
The View from 35,000 Feet

High-level View of a Compiler

Source
code

Machine
code

Traditional Compiler

Errors

Traditional Two-pass Compiler

Source
code Front

End

Errors

Machine
codeBack

End
IR

Responsibilities
• Front end produces intermediate

representation (IR)
• Back end produces machine code

Traditional Compiler

The Front End

Source
code Scanner

IR
Parser

Errors

tokens

Responsibilities
• Recognize legal (and illegal) programs
• Produces IR

Traditional Compiler

The Front End

Source
code Scanner

IR
Parser

Errors

tokens

Scanner
• Maps character stream into words
• the basic unit of syntax

• Produces pairs — a word & its part of speech

Traditional Compiler

The Front End

Source
code

Scanner
IR

Parser

Errors

tokens

Parser
• Recognizes syntax (context-free) and reports errors
• Builds IR for source program

Traditional Compiler

The Front End

Context-free syntax is specified with a grammar

SheepNoise ® baa SheepNoise
| baa

This grammar defines the set of noises that a sheep
makes under normal circumstances

It is written in a variant of Backus–Naur Form (BNF)

The Front End

Backus–Naur Form (BNF)

Formally, a grammar G = (S,N,T,P)
• S is the start symbol
• N is a set of non-terminal symbols
• T is a set of terminal symbols or words
• P is a set of productions or rewrite rules

Context-free syntax can be put to better use

• This grammar defines simple expressions with addition &
subtraction over “number” and “id”

The Front End

1. goal ® expr

2. expr ® expr op term
3. | term

4. term ® number
5. | id

6. op ® +
7. | -

S = goal

T = { number, id, +, - }

N = { goal, expr, term, op }

P = { 1, 2, 3, 4, 5, 6, 7}

Given a CFG, we can derive sentences by repeated substitution

To recognize a valid sentence in some CFG, we reverse this
process and build up a parse

The Front End

Production Result
goal

1 expr
2 expr op term
5 expr op y
7 expr - y
2 expr op term - y
4 expr op 2 - y
6 expr + 2 - y
3 term + 2 - y
5 x + 2 - y

The Front End

A parse can be represented by a tree (parse tree or syntax tree)

x + 2 - y

This contains a lot of unneeded
information.

term

op termexpr

termexpr

goal

expr

op

<id,x>

<number,2>

<id,y>

+

-

1. goal ® expr

2. expr ® expr op term
3. | term

4. term ® number
5. | id

6. op ® +
7. | -

The Front End

Compilers often use an abstract syntax tree

This is much more concise

An AST is just one of several intermediate
representations (IR) that can be used in a
compiler

+

-

<id,x> <number,2>

<id,y>

The Back End

Responsibilities
• Translate IR into target machine code
• Choose instructions to implement each IR operation
• Decide which values to keep in registers

Automation has been less successful in the back end

Errors

IR Register
Allocation

Instruction
Selection

Machine
code

Instruction
Scheduling

IR IR

The Back End

Instruction Selection
• Produce fast, compact code
• Take advantage of target machine features
• Usually viewed as a pattern matching problem

® ad hoc methods, pattern matching, dynamic programming

Errors

IR Register
Allocation

Instruction
Selection

Machine
codeInstruction

Scheduling

IR IR

The Back End

Register Allocation
• Allocating variables (i.e., values) into registers
• Manage a limited set of registers
• Often more variables than registers available

• Optimal allocation is NP-Complete

Errors

IR Register
Allocation

Instruction
Selection

Machine
codeInstruction

Scheduling

IR IR

The Back End

Instruction Scheduling
• Tries to find a better ordering of the assembly instructions
• Architecture dependent
• Finding optimal ordering (schedule) is NP-complete

Errors

IR Register
Allocation

Instruction
Selection

Machine
codeInstruction

Scheduling

IR IR

Traditional Three-pass Compiler

Code Improvement (or Optimization)
• Analyzes IR and rewrites (or transforms) IR
• Primary goal is to reduce running time of the compiled code

® May also improve space, power consumption, …
• Must preserve “meaning” of the code

® Measured by values of named variables

Errors

Source
Code

Middle
End

Front
End

Machine
codeBack

End

IR IR

The Optimizer (or Middle End)

Errors

Opt
1

Opt
3

Opt
2

Opt
n

...IR IR IR IR IR

Modern optimizers are structured as a series of passes

Typical Transformations
• Discover and propagate some constant value
• Move a computation to a less frequently executed place

Next Week

Ø Introduction to Scanning (aka Lexical Analysis)
• Material is in Chapter 2

• Phase 2 available next Monday (2/12)

