
Overview of the Course

Critical Facts

Welcome to CISC 672 — Advanced Compiler Construction

•  Instructor: Dr. John Cavazos (cavazos@cis.udel.edu)
•  Office Hours: Tues/Thurs 11 AM to 12 PM, Smith Hall 412
•  Text: Engineering a Compiler

by Keith Cooper and Linda Torzcan
•  Web Site: http://www.cis.udel.edu/~cavazos/CISC672

→  Handouts, homework, slides, …
→  I will not have handouts in class; get them from the web

Topics in the design of programming language translators,
 including parsing, semantic analysis, error recovery, code
 generation, and optimization

Basis for Grading

•  Exams
→  Midterm 20%
→  Final 20%

•  Quizzes 10%
•  Projects

→  Scanner 7%
→  Parser 8%
→  Semantic Analyzer 15%
→  Code Generation 15%

This only adds up to
 95%. Where is the
 other 5%?

Class participation!

Notice: Any student with a disability requiring accommodations in this
 class is encouraged to contact me after class or during office hours,
 and to contact UDel’s Coordinator for Disabled Student Services.

Basis for Grading

•  Exams
→  Midterm
→  Final

•  Quizzes

•  Projects
→  Parser (& scanner)
→  Semantic Analyzer
→  Code Generation

  Closed-notes, closed-book
  Old exam on web site as an example

  Reinforce concepts
  Number of quizzes t.b.d.

  Parser lab might be a team lab
  High ratio of thought to programming
  Will build a compiler for a language
 called COOL (in C++ or Java)

Rough Syllabus

•  Overview § 1
•  Scanning § 2
•  Parsing § 3
•  Context Sensitive Analysis § 4
•  Inner Workings of Compiled Code § 6, 7
•  Introduction to Optimization § 8
•  Instruction Selection § 11
•  Instruction Scheduling § 12
•  Register Allocation § 13
•  More Optimization (time permitting)

Class-taking technique for CISC 672

•  I will use projected material extensively
→  I will moderate my speed, you sometimes need to say “STOP”

•  You should read the book
→  Not all material will be covered in class
→  Book complements the lectures

•  You are responsible for material from class
→  The tests will cover both lecture and reading
→  I will probably hint at good test questions in class

•  CISC 672 is not a programming course
→  Projects are graded on functionality, documentation, and lab

reports more than style (results matter)
•  It will take me time to learn your names (please remind me)

Compilers

•  What is a compiler?

Compilers

•  What is a compiler?
→  A program that translates an executable program in one

language into an executable program in another language
→  The compiler should improve the program, in some way

•  What is an interpreter?

Compilers

•  What is a compiler?
→  A program that translates an executable program in one

language into an executable program in another language
→  The compiler should improve the program, in some way

•  What is an interpreter?
→  A program that reads an executable program and produces the

results of executing that program

Compilers

•  What is a compiler?
→  A program that translates an executable program in one

language into an executable program in another language
→  The compiler should improve the program, in some way

•  What is an interpreter?
→  A program that reads an executable program and produces the

results of executing that program

•  C is typically compiled, Scheme is typically interpreted
•  Java is compiled to bytecodes (code for the Java VM)

→  which can then interpreted
→  Or a hybrid strategy is used

  Just-in-time compilation

Taking a Broader View
•  Compiler Technology

→  Offline
  Typically C, C++, Fortran

→  Online
  Typically Java, C##

→  Goals: improved performance and language usability
  Making it practical to use the full power of the language

→  Trade-off: preprocessing time versus execution time (or space)
→  Rule: performance of both compiler and application must be

acceptable to the end user

Why Study Compilation?
•  Compilers are important system software components

→  They are intimately interconnected with architecture, systems,
programming methodology, and language design

•  Compilers include many applications of theory to practice
→  Scanning, parsing, static analysis, instruction selection

•  Many practical applications have embedded languages
→  Commands, macros, formatting tags …

•  Many applications have input formats that look like
languages,
→  Matlab, Mathematica

•  Writing a compiler exposes practical algorithmic &
engineering issues
→  Approximating hard problems; efficiency & scalability

Intrinsic interest

  Compiler construction involves ideas from many different
parts of computer science

Artificial intelligence
Greedy algorithms
Heuristic search techniques

Algorithms Graph algorithms,
Dynamic programming

Theory DFAs & PDAs, pattern matching
Fixed-point algorithms

Systems
Allocation & naming,
 Synchronization, locality

Architecture Pipeline & hierarchy management
Instruction set use

Intrinsic merit

  Compiler construction poses challenging and interesting
problems:
→  Compilers must do a lot but also run fast

→  Compilers have responsibility for run-time performance

→  Compilers are responsible for making it acceptable to use the
full power of the programming language

→  Computer architects perpetually create new challenges for the
compiler by building more complex machines

→  Compilers must hide that complexity from the programmer

→  Success requires mastery of complex interactions

Aren’t compilers a solved problem?

“Optimization for scalar machines is a
 problem that was solved ten years ago.”
 David Kuck, Fall 1990

Aren’t compilers a solved problem?

“Optimization for scalar machines is a
 problem that was solved ten years ago.”
 David Kuck, Fall 1990

– Architectures keep changing
–  Languages keep changing
– Applications keep changing - SPEC CPU?
– When to compile keeps changing

About the instructor

•  My own research
→  Applying machine learning to solve hard systems problems
→  Compiling for advanced microprocessor systems
→  Interplay between static and dynamic compilation
→  Optimization for embedded systems (space, power, speed)
→  Interprocedural analysis and optimization
→  Nitty-gritty things that happen in compiler back ends
→  Distributing compiled code in a heterogeneous environment
→  Rethinking the fundamental structure of optimizing compilers

•  Thus, my interests lie in
→  Building “Intelligent” Compilers
→  Quality of generated code(smaller, more efficient, faster)
→  Interplay between compiler and architecture
→  Static analysis to discern program behavior
→  Run-time performance analysis

Next class

•  The view from 35,000 feet
→  How a compiler works
→  What I think is important
→  What is hard and what is easy

