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Traditional Two-pass Compiler
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Responsibilities
• Front end produces intermediate 

representation (IR)
• Back end produces machine code

Traditional Compiler



The Front End
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Responsibilities
• Recognize legal (and illegal) programs
• Produces IR
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The Front End
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Scanner
• Maps character stream into words
• the basic unit of syntax

• Produces pairs — a word &  its part of speech
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The Front End
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Parser
• Recognizes syntax (context-free) and reports errors
• Builds IR for source program

Traditional Compiler



The Front End

Context-free syntax is specified with a grammar

SheepNoise ® baa SheepNoise
|   baa

This grammar defines the set of noises that a sheep 
makes under normal circumstances

It is written in a variant of Backus–Naur Form (BNF)



The Front End

Backus–Naur Form (BNF)

Formally, a grammar G = (S,N,T,P)
• S is the start symbol
• N is a set of non-terminal symbols
• T is a set of terminal symbols or words
• P is a set of productions or rewrite rules



Context-free syntax can be put to better use

• This grammar defines simple expressions with addition & 
subtraction over  “number” and “id”

The Front End

1.  goal ® expr

2.  expr ® expr  op  term
3.               |   term

4.  term ® number
5.               |    id

6.  op ® +
7.               |    -

S = goal

T = { number, id, +, - }

N = { goal, expr, term, op }

P = { 1, 2, 3, 4, 5, 6, 7}



Given a CFG, we can derive sentences by repeated substitution

To recognize a valid sentence in some CFG, we reverse this 
process and build up a parse

The Front End

Production     Result
goal

1 expr
2 expr op term
5 expr op y
7 expr - y
2 expr op term - y
4 expr op 2  - y
6 expr +  2  - y
3 term +  2  - y
5 x  +  2  - y 



The Front End

A parse can be represented by a tree  (parse tree or syntax tree)

x  +  2  - y

This contains a lot of unneeded 
information. 
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1.  goal ® expr

2.  expr ® expr op  term
3.              |   term

4.  term ® number
5.              |    id

6.  op    ® +
7.              |    -



The Front End

Compilers often use an abstract syntax tree

This is much more concise

An AST is just one of several intermediate 
representations (IR)  that can be used in a 
compiler
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The Back End

Responsibilities
• Translate IR into target machine code
• Choose instructions to implement each IR operation
• Decide which values to keep in registers

Automation has been less successful in the back end
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The Back End

Instruction Selection
• Produce fast, compact code
• Take advantage of target machine features
• Usually viewed as a pattern matching problem

® ad hoc methods, pattern matching, dynamic programming
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The Back End

Register Allocation
• Allocating variables (i.e., values) into registers
• Manage a limited set of registers
• Often more variables than registers available

• Optimal allocation is NP-Complete
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The Back End

Instruction Scheduling
• Tries to find a better ordering of the assembly instructions
• Architecture dependent
• Finding optimal ordering (schedule) is NP-complete
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Traditional Three-pass Compiler

Code Improvement (or Optimization)
• Analyzes IR and rewrites (or transforms) IR
• Primary goal is to reduce running time of the compiled code

® May also improve space, power consumption, …
• Must preserve “meaning” of the code

® Measured by values of named variables
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The Optimizer (or Middle End)
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Modern optimizers are structured as a series of  passes

Typical Transformations
• Discover and propagate some constant value
• Move a computation to a less frequently executed place



Next Week

Ø Introduction to Scanning (aka Lexical Analysis)
• Material is in Chapter 2

• Phase 2 available next Monday (2/12)


