The View from 35,000 Feet

High-level View of a Compiler

Source . . Machine
1 Compiler >
code code

—— Errors
Implications

* Must recognize legal (and illegal) programs

* Must generate correct code

* Must manage storage of all variables (and code)

* Must agree with OS & linker on format for object code

Big step up from assembly language—use higher level notations

Traditional Two-pass Compiler

Source . Front IR R Back Machine
code] End] End code
> Errors
Implications

* Use an infermediate representation (IR)

* Front end maps legal source code into IR

* Back end maps IR into target machine code

* Admits multiple front ends & multiple passes (better code)
Typically, front end is O(n) or O(n log n), while back end is NPC

A Common Fallacy

Fortran—

Scheme —

Java—

Smalltalk —

Front
end

Front
end

Back
end

Front
end

Back
end

Front
end

Back
end

— Target 1

— Target 2

— Target 3

Can we build n x m compilers with n+m components?

* Must encode all language specific knowledge in each front end

* Must encode all features in a single IR

* Must encode all target specific knowledge in each back end
Limited success in systems with very low-level IRs

The Front End

Source R tokens

IR

> Parser
code Scanner

> Errors

Responsibilities

Recognize legal (& illegal) programs

Report errors in a useful way

Produce IR & preliminary storage map

Shape the code for the back end

Much of front end construction can be automated

The Front End

Source
code

v

Scanner

tokens

A 4

Parser >

Scanner

> Errors

* Maps character stream into words—the basic unit of syntax

* Produces pairs — a word & its part of speech
Xz=x+Yy, becomes«<idx>=«<idx>+<idy>;
— word = lexeme, part of speech = token type
— In casual speech, we call the pair a token

Speed is important

Typical tokens include number, identifier, +, -, new, while, if
Scanner eliminates white space

(including comments)

The Front End

Source
code

Scanner

tokens

Parser

Parser

> Errors

* Recognizes context-free syntax & reports errors
* Guides context-sensitive ("semantic”) analysis (type checking)
* Builds IR for source program

Hand-coded parsers are fairly easy to build

Most books advocate using automatic parser generators

The Front End

Context-free syntax is specified with a grammar

SheepNoise — baa SheepNoise
| baa

This grammar defines the set of noises that a sheep makes
under normal circumstances

It is written in a variant of Backus-Naur Form (BNF)

Formally, a grammar & = (S,N, T,P)

* S is the start symbol

* N is aset of non-terminal symbols

* T isasetof terminal symbols or words

* P isaset of productions or rewrite rules (P:N—-NUT)

(Example due to Dr. Scott K. Warren)

The Front End

1. goal — expr

2. expr — expr op term S = goal

3. | term T={number, id, +, -}

4. term — number

5 | id N = { goal, expr, term, op }
6. op — + P={132’3,4,5,6,7}

7.

Context-free syntax can be put to better use

* This grammar defines simple expressions with addition &
subtraction over “number” and "id"

* This grammar, like many, falls in a class called "context-free
grammars”, abbreviated ¢F6

The Front End

Given a CFG, we can derive sentences by repeated substitution

Production Result
goal

expr

expr op term
expr op y
expr -y
expr op term -y
expr op 2 -y
expr + 2 -y
term + 2 -y
X+ 2-y

QWO PRANNOAON-=

To recognize a valid sentence in some CFG, we reverse this
process and build up a parse

The Front End

A parse can be represen’red@ree (parse tree or syntax tree)

goal
X+ 2 -y

expr

expr <l> (Cterm)
expr @ i <id,y>

. goal — expr

1
term <number,2> 2. expr — expr op term
3. | term
<id,x> 4. term — number
5. | id
This contains a lot of unneeded 6. op — +
7.

information.

The Front End

Compilers often use an abstract syntax tree

The AST summarizes
grammatical structure,
without including detail
about the derivation

<id,y>

<id,x> <number,2>
This is much more concise

ASTs are one kind of intermediate representation (IR)

The Back End

Instruction | 'R | Register | IR | Instruction Machine |
Selection Allocation Scheduling code

»

> Errors

Responsibilities

* Translate IR into target machine code
* Choose instructions to implement each IR operation
* Decide which value to keep in registers

* Ensure conformance with system interfaces

Automation has been /ess successful in the back end

The Back End

Instruction | 'R | Register | IR | Instruction Machine |
Selection Allocation Scheduling code

> Errors
Instruction Selection

* Produce fast, compact code

* Take advantage of target features such as addressing modes

* Usually viewed as a pattern matching problem
— ad hoc methods, pattern matching, dynamic programming

This was the problem of the future in 1978
— Spurred by transition from PDP-11 to VAX-11
— Orthogonality of RISC simplified this problem

The Back End

Instruction
Selection

IR

Register
Allocation

IR

| Instruction

Scheduling

Register Allocation

* Have each value in a register when it is used
* Manage a limited set of resources
* Can change instruction choices & insert LOADs & STOREs
* Optimal allocation is NP-Complete

Machine
code

> Errors

(1 or kregisters)

Compilers approximate solutions to NP-Complete problems

The Back End

Instruction | 'R | Register | IR | Instruction Machine |
Selection Allocation Scheduling code

»

> Errors

Instruction Scheduling

* Avoid hardware stalls and interlocks
* Use all functional units productively
* Can increase lifetime of variables (changing the allocation)

Optimal scheduling is NP-Complete in nearly all cases

Heuristic techniques are well developed

Traditional Three-pass Compiler

n

Code End End End code

Source Front IR | Middle IR Back Machine

»

> Errors

Code Improvement (or Optimization)
* Analyzes IR and rewrites (or transforms) IR

* Primary goal is to reduce running time of the compiled code
— May also improve space, power consumption, ...

* Must preserve "meaning” of the code
— Measured by values of named variables

The Optimizer (or Middle End)

IR Opt |IR]| Opt |IR] Opt IR Opt IR
1 2 3 n

> Errors
Modern optimizers are structured as a series of passes

Typical Transformations

Discover & propagate some constant value

Move a computation to a less frequently executed place
Specialize some computation based on context
Discover a redundant computation & remove it

Remove useless or unreachable code

Encode an idiom in some particularly efficient form

Example

» Optimization of Subscript Expressions in Fortran

Address(A(l,J)) = address(A(0,0)) + J * (column size) + |

Does the user realize a multiplication
is generated here?

Example

» Optimization of Subscript Expressions in Fortran

Address(A(l,J)) = address(A(0,0)) + J * (column size) + |

Does the user realize a multiplication
is generated here?

DOI=1,M
A(1,J) = A(1,J) + C
ENDDO

Example

» Optimization of Subscript Expressions in Fortran

Address(A(l,J)) = address(A(0,0)) + J * (column size) + |

Does the user realize a multiplication
is generated here?

compute addr(A(0,J)

DOI=1,M DOI=1,M
A(LD) = A()) + C) add 1 to get addr(A(l,J)
ENDDO A(1,J) = A(1,J) + C

ENDDO

Modern Restructuring Compiler

HL HL R R Opt + Machi
Source | Front | AST. AST _ acnine
Code End > Rest::ctur Gen > ?Ea(;k code
n

> Errors

Typical Restructuring Transformations:

* Blocking for memory hierarchy and register reuse
* Vectorization

* Parallelization

* All based on dependence

* Also full and partial inlining

Subject of CISC 673

Role of the Run-time System

* Memory management services
— Allocate
= In the heap or in an activation record (stack frame)
— Deallocate
— Collect garbage
* Run-time type checking
* Error processing
* Interface to the operating system
— Input and output
* Support of parallelism
— Parallel thread initiation
— Communication and synchronization

Lab Zero

» Implement two COOL programs 100-200 lines each

e Material on the web
— Lab Assignment, Cool Manual

e Specs for Lab O available on Web
— Due in one week (9/16)
= Speak to me after class if you will need more time
— Practice with COOL and simulator available

— Grading will be done by TA
= You will meet with TA to deliver code

* Next Class (Thursday)
— Led by TA
— Introduction to COOL, SVN, etc.

Next Week

» Introduction to Scanning (aka Lexical Analysis)
* Material is in Chapter 2

* Specs for Lab 1 available next Tuesday (9/16)

Extra Slides Start Here

Classic Compilers

1957: The FORTRAN Automatic Coding System

S | Code > > S
| Front o l?i(rjneii’n Merge Flow Register Final [
End P Analysis | |Allocation| [Assembly
bookkeeping
Front End Middle End Back End

* Six passes in a fixed order

* Generated good code
Assumed unlimited index registers
Code motion out of loops, with ifs and gotos
Did flow analysis & register allocation

Classic Compilers

1969: IBM's FORTRAN H Compiler

Build , Loop Re - .
- Scan CEG Find CSE Inv [*|Copy[”| OSR ["lassoc Reg. + Final [»
& & Busy Cod Eli Alloc.| |Assy
Parse Vars oge 'm.
DOM Mot’n (consts)
Front MiddleEnd Back End
End

* Used low-level IR (quads), identified loops with dominators
* Focused on optimizing loops ("inside out” order)

Passes are familiar tfoday

* Simple front end, simple back end for IBM 370

Classic Compilers

1975: BLISS-11 compiler (Wulf et al., CMU)

Register allocation

_lLex-| R R R R . |
Syn-| |Delay| | TLA Rank| [(Pack| |Code| |Final
Flo
Front Middle BackEnd
End End
* The great compiler for the PDP-11 Basis for early VAX &

Tartan Labs compilers

* Seven passes in a fixed order
* Focused on code shape & instruction selection
LexSynFlo did preliminary flow analysis
Final included a grab-bag of peephole optimizations

Classic Compilers

1980: IBM's PL.8 Compiler

—> > > > > > > > > > > > —>
Front Middle End Back End
End
° Many passes, one front end, several back ends Dead code elimination
. E
* Collection of 10 or more passes Global 5
Code motion
Repeat some passes and analyses \ Constant folding
Represent complex operations at 2 levels Strength reduction
| : l | Value numbering
Below machine-level IR Dead store elimination
\ Code straightening
Multi-level IR Trap elimination
has become Algebraic reassociation
common wisdom *

Classic Compilers

1986: HP's PA-RISC Compiler

Front Middle End Back

* Several front ends, an optimizer, and a back end
* Four fixed-order choices for optimization (9 passes)
* Coloring allocator, instruction scheduler, peephole optimizer

Classic Compilers

1999: The SUIF Compiler System

Fortran 77 \ C/Fortran
C & C++ 7 Alpha
Java x86
Front End Middle End Back End

Another classically-built compiler

* 3 front ends, 3 back ends

18 passes, configurable order

* Two-level IR (High SUIF, Low SUIF)
* Intended as research infrastructure

Classic Compilers

1999: The SUIF Compiler System

Fortran 77 \ C/Fortran
CacH Alpha
Java x86

Front End Middle End Back End
Another classically-built compiler SSA construction
3 front ends, 3 back ends Deac? code elzmznatzon- L.

. Partial redundancy elimination
- 18 passes, conflgur'able order Constant propagation
_

Global value numbering

* Two-level IR (High SUIF, Low SUIF) | ¢ .
trength reduction
* Intended as research infrastructure | Reassociation

Instruction scheduling
Register allocation

Classic Compilers

1999: The SUIF Compiler System

Fortran 77 \

CacH -/

Another classically-built compiler

Front End Middle End

3 front ends, 3 back ends
18 passes, configurable order

Two-level IR (High SUIF, Low SUIF)
Intended as research infrastructure

C/Fortran

Alpha

Back End

Data dependence analysis
Scalar & array privitization
Reduction recognition

Pointer analysis

Affine loop transformations
Blocking

Capturing object definitions
Virtual function call elimination
Garbage collection

Classic Compilers

2000: The SGI Pro64 Compiler (now Opené4 from UDEL ECE)

Fortran _ B B B
|Interpr.| || | Loop | || | Global| | | | Code
C & C++ / Anal. & Nest Optim’n Gen.
/ Optim’n Optim’n
Java - - - -
Front End Middle End Back
End

Open source optimizing compiler for TA 64
* 3 front ends, 1 back end

* Five-levels of IR

* Gradual lowering of abstraction level

Classic Compilers

2000: The SGI Pro64 Compiler (now Opené4 from UDEL ECE)

rortran \ linterpr.| || | Loop | || Glo.bazl || | Code
C & C++ / gsz:ni ost?rs:’n Optim’n Gen.
Java - - - -
FrontEnd wddle End Back
End

Interprocedural
Classic analysis

Open source optimizing compiler for Inlining (user & library code)

e 3 front ends, 1 back end Cloning (constants & locality)
) Dead function elimination
* Five-levels of IR Dead variable elimination

* Gradual lowering of abstraction level

Classic Compilers

2000: The SGI Pro64 Compiler (now Opené4 from UDEL ECE)

rortran \ linterpr.| || | Loop | || Glo.bazl || | Code
C & C++ / gsz:ni ost?rs:’n Optim’n Gen.
Java - - - -
FrontEnd Middle End Back
End

Loop Nest Optimization
Dependence analysis
Parallelization

Loop transformations (fission,

Open source optimizing compiler for TA

* 3 front ends , 1 back end fusion, interchange, peeling,
. tiling, unroll & jam)
[] -
F've |€V€|S Of IR Array privitization

* Gradual lowering of abstraction level

Classic Compilers

2000: The SGI Pro64 Compiler (now Opené4 from UDEL ECE)

Fortran _ B B B
|Interpr.| || | Loop | || | Global| | | | Code
C & C++ / Anal. & Nest Optim’n Gen.
Optim’n Optim’n
Java - - - / -
Front End Middle End Back
End

L. . lobal Optimization
Open source opT|m|z|ng COH’\pI'ZI" for TA 64 | fS4-based analysis & opt’n

Constant propagation, PRE,
* 3 front ends, 1 back end SRl TR DUNT DCE
* Five-levels of IR (also used by other phases)

* Gradual lowering of abstraction level

Classic Compilers

2000: The SGI Pro64 Compiler (now Opené4 from UDEL ECE)

Fortran _ B B B
|Interpr.| || | Loop | || | Global| | | | Code
C & C++ / Anal. & Nest Optim’n Gen.
Optim’n Optim’n
Java - - -
FrontEnd oo

Middle End

Code Géneration
Open source op‘l’imizing COH’\P”ZI" for TA 64 | !f conyérsion & predication

Cod? motion

* 3 front ends, 1 back end Scheduling (inc. sw pipelining)
* Five-levels of IR

Allocation
Peephole optimization

* Gradual lowering of abstraction level

Classic Compilers

Even a 2007 Java JIT fits the mold, e.q., JIKES RVM (IBM)

Class
Java Loading, ‘ IR ;
Bytecodes Verification, HIR LIR — I“I,'\l’ — Executable
etc.
Front End Middle End Back End

* Several front end tasks are handled elsewhere
* "Hot-spot” Optimizer

Avoid expensive analysis at first

Compilation must be profitable

Classic Compilers

Even a 2007 Java JIT fits the mold, e.q., JIKES RVM (IBM)

Class
Java Loading
| = - M
Bytecodes Verification, HIR LIR — M — Executable
etc.
~ FrontEnd WNadle End Back End

e Several front end tasks are handled elsewhere
o “HO‘l‘—SpO‘l‘" Optimizer HIR Optimizations
)))) Tail Recursion
Avoid expensive analysis at first

Escape Analysis
Compilation must be profitable Load Elimination
Loop Unrolling

Classic Compilers

Even a 2007 Java JIT fits the mold, e.q., JIKES RVM (IBM)

Class
Java Loading, X IR ;
Bytecodes Verification, HIR LIR — |l\|g — Executable
etc.
~ FrontEnd Middle EnYl Back End

e Several front end tasks are handled elsewhere

o “HO‘l‘—SpO‘l‘" Optimizer LIR Optimizations

. . : . Constant Propagation
Avoid expensive analysis at first Copy Propagation

Compilation must be profitable Constant Sub Elimination
Basic Block Reordering

Classic Compilers

Even a 2007 Java JIT fits the mold, e.q., JIKES RVM (IBM)

Class
Java Loading, R o L >
ByteCOdeS_'Verification,_> HIR LIR — I“I,'\l’ — Executable
etc.
~ FrontEnd Middle End Back End
e Several front end tasks are handled elsewher
* "Hot-spot” Optimizer IR Optimizations
d : Ivsi . Code Generation)
Avoid expensive analysis at first ive Analysis
Compilation must be profitable Instruction Scheduling
Register Allocation

