
The View from 35,000 Feet

Implications
•  Must recognize legal (and illegal) programs
•  Must generate correct code
•  Must manage storage of all variables (and code)
•  Must agree with OS & linker on format for object code
Big step up from assembly language—use higher level notations

High-level View of a Compiler

Source
code

Machine
code Compiler

Errors

Traditional Two-pass Compiler

Implications
•  Use an intermediate representation (IR)
•  Front end maps legal source code into IR
•  Back end maps IR into target machine code
•  Admits multiple front ends & multiple passes (better code)
Typically, front end is O(n) or O(n log n), while back end is NPC

Source
code

Front
End

Errors

Machine
code

Back
End

IR

Can we build n x m compilers with n+m components?
•  Must encode all language specific knowledge in each front end
•  Must encode all features in a single IR
•  Must encode all target specific knowledge in each back end

Limited success in systems with very low-level IRs

A Common Fallacy

Fortran

Scheme

Java

Smalltalk

Front
end

Front
end

Front
end

Front
end

Back
end

Back
end

Target 2

Target 1

Target 3 Back
end

Responsibilities
•  Recognize legal (& illegal) programs
•  Report errors in a useful way
•  Produce IR & preliminary storage map
•  Shape the code for the back end
•  Much of front end construction can be automated

The Front End

Source
code Scanner

IR
Parser

Errors

tokens

The Front End

Scanner
•  Maps character stream into words—the basic unit of syntax
•  Produces pairs — a word & its part of speech

x = x + y ; becomes <id,x> = <id,x> + <id,y> ;
→  word ≅ lexeme, part of speech ≅ token type
→  In casual speech, we call the pair a token

•  Typical tokens include number, identifier, +, –, new, while, if
•  Scanner eliminates white space (including comments)
•  Speed is important

Source
code Scanner

IR
Parser

Errors

tokens

The Front End

Parser
•  Recognizes context-free syntax & reports errors
•  Guides context-sensitive (“semantic”) analysis (type checking)
•  Builds IR for source program

Hand-coded parsers are fairly easy to build
Most books advocate using automatic parser generators

Source
code Scanner

IR
Parser

Errors

tokens

The Front End

Context-free syntax is specified with a grammar
 SheepNoise → baa SheepNoise

 | baa
This grammar defines the set of noises that a sheep makes

under normal circumstances
It is written in a variant of Backus–Naur Form (BNF)

Formally, a grammar G = (S,N,T,P)
•  S is the start symbol
•  N is a set of non-terminal symbols
•  T is a set of terminal symbols or words
•  P is a set of productions or rewrite rules (P : N → N ∪T)

(Example due to Dr. Scott K. Warren)

Context-free syntax can be put to better use

•  This grammar defines simple expressions with addition &
subtraction over “number” and “id”

•  This grammar, like many, falls in a class called “context-free
grammars”, abbreviated CFG

The Front End

1. goal → expr

2. expr → expr op term
3. | term

4. term → number
5. | id

6. op → +
7. | -

S = goal

T = { number, id, +, - }

N = { goal, expr, term, op }

P = { 1, 2, 3, 4, 5, 6, 7}

Given a CFG, we can derive sentences by repeated substitution

To recognize a valid sentence in some CFG, we reverse this
process and build up a parse

The Front End

Production Result
 goal

 1 expr
 2 expr op term
 5 expr op y
 7 expr - y
 2 expr op term - y
 4 expr op 2 - y
 6 expr + 2 - y
 3 term + 2 - y
 5 x + 2 - y

The Front End

A parse can be represented by a tree (parse tree or syntax tree)

 x + 2 - y

This contains a lot of unneeded
information.

term

op term expr

term expr

goal

expr

op

<id,x>

<number,2>

<id,y>

+

-

1. goal → expr

2. expr → expr op term
3. | term

4. term → number
5. | id

6. op → +
7. | -

The Front End

Compilers often use an abstract syntax tree

This is much more concise

ASTs are one kind of intermediate representation (IR)

+

-

<id,x> <number,2>

<id,y> The AST summarizes
 grammatical structure,
 without including detail
 about the derivation

The Back End

Responsibilities
•  Translate IR into target machine code
•  Choose instructions to implement each IR operation
•  Decide which value to keep in registers
•  Ensure conformance with system interfaces

Automation has been less successful in the back end

Errors

IR Register
Allocation

Instruction
Selection

Machine
code

Instruction
Scheduling

IR IR

The Back End

Instruction Selection
•  Produce fast, compact code
•  Take advantage of target features such as addressing modes
•  Usually viewed as a pattern matching problem

→  ad hoc methods, pattern matching, dynamic programming
This was the problem of the future in 1978

→  Spurred by transition from PDP-11 to VAX-11
→  Orthogonality of RISC simplified this problem

Errors

IR Register
Allocation

Instruction
Selection

Machine
code

Instruction
Scheduling

IR IR

The Back End

Register Allocation
•  Have each value in a register when it is used
•  Manage a limited set of resources
•  Can change instruction choices & insert LOADs & STOREs
•  Optimal allocation is NP-Complete (1 or k registers)

Compilers approximate solutions to NP-Complete problems

Errors

IR Register
Allocation

Instruction
Selection

Machine
code

Instruction
Scheduling

IR IR

The Back End

Instruction Scheduling
•  Avoid hardware stalls and interlocks
•  Use all functional units productively
•  Can increase lifetime of variables (changing the allocation)

Optimal scheduling is NP-Complete in nearly all cases

Heuristic techniques are well developed

Errors

IR Register
Allocation

Instruction
Selection

Machine
code

Instruction
Scheduling

IR IR

Traditional Three-pass Compiler

Code Improvement (or Optimization)
•  Analyzes IR and rewrites (or transforms) IR
•  Primary goal is to reduce running time of the compiled code

→  May also improve space, power consumption, …
•  Must preserve “meaning” of the code

→  Measured by values of named variables

Errors

Source
Code

Middle
End

Front
End

Machine
code

Back
End

IR IR

The Optimizer (or Middle End)

Typical Transformations
•  Discover & propagate some constant value
•  Move a computation to a less frequently executed place
•  Specialize some computation based on context
•  Discover a redundant computation & remove it
•  Remove useless or unreachable code
•  Encode an idiom in some particularly efficient form

Errors

Opt
1

Opt
3

Opt
2

Opt
n

... IR IR IR IR IR

Modern optimizers are structured as a series of passes

Example

 Optimization of Subscript Expressions in Fortran

Address(A(I,J)) = address(A(0,0)) + J * (column size) + I

Does the user realize a multiplication
 is generated here?

Example

 Optimization of Subscript Expressions in Fortran

Address(A(I,J)) = address(A(0,0)) + J * (column size) + I

Does the user realize a multiplication
 is generated here?

DO I = 1, M
 A(I,J) = A(I,J) + C
ENDDO

Example

 Optimization of Subscript Expressions in Fortran

Address(A(I,J)) = address(A(0,0)) + J * (column size) + I

Does the user realize a multiplication
 is generated here?

DO I = 1, M
 A(I,J) = A(I,J) + C
ENDDO

compute addr(A(0,J)
DO I = 1, M
 add 1 to get addr(A(I,J)
 A(I,J) = A(I,J) + C
ENDDO

Modern Restructuring Compiler

Typical Restructuring Transformations:
•  Blocking for memory hierarchy and register reuse
•  Vectorization
•  Parallelization
•  All based on dependence
•  Also full and partial inlining

Subject of CISC 673

Errors

Source
Code

Restructur
er

Front
End

Machine
code

Opt +
Back
End

HL
AST IR

HL
AST IR

Gen

Role of the Run-time System

•  Memory management services
→  Allocate

  In the heap or in an activation record (stack frame)
→  Deallocate
→  Collect garbage

•  Run-time type checking
•  Error processing
•  Interface to the operating system

→  Input and output
•  Support of parallelism

→  Parallel thread initiation
→  Communication and synchronization

Lab Zero

  Implement two COOL programs 100-200 lines each
•  Material on the web

→  Lab Assignment, Cool Manual

•  Specs for Lab 0 available on Web
→  Due in one week (9/16)

  Speak to me after class if you will need more time
→  Practice with COOL and simulator available
→  Grading will be done by TA

  You will meet with TA to deliver code

•  Next Class (Thursday)
→  Led by TA
→  Introduction to COOL, SVN, etc.

Next Week

  Introduction to Scanning (aka Lexical Analysis)
•  Material is in Chapter 2

•  Specs for Lab 1 available next Tuesday (9/16)

Extra Slides Start Here

1957: The FORTRAN Automatic Coding System

•  Six passes in a fixed order
•  Generated good code

Assumed unlimited index registers
Code motion out of loops, with ifs and gotos
Did flow analysis & register allocation

Classic Compilers

Front
End

Front End Middle End Back End

Index
Optimiz’n

Code
Merge

bookkeeping

Flow
Analysis

Register
Allocation

Final
Assembly

1969: IBM’s FORTRAN H Compiler

•  Used low-level IR (quads), identified loops with dominators
•  Focused on optimizing loops (“inside out” order)

Passes are familiar today
•  Simple front end, simple back end for IBM 370

Classic Compilers

Front
 End

Middle End Back End

Scan
&

Parse

Find
Busy
Vars

Loop
Inv

Code
Mot’n

OSR Reg.
Alloc.

Final
Assy.

Re -
assoc

(consts)

Copy
Elim.

CSE
Build
CFG

&
DOM

1975: BLISS-11 compiler (Wulf et al., CMU)

•  The great compiler for the PDP-11
•  Seven passes in a fixed order
•  Focused on code shape & instruction selection

LexSynFlo did preliminary flow analysis
Final included a grab-bag of peephole optimizations

Classic Compilers

Middle
End

Back End Front
End

Lex-
Syn-
Flo

Delay TLA Rank Pack Code Final

Register allocation

Basis for early VAX &
 Tartan Labs compilers

1980: IBM’s PL.8 Compiler

•  Many passes, one front end, several back ends
•  Collection of 10 or more passes

Repeat some passes and analyses
Represent complex operations at 2 levels
Below machine-level IR

Classic Compilers

Front
 End

Middle End Back End

Dead code elimination
Global CSE
Code motion
Constant folding
Strength reduction
Value numbering
Dead store elimination
Code straightening
Trap elimination
Algebraic reassociation

Multi-level IR
 has become
 common wisdom *

1986: HP’s PA-RISC Compiler

•  Several front ends, an optimizer, and a back end
•  Four fixed-order choices for optimization (9 passes)
•  Coloring allocator, instruction scheduler, peephole optimizer

Classic Compilers

Front
 End

Middle End Back
 End

1999: The SUIF Compiler System

Another classically-built compiler
•  3 front ends, 3 back ends
•  18 passes, configurable order
•  Two-level IR (High SUIF, Low SUIF)
•  Intended as research infrastructure

Middle End

Fortran 77

C & C++

Java

C/Fortran

Alpha

x86

Front End Back End

Classic Compilers

1999: The SUIF Compiler System

Another classically-built compiler
•  3 front ends, 3 back ends
•  18 passes, configurable order
•  Two-level IR (High SUIF, Low SUIF)
•  Intended as research infrastructure

Middle End

Fortran 77

C & C++

Java

C/Fortran

Alpha

x86

Front End Back End

Classic Compilers

SSA construction
Dead code elimination
Partial redundancy elimination
Constant propagation
Global value numbering
Strength reduction
Reassociation
Instruction scheduling
Register allocation

1999: The SUIF Compiler System

Another classically-built compiler
•  3 front ends, 3 back ends
•  18 passes, configurable order
•  Two-level IR (High SUIF, Low SUIF)
•  Intended as research infrastructure

Middle End

Fortran 77

C & C++

Java

C/Fortran

Alpha

x86

Front End Back End

Classic Compilers

Data dependence analysis
Scalar & array privitization
Reduction recognition
Pointer analysis
Affine loop transformations
Blocking
Capturing object definitions
Virtual function call elimination
Garbage collection

2000: The SGI Pro64 Compiler (now Open64 from UDEL ECE)

Open source optimizing compiler for IA 64
•  3 front ends, 1 back end
•  Five-levels of IR
•  Gradual lowering of abstraction level

Classic Compilers

Fortran

C & C++

Java

Front End Middle End Back
 End

Interpr.
Anal. &
Optim’n

Loop
Nest

Optim’n

Global
Optim’n

Code
Gen.

2000: The SGI Pro64 Compiler (now Open64 from UDEL ECE)

Open source optimizing compiler for IA 64
•  3 front ends, 1 back end
•  Five-levels of IR
•  Gradual lowering of abstraction level

Classic Compilers

Fortran

C & C++

Java

Front End Middle End Back
 End

Interpr.
Anal. &
Optim’n

Loop
Nest

Optim’n

Global
Optim’n

Code
Gen.

Interprocedural
Classic analysis
Inlining (user & library code)
Cloning (constants & locality)
Dead function elimination
Dead variable elimination

2000: The SGI Pro64 Compiler (now Open64 from UDEL ECE)

Open source optimizing compiler for IA 64
•  3 front ends, 1 back end
•  Five-levels of IR
•  Gradual lowering of abstraction level

Classic Compilers

Fortran

C & C++

Java

Front End Middle End Back
 End

Interpr.
Anal. &
Optim’n

Loop
Nest

Optim’n

Global
Optim’n

Code
Gen.

Loop Nest Optimization
Dependence analysis
Parallelization
Loop transformations (fission,
 fusion, interchange, peeling,
 tiling, unroll & jam)
Array privitization

2000: The SGI Pro64 Compiler (now Open64 from UDEL ECE)

Open source optimizing compiler for IA 64
•  3 front ends, 1 back end
•  Five-levels of IR
•  Gradual lowering of abstraction level

Classic Compilers

Fortran

C & C++

Java

Front End Middle End Back
 End

Interpr.
Anal. &
Optim’n

Loop
Nest

Optim’n

Global
Optim’n

Code
Gen.

Global Optimization
SSA-based analysis & opt’n
Constant propagation, PRE,
 OSR+LFTR, DVNT, DCE
(also used by other phases)

2000: The SGI Pro64 Compiler (now Open64 from UDEL ECE)

Open source optimizing compiler for IA 64
•  3 front ends, 1 back end
•  Five-levels of IR
•  Gradual lowering of abstraction level

Classic Compilers

Fortran

C & C++

Java

Front End Middle End Back
 End

Interpr.
Anal. &
Optim’n

Loop
Nest

Optim’n

Global
Optim’n

Code
Gen.

Code Generation
If conversion & predication
Code motion
Scheduling (inc. sw pipelining)
Allocation
Peephole optimization

Classic Compilers

Class
Loading,

Verification,
etc.

Front End Middle End Back End

HIR LIR M
IR

Executable
Java

Bytecodes

Even a 2007 Java JIT fits the mold, e.g., JIKES RVM (IBM)

•  Several front end tasks are handled elsewhere
•  “Hot-spot” Optimizer

Avoid expensive analysis at first
Compilation must be profitable

Classic Compilers

HIR Optimizations
Tail Recursion
Escape Analysis
Load Elimination
Loop Unrolling

Class
Loading,

Verification,
etc.

Front End Middle End Back End

HIR LIR M
IR

Executable
Java

Bytecodes

Even a 2007 Java JIT fits the mold, e.g., JIKES RVM (IBM)

•  Several front end tasks are handled elsewhere
•  “Hot-spot” Optimizer

Avoid expensive analysis at first
Compilation must be profitable

Classic Compilers

Class
Loading,

Verification,
etc.

Front End Middle End Back End

HIR LIR M
IR

Executable
Java

Bytecodes

Even a 2007 Java JIT fits the mold, e.g., JIKES RVM (IBM)

•  Several front end tasks are handled elsewhere
•  “Hot-spot” Optimizer

Avoid expensive analysis at first
Compilation must be profitable

LIR Optimizations
Constant Propagation
Copy Propagation
Constant Sub Elimination
Basic Block Reordering

Classic Compilers

Class
Loading,

Verification,
etc.

Front End Middle End Back End

HIR LIR M
IR

Executable
Java

Bytecodes

Even a 2007 Java JIT fits the mold, e.g., JIKES RVM (IBM)

•  Several front end tasks are handled elsewhere
•  “Hot-spot” Optimizer

Avoid expensive analysis at first
Compilation must be profitable

MIR Optimizations
(Code Generation)
Live Analysis
Instruction Scheduling
Register Allocation

