
Midterm Review

The Front End

Source
code Scanner

IR
Parser

Errors

tokens

Responsibilities
• Recognize legal (and illegal) programs
• Produces IR

Traditional Compiler

The Front End

Source
code Scanner

IR
Parser

Errors

tokens

Scanner
• Maps character stream into words

• the basic unit of syntax
• Produces pairs — a word & its part of speech

Traditional Compiler

Scanning refers to Lexical Analysis
• Regular Expressions
• Closure, Concatenation, Alternation
RE® NFA (Thompson’s construction)
• Build an NFA for each term
• Combine them with e-transitions

NFA ® DFA (Subset construction)
• Build the simulation

DFA ® Minimal DFA
• Hopcroft’s algorithm

UNDERSTAND THE LEXICAL PHASE OF THE PROJECT!

The Front End

Source
code

Scanner
IR

Parser

Errors

tokens

Parser
• Recognizes syntax (context-free) and reports errors
• Builds IR for source program

Traditional Compiler

The Front End

Backus–Naur Form (BNF)

Formally, a grammar G = (S,N,T,P)
• S is the start symbol
• N is a set of non-terminal symbols
• T is a set of terminal symbols or words
• P is a set of productions or rewrite rules

Can you extract these from a complex grammar?

Derivations and Parse Trees

Leftmost derivation

G

x

E

E Op

–

2

E

E

E

y

Op

*

x – 2 * y

Rule Sentential Form
— Expr
1 Expr Op Expr
3 <id,x> Op Expr
5 <id,x> – Expr
1 <id,x> – Expr Op Expr
2 <id,x> – <num,2> Op Expr
6 <id,x> – <num,2> * Expr
3 <id,x> – <num,2> * <id,y>

Given a grammar, can you generate a derivation and a tree?

Ambiguous Grammars

Definitions
• If a grammar has more than one leftmost derivation for a

single sentential form, the grammar is ambiguous
• If a grammar has more than one rightmost derivation for a

single sentential form, the grammar is ambiguous
• The leftmost and rightmost derivations for a sentential

form may differ, even in an unambiguous grammar

Study how to fix
ambiguous grammar problems

• Starts with root of parse tree
• Root node is labeled with goal symbol
• Expand all non-terminals (NT) at fringe of tree

fringe

Top-down Parsing

Goal

Expr

Term+Expr

Construct the root node of parse tree
Repeat until lower fringe matches input string

1 At node labeled A, select production with A on LHS and, for each
symbol on RHS, construct appropriate child

2 If terminal symbol added to fringe doesn’t match input, backtrack
3 Find the next node (NT) to be expanded

The key is picking the right production in step 1
® That choice should be guided by the input string

Top-down parsing algorithm

Left Recursion

Top-down parsers cannot handle left-recursive
grammars

Formally,
A grammar is left recursive if $ A Î NT such that
$ a derivation A Þ+ Aa, for some string a Î (NT È T)+

Study how to fix this problem!

What to Study

• Things I’ve highlighted in green
• Read the book
• Up to Top-Down Parsing (Section 3.3)

• Study the project solutions

