … | 9) (0|1|2| … | 9)*

•  Allows registers of arbitrary number
•  Requires at least one digit

RE corresponds to a recognizer (or DFA)

Transitions on other inputs go to an error state, se

Example

S0 S1

r

(0|1|2| … 9)

accepting state

(0|1|2| … 9)

Recognizer for Register

S2

DFA operation
•  Start in state S0 & take transitions on each input character
•  DFA accepts a word x iff x leaves it in a final state (S2)

So,
•  r17 takes it through s0, s1, s2 and accepts
•  r takes it through s0, s1 and fails
•  a takes it straight to se

Example (continued)

S0 S1

r

(0|1|2| … 9)

accepting state

(0|1|2| … 9)

Recognizer for Register

S2

Example (continued)

To be useful, recognizer must turn into code

se se se se

se s2 se s2

se s2 se s1

se se s1 s0

All
others

0,1,2,3,4,
5,6,7,8,9 r δChar ← next character

State ← s0

while (Char ≠ EOF)
 State ← δ(State,Char)
 Char ← next character

if (State is a final state)
 then report success
 else report failure

Skeleton recognizer Table encoding RE

r (0|1|2| … | 9) (0|1|2| … | 9)* allows arbitrary numbers
•  Accepts r00000
•  Accepts r99999
•  What if we want to limit it to r0 through r31 ?

Write a tighter regular expression
→  Register → r ((0|1|2) ([0…9] | ε) | (4|5|6|7|8|9) | (3(0|1|ε)))
→  Register → r0|r1|r2| … |r31|r00|r01|r02| … |r09

Produces a more complex DFA
•  Has more states
•  Same cost per transition
•  Same basic implementation

What if we need a tighter specification?

Tighter register specification (continued)

The DFA for
Register → r ((0|1|2) ([0…9] |ε) | (4|5|6|7|8|9) | (3(0|1|ε)))

•  Accepts a more constrained set of registers
•  Same set of actions, more states

S0 S5 S1

r

S4

S3

S6

S2

0,1,2

3 0,1

4,5,6,7,8,9

(0…9)

Tighter register specification (continued)

se se se se se s1 s0

se se se se se se se

se se se se se se s6

se se se se s6 se s5

se se se se se se s4

se se se se se se s3

se s3 s3 s3 s3 se s2

se s4 s5 s2 s2 se s1

All
others 4-9 3 2 0,1 r δ

Table encoding RE for the tighter register specification

Runs in the
 same
 skeleton
 recognizer

