
Lexical Analysis - An Introduction



The Front End

The front end is not monolithic

Source
code

Front
End

Errors

Machine
code

Back
End

IR



The Front End

Scanner 
• Maps stream of characters into words

®Basic unit of syntax
®x = x + y ; becomes set of tokens <type, lexeme>

<id,x> <eq,=> <id,x> <pl,+> <id,y> <sc,; >

Source
code Scanner

IR
Parser

Errors

tokens



Where is Lexical Analysis Used?

For traditional languages but where else…
• Web page “compilation”
• Lexical Analysis of HTML, XML, etc.

• Natural Language Processing
• Game Scripting Engines
• OS Shell Command Line
• GREP
• Prototyping high-level languages
• JavaScript, Perl, Python



The Big Picture
Why study lexical analysis?
• We want to avoid writing scanners by hand
• We want to harness the theory from classes like CISC 303

Goals:
® To simplify specification & implementation of scanners
® To understand the underlying techniques and technologies

Scanner

Scanner
Generator

specifications

source code parts of  speech & words

tables or 
code

Regular Expressions



Regular Expressions
Powerful notation to specify lexical rules

• Simplifies scanner construction

• Notation describes set of strings over 
some alphabet

• Entire set of strings called the language

• If r is an RE, L(r) is the language it 
specifies   



Regular Expressions (more formally)
• Over some alphabet S
• e is a RE denoting the empty set
• If a is in S, then a is a RE denoting {a}



Regular Expressions (more formally)
Given sets R and S
• Closure: R* is an RE denoting

È0£i£¥ Ri

• Concatenation: RS is an RE denoting
{st | s Î R and t Î S } 

• Alternation: R |S is an RE denoting
{s | s Î R or s Î S } 

- Often written �R È S

Note: Precedence is closure, then concatenation, then alternation



Examples of Regular Expressions

Identifiers:
Letter ® (a|b|c| … |z|A|B|C| … |Z)
Digit           ® (0|1|2| … |9)
Identifier ® Letter ( Letter | Digit )*

Numbers:
Integer    ® (+|-|e) (0| (1|2|3| … |9)(Digit *) )
Decimal   ® Integer . Digit *

Real ® ( Integer | Decimal ) E (+|-|e) Digit *
Complex ® ( Real , Real )

Numbers can get much more complicated!



Regular Expressions                  (the point)

REs are used to specify the words to be translated 
to parts of speech by a lexical analyzer

Using results from automata theory and theory of 
algorithms, we can automatically build recognizers
(i.e. scanners) from regular expressions

You may have seen this construction in a Automata 
Course

Þ We study REs and associated theory to automate 
scanner construction !



Regular Expression Class Problem?

What is the regular expression for a register name?

Examples:   r1,  r25, r999     ß These are OK.

r, s1, a25   ß These are not OK.



Consider the problem of recognizing register names
Register ® r (0|1|2| … | 9) (0|1|2| … | 9)*

• Allows registers of arbitrary number
• Requires at least one digit

Register Name RE Solution                                            



Finite Automaton (FA)

– An abstract machine that corresponds to a particular RE
- Recognizers can scan a stream of symbols to find words

S0

(0|1|2| … 9)

accepting states

(1|2| … 9)

Transition Diagram for Number

S2  

S1 0



Finite Automaton (FA)
An FA is a five-tuple (S,S,∂,s0 ,SF ) where 
• S   is the set of states 
• S is the alphabet
• ∂   a set of transition functions 
• takes a state and a character and 
returns new state

• s0 is the start state
• SF    is the set of final states  



Finite Automaton (FA)

S0

(0|1|2| … 9)

accepting states

(1|2| … 9)

Transition Diagram for Number

S2  

S1 0



Consider the problem of recognizing register names
Register ® r (0|1|2| … | 9) (0|1|2| … | 9)*

• Allows registers of arbitrary number
• Requires at least one digit

What does the DFA look like?

Register Name DFA Class Problem?



Consider the problem of recognizing register names

Register ® r (0|1|2| … | 9) (0|1|2| … | 9)*

• Allows registers of arbitrary number
• Requires at least one digit

RE corresponds to a recognizer (or DFA)

Transitions on other inputs go to an error state, se

Register Name DFA Solution

S0 S1 

r

(0|1|2| … 9)

accepting state

(0|1|2| … 9)

Recognizer for Register

S2  



DFA operation
• Start in state S0 & take transitions on each input character
• DFA accepts a word x iff  x leaves it in a final state (S2 )

So,
• r17 takes it through s0, s1, s2 and accepts
• r takes it through s0, s1 and fails
• a takes it straight to se

Example                                         (continued)

S0 S1 

r

(0|1|2| … 9)

accepting state

(0|1|2| … 9)

Recognizer for Register

S2  



Example                                         (continued)

To be useful, recognizer must turn into code

sesesese

ses2ses2

ses2ses1

seses1s0

All 
others

0,1,2,3,4,
5,6,7,8,9rdChar ¬ next character

State ¬ s0

while (Char ¹ EOF)
State ¬ d(State,Char)
Char ¬ next character

if (State is a final state )
then report success
else  report failure

Skeleton recognizer Table encoding RE



r Digit Digit* allows arbitrary numbers
• Accepts r00000
• Accepts r99999
• What if we want to limit it to r0 through r31 ?

Write a tighter regular expression
® Register ® r ( (0|1|2) (Digit | e) | (4|5|6|7|8|9) | (3|30|31) )
® Register ® r0|r1|r2| … |r31|r00|r01|r02| … |r09

Produces a more complex DFA
• Has more states
• Same cost per transition
• Same basic implementation

What if we need a tighter specification?



Tighter register specification         (continued)

The DFA for
Register ® r ( (0|1|2) (Digit | e) | (4|5|6|7|8|9) | (3|30|31) )

• Accepts a more constrained set of registers
• Same set of actions, more states 

S0 S5 S1 

r

S4 

S3 

S6 

S2 

0,1,2

3 0,1

4,5,6,7,8,9

(0|1|2| … 9)



Tighter register specification         (continued)

seseseseses1s0

sesesesesesese

seseseseseses6

seseseses6ses5

seseseseseses4

seseseseseses3

ses3s3s3s3ses2

ses4s5s2s2ses1

All
others4-9320,1rd

Table encoding RE for the tighter register specification 

Runs in the 
same 
skeleton 
recognizer



Extra Slides



The Front End

Parser
• Checks stream of classified words (parts of speech) for 

grammatical correctness
• Determines if code is syntactically well-formed
• Guides checking at deeper levels than syntax
• Builds an IR representation of the code

We’ll come back to parsing in a couple of lectures

Source
code Scanner

IR
Parser

Errors

tokens



These definitions should be well known

Set Operations                         


