
The View from 35,000 Feet 



Implications 
•  Must recognize legal (and illegal) programs 
•  Must generate correct code 
•  Must manage storage of all variables (and code) 
•  Must agree with OS & linker on format for object code 
Big step up from assembly language—use higher level notations 
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Traditional Two-pass Compiler 

Implications 
•  Use an intermediate representation (IR) 
•  Front end maps legal source code into IR 
•  Back end maps IR into target machine code 
•  Admits multiple front ends & multiple passes      (better code) 
Typically, front end is O(n) or O(n log n), while back end is NPC 
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Can we build n x m compilers with n+m components? 
•  Must encode all language specific knowledge in each front end 
•  Must encode all features in a single IR 
•  Must encode all target specific knowledge in each back end 

Limited success in systems with very low-level IRs 
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Responsibilities 
•  Recognize legal (& illegal) programs 
•  Report errors in a useful way 
•  Produce IR & preliminary storage map 
•  Shape the code for the back end 
•  Much of front end construction can be automated 

The Front End 
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The Front End 

Scanner 
•  Maps character stream into words—the basic unit of syntax 
•  Produces pairs — a word &  its part of speech 

x = x + y ;   becomes <id,x> = <id,x> + <id,y> ; 
→  word ≅ lexeme, part of speech ≅ token type 
→  In casual speech, we call the pair a token 

•  Typical tokens include number, identifier, +, –, new, while, if 
•  Scanner eliminates white space               (including comments) 
•  Speed is important 

Source 
code Scanner 

IR 
Parser 

Errors  

tokens 



The Front End 

Parser 
•  Recognizes context-free syntax & reports errors 
•  Guides context-sensitive (“semantic”) analysis  (type checking) 
•  Builds IR for source program 

Hand-coded parsers are fairly easy to build 
Most books advocate using automatic parser generators 
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The Front End 

Context-free syntax is specified with a grammar 
  SheepNoise → baa SheepNoise   

                                          |   baa 
This grammar defines the set of noises that a sheep makes 

under normal circumstances 
It is written in a variant of Backus–Naur Form (BNF) 

Formally, a grammar G = (S,N,T,P) 
•  S  is the start symbol 
•  N  is a set of non-terminal symbols 
•  T  is a set of terminal symbols or words 
•  P  is a set of productions or rewrite rules      (P : N → N ∪T ) 

(Example due to Dr. Scott K. Warren) 



Context-free syntax can be put to better use 

•  This grammar defines simple expressions with addition & 
subtraction over  “number” and “id” 

•  This grammar, like many, falls in a class called “context-free 
grammars”, abbreviated CFG 

The Front End 

1.  goal  → expr 

2.  expr  → expr  op  term 
3.               |   term 

4.  term  → number 
5.               |    id 

6.  op      → + 
7.               |    - 

S = goal 

T = { number, id, +, - } 

N = { goal, expr, term, op } 

P = { 1, 2, 3, 4, 5, 6, 7} 



Given a CFG, we can derive sentences by repeated substitution 

To recognize a valid sentence in some CFG, we reverse this 
process and build up a parse 

The Front End 

Production     Result 
       goal 

 1     expr 
 2     expr  op  term 
 5     expr  op  y 
 7     expr   -  y 
 2     expr  op  term  -  y 
 4     expr  op  2  -  y 
 6     expr  +  2  -  y 
 3     term  +  2  -  y 
 5     x  +  2  -  y  



The Front End 

A parse can be represented by a tree  (parse tree or syntax tree) 

 x  +  2  -  y 

This contains a lot of unneeded  
information.  
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The Front End 

Compilers often use an abstract syntax tree 

This is much more concise 

ASTs are one kind of intermediate representation (IR) 
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<id,x> <number,2> 

<id,y> The AST summarizes
 grammatical structure,
 without including detail
 about the derivation  



The Back End 

Responsibilities 
•  Translate IR into target machine code 
•  Choose instructions to implement each IR operation 
•  Decide which value to keep in registers 
•  Ensure conformance with system interfaces 

Automation has been less successful in the back end 
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The Back End 

Instruction Selection 
•  Produce fast, compact code 
•  Take advantage of target features  such as addressing modes 
•  Usually viewed as a pattern matching problem 

→  ad hoc methods, pattern matching, dynamic programming 
This was the problem of the future in 1978 

→  Spurred by transition from PDP-11 to VAX-11 
→  Orthogonality of RISC simplified this problem 
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The Back End 

Register Allocation 
•  Have each value in a register when it is used 
•  Manage a limited set of resources 
•  Can change instruction choices & insert LOADs & STOREs 
•  Optimal allocation is NP-Complete                 (1 or k registers) 

Compilers approximate solutions to NP-Complete problems 
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The Back End 

Instruction Scheduling 
•  Avoid hardware stalls and interlocks 
•  Use all functional units productively 
•  Can increase lifetime of variables         (changing the allocation) 

Optimal scheduling is NP-Complete in nearly all cases 

Heuristic techniques are well developed 
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Traditional Three-pass Compiler 

Code Improvement (or Optimization) 
•  Analyzes IR and rewrites (or transforms) IR 
•  Primary goal is to reduce running time of the compiled code 

→  May also improve space, power consumption, … 
•  Must preserve “meaning” of the code 

→  Measured by values of named variables 
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The Optimizer (or Middle End) 

Typical Transformations 
•  Discover & propagate some constant value 
•  Move a computation to a less frequently executed place 
•  Specialize some computation based on context 
•  Discover a redundant computation & remove it 
•  Remove useless or unreachable code 
•  Encode an idiom in some particularly efficient form 
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Modern optimizers are structured as a series of  passes 



Example 

 Optimization of Subscript Expressions in Fortran 

Address(A(I,J)) = address(A(0,0)) + J * (column size) + I 

Does the user realize a multiplication
 is generated here? 



Example 

 Optimization of Subscript Expressions in Fortran 

Address(A(I,J)) = address(A(0,0)) + J * (column size) + I 

Does the user realize a multiplication
 is generated here? 

DO I = 1, M 
       A(I,J) = A(I,J) + C 
ENDDO 



Example 

 Optimization of Subscript Expressions in Fortran 

Address(A(I,J)) = address(A(0,0)) + J * (column size) + I 

Does the user realize a multiplication
 is generated here? 

DO I = 1, M 
       A(I,J) = A(I,J) + C 
ENDDO 

compute addr(A(0,J) 
DO I = 1, M 
       add 1 to get addr(A(I,J) 
       A(I,J) = A(I,J) + C 
ENDDO 



Modern Restructuring Compiler 

Typical Restructuring Transformations: 
•  Blocking for memory hierarchy and register reuse 
•  Vectorization 
•  Parallelization 
•  All based on dependence 
•  Also full and partial inlining 

Subject of CISC 673 
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Role of the Run-time System 

•  Memory management services 
→  Allocate 

  In the heap or in an activation record (stack frame) 
→  Deallocate  
→  Collect garbage 

•  Run-time type checking 
•  Error processing 
•  Interface to the operating system 

→  Input and output 
•  Support of parallelism 

→  Parallel thread initiation 
→  Communication and synchronization 



Lab Zero 

  Implement two COOL programs 100-200 lines each 
•  Material on the web 

→  Lab Assignment, Cool Manual 

•  Specs for Lab 0 available on Web 
→  Due in one week (9/16) 

  Speak to me after class if you will need more time 
→  Practice with COOL and simulator available 
→  Grading will be done by TA 

  You will meet with TA to deliver code 

•  Next Class (Thursday) 
→  Led by TA 
→  Introduction to COOL, SVN, etc. 



Next Week 

  Introduction to Scanning (aka Lexical Analysis) 
•  Material is in Chapter 2 

•  Specs for Lab 1 available next Tuesday (9/16) 



Extra Slides Start Here 



1957:  The FORTRAN Automatic Coding System 

•  Six passes in a fixed order 
•  Generated good code 

Assumed unlimited index registers 
Code motion out of loops, with ifs and gotos 
Did flow analysis & register allocation 
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1969: IBM’s FORTRAN H Compiler  

•  Used low-level IR (quads), identified loops with dominators 
•  Focused on optimizing loops (“inside out” order) 

Passes are familiar today 
•  Simple front end, simple back end for IBM 370 
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1975: BLISS-11 compiler (Wulf et al., CMU)  

•  The great compiler for the PDP-11 
•  Seven passes in a fixed order 
•  Focused on code shape & instruction selection 

LexSynFlo did preliminary flow analysis 
Final included a grab-bag of peephole optimizations 
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1980: IBM’s PL.8 Compiler  

•  Many passes, one front end, several back ends 
•  Collection of 10 or more passes  

Repeat some passes and analyses 
Represent complex operations at 2 levels 
Below machine-level IR 
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1986: HP’s PA-RISC Compiler  

•  Several front ends, an optimizer, and a back end 
•  Four fixed-order choices for optimization (9 passes) 
•  Coloring allocator, instruction scheduler, peephole optimizer 
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1999: The SUIF Compiler System 

Another classically-built compiler 
•  3 front ends, 3 back ends 
•  18 passes, configurable order 
•  Two-level IR (High SUIF, Low SUIF) 
•  Intended as research infrastructure 
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1999: The SUIF Compiler System 

Another classically-built compiler 
•  3 front ends, 3 back ends 
•  18 passes, configurable order 
•  Two-level IR (High SUIF, Low SUIF) 
•  Intended as research infrastructure 
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1999: The SUIF Compiler System 

Another classically-built compiler 
•  3 front ends, 3 back ends 
•  18 passes, configurable order 
•  Two-level IR (High SUIF, Low SUIF) 
•  Intended as research infrastructure 
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Data dependence analysis 
Scalar & array privitization 
Reduction recognition 
Pointer analysis 
Affine loop transformations 
Blocking  
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Garbage collection 



2000: The SGI Pro64 Compiler  (now Open64 from UDEL ECE) 

Open source optimizing compiler for IA 64 
•  3 front ends, 1 back end 
•  Five-levels of IR  
•  Gradual lowering of abstraction level 
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2000: The SGI Pro64 Compiler  (now Open64 from UDEL ECE) 

Open source optimizing compiler for IA 64 
•  3 front ends, 1 back end 
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2000: The SGI Pro64 Compiler  (now Open64 from UDEL ECE) 

Open source optimizing compiler for IA 64 
•  3 front ends, 1 back end 
•  Five-levels of IR  
•  Gradual lowering of abstraction level 
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2000: The SGI Pro64 Compiler  (now Open64 from UDEL ECE) 

Open source optimizing compiler for IA 64 
•  3 front ends, 1 back end 
•  Five-levels of IR  
•  Gradual lowering of abstraction level 
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2000: The SGI Pro64 Compiler  (now Open64 from UDEL ECE) 

Open source optimizing compiler for IA 64 
•  3 front ends, 1 back end 
•  Five-levels of IR  
•  Gradual lowering of abstraction level 
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Classic Compilers 
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Even a 2007 Java JIT fits the mold, e.g., JIKES RVM (IBM) 

•  Several front end tasks are handled elsewhere 
•  “Hot-spot” Optimizer 

Avoid expensive analysis at first 
Compilation must be profitable 



Classic Compilers 
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Compilation must be profitable 



Classic Compilers 
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Even a 2007 Java JIT fits the mold, e.g., JIKES RVM (IBM) 

•  Several front end tasks are handled elsewhere 
•  “Hot-spot” Optimizer 

Avoid expensive analysis at first 
Compilation must be profitable 

LIR Optimizations 
Constant Propagation 
Copy Propagation 
Constant Sub Elimination 
Basic Block Reordering 



Classic Compilers 
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Even a 2007 Java JIT fits the mold, e.g., JIKES RVM (IBM) 

•  Several front end tasks are handled elsewhere 
•  “Hot-spot” Optimizer 

Avoid expensive analysis at first 
Compilation must be profitable 

MIR Optimizations 
(Code Generation) 
Live Analysis 
Instruction Scheduling 
Register Allocation 


