
Introduction to Optimization, 
Instruction Selection and Scheduling, and 

Register Allocation



Code Improvement (or Optimization)
• Analyzes IR and rewrites (or transforms) IR
• Primary goal is to reduce running time of the compiled code

® May also improve space, power consumption, …
• Must preserve “meaning” of the code

® Measured by values of named variables
® A course (or two) unto itself

Traditional Three-pass Compiler
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The Optimizer (or Middle End)
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The Optimizer (or Middle End)

Typical Transformations
• Discover & propagate some constant value
• Move a computation to a less frequently executed 

place
• Specialize some computation based on context
• Discover a redundant computation & remove it
• Remove useless or unreachable code
• Encode an idiom in some particularly efficient 

form



The Role of the Optimizer

• The compiler can implement a procedure in many ways
• The optimizer tries to find an implementation that is 
“better”
® Speed, code size, data space, …

To accomplish this, it
• Analyze code to derive knowledge about run-time behavior

® General term is “static analysis”
• Uses that knowledge in an attempt to improve the code

® Literally hundreds of transformations have been proposed
® Large amount of overlap between them

Nothing “optimal” about optimization



Redundancy Elimination as an Example
An expression x+y is redundant iff
• along every path from the procedure’s 

entry, it has been evaluated and its  
constituent subexpressions (x & y) have 
not been re-defined.





• Instruction Selection

• Register Allocation

• Instruction Scheduling

Traditional Three-pass Compiler
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Instruction Selection: The Problem
Writing a compiler is a lot of work
• Would like to reuse components whenever possible
• Would like to automate construction of components
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Infrastructure 

Automating     
Instruction
Selection 



Definitions
Instruction selection
• Mapping IR into assembly code
• Assumes a fixed storage mapping & code shape
• Combining operations, using address modes

Instruction scheduling
• Reordering operations to hide latencies
• Assumes a fixed program  (set of operations)
• Changes demand for registers

Register allocation
• Deciding which values will reside in registers
• Changes the storage mapping, may add false sharing
• Concerns about placement of data & memory operations



The Problem
Modern computers (still) have many ways to do anything

Consider register-to-register copy in ILOC

• Obvious operation is  i2i ri Þ rj
• Many others exist

• Human would ignore all of these

• Algorithm must look at all of them & find low-cost encoding
® Take context into account

addI  ri,0 Þ rj subI ri,0 Þ rj lshiftI ri,0 Þ rj
multI ri,1 Þ rj divI ri,1 Þ rj rshiftI ri,0 Þ rj
orI   ri,0 Þ rj xorI ri,0 Þ rj … and others …



The Goal
Want to automate generation of instruction selectors

Machine description can also help with scheduling & allocation
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The Big Picture
Need pattern matching techniques 
• Must produce good code                        (some metric for good )
• Must run quickly

A treewalk code generator runs quickly
How good was the code? 

x

IDENT
<a,ARP,4>

IDENT
<b,ARP,8>

loadI 4     Þ r5
loadAO rarp,r5 Þ r6
loadI 8     Þ r7
loadAO rarp,r7 Þ r8
mult r6,r8 Þ r9

loadAI rarp,4 Þ r5
loadAI rarp,8  Þ r6
mult r5,r6 Þ r7

Tree Treewalk Code Desired Code
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The Big Picture
Need pattern matching techniques 
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The Big Picture
Need pattern matching techniques 
• Must produce good code                        (some metric for good )
• Must run quickly

A treewalk code generator runs quickly
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Must combine these
This is a nonlocal problem



The Big Picture
Need pattern matching techniques 
• Must produce good code                        (some metric for good )
• Must run quickly

A treewalk code generator runs quickly
How good was the code?
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The Big Picture
Need pattern matching techniques 
• Must produce good code                        (some metric for good )
• Must run quickly

A treewalk code generator can meet the second criteria
How did it do on the first ?

x

IDENT
<c,@G,4>

IDENT
<d,@H,4>

loadI @G Þ r5
loadI 4     Þ r6
loadAO r5,r6 Þ r7
loadI @H Þ r7
loadI 4     Þ r8
loadAO r8,r9 Þ r10
mult r7,r10Þ r11

loadI 4 Þ r5
loadAI r5,@G Þ r6
loadAI r5,@H Þ r7
mult r6,r7 Þ r8

Tree Treewalk Code Desired Code

Common offset
Again, a nonlocal problem



How do we perform this kind of matching ?
Tree-oriented IR suggests pattern matching on trees
• Tree-patterns as input, matcher as output
• Each pattern maps to a target-machine instruction sequence
• Use dynamic programming or bottom-up rewrite systems

Linear IR suggests using some sort of string matching
• Strings as input, matcher as output
• Each string maps to a target-machine instruction sequence
• Use text matching or peephole matching

In practice, both work well; matchers are quite different



Definitions
Instruction selection
• Mapping IR into assembly code
• Assumes a fixed storage mapping & code shape
• Combining operations, using address modes

Instruction scheduling
• Reordering operations to hide latencies
• Assumes a fixed program  (set of operations)
• Changes demand for registers

Register allocation
• Deciding which values will reside in registers
• Changes the storage mapping, may add false sharing
• Concerns about placement of data & memory operations



What Makes Code Run Fast?

• Many operations have non-zero latencies
• Modern machines can issue several operations per cycle

• Execution time is order-dependent 

Assumed latencies   (conservative)

Operation Cycles 
load 3
store 3
loadI 1
add 1
mult 2
fadd 1
fmult 2
shift 1
branch 0 to 8

• Loads & stores may or may not block

> Non-blocking Þfill those issue slots
• Branch costs vary with path taken
• Scheduler should hide the latencies



Example

w ¬ w * 2 * x  * y * z

1 loadAI r0,@w ⇒ r1
4 add r1,r1 ⇒ r1
5 loadAI r0,@x ⇒ r2
8 mult r1,r2 ⇒ r1
9 loadAI r0,@y ⇒ r2

12 mult r1,r2 ⇒ r1
13 loadAI r0,@z ⇒ r2
16 mult r1,r2 ⇒ r1

   18 storeAI r1 ⇒ r0,@w
21 r1 is free

1 loadAI r0,@w ⇒ r1
2 loadAI r0,@x ⇒ r2
3 loadAI r0,@y ⇒ r3
4 add r1,r1 ⇒ r1
5 mult r1,r2 ⇒ r1
6 loadAI r0,@z ⇒ r2
7 mult r1,r3 ⇒ r1
9 mult r1,r2 ⇒ r1

11 storeAI r1 ⇒ r0,@w
14 r1 is free

Cycles          Simple schedule Cycles       Schedule loads early

2 registers, 20 cycles 3 registers, 13 cycles

Reordering operations for speed is called 
instruction scheduling



Instruction Scheduling               (Engineer’s View)

The Problem
Given a code fragment for some target machine and the 
latencies for each individual operation, reorder the operations
to minimize execution time

The Concept

Scheduler
slow

code

fast

code

Machine description

The task

• Produce correct code

• Minimize wasted cycles

• Avoid spilling registers

• Operate efficiently 



Instruction Scheduling           (The Abstract View)

To capture properties of the code, build a dependence graph G
• Nodes  n Î G are operations with type(n) and delay(n)
• An edge e = (n1,n2) Î G if & only if n2 uses the result of n1

a: loadAI r0,@w ⇒ r1
b: add r1,r1 ⇒ r1
c: loadAI r0,@x ⇒ r2
d: mult r1,r2 ⇒ r1
e: loadAI r0,@y ⇒ r2
f: mult r1,r2 ⇒ r1
g: loadAI r0,@z ⇒ r2
h: mult r1,r2 ⇒ r1
i: storeAI r1 ⇒ r0,@w

The Code

a

b c

d e

f g

h

i

The Dependence Graph



Instruction Scheduling                         (Definitions)

A correct schedule S maps each nÎ N into a non-negative 
integer representing its cycle number, and

1. S(n) ≥ 0, for all n Î N, obviously 
2. If (n1,n2) Î E, S(n1 ) + delay(n1 ) ≤ S(n2 )
3. For each type t, there are no more operations of type t in 

any cycle than the target machine can issue

The length of a schedule S, denoted L(S), is 
L(S) = maxn Î N (S(n) + delay(n))

The goal is to find the shortest possible correct schedule.
S is time-optimal if L(S) ≤ L(Sj), for all other schedules Sj

A schedule might also be optimal in terms of registers, 
power, or space….



Instruction Scheduling          (What’s so difficult?)

Critical Points
• All operands must be available 

• Multiple operations can be ready
• Moving operations can lengthen register lifetimes
• Placing uses near definitions can shorten register lifetimes

• Operands can have multiple predecessors
Together, these issues make scheduling hard (NP-Complete)

Local scheduling is the simple case

• Restricted to straight-line code
• Consistent and predictable latencies



Instruction Scheduling

The big picture
1.  Build a dependence graph, P
2.  Compute a priority function over the nodes in P
3.  Use list scheduling to construct a schedule, one cycle at a 

time
a.  Use a queue of operations that are ready
b.  At each cycle

I.  Choose a ready operation and schedule it
II. Update the ready queue

Local list scheduling

• The dominant algorithm for twenty years
• A greedy, heuristic, local technique 



Local List Scheduling

Cycle ¬ 1
Ready ¬ roots of P
Active ¬ Ø

while (Ready È Active ¹ Ø)
if (Ready ¹ Ø) then

remove an op from Ready
S(op) ¬ Cycle
Active ¬ Active È op

Cycle ¬ Cycle + 1

for each op Î Active
if (S(op) + delay(op) ≤ Cycle) then

remove op from Active
for each successor s of op in P

if (s is ready) then
Ready ¬ Ready È s

Removal in priority order

op has completed execution

If successor’s operands are 
ready, put it on Ready



Scheduling Example

1. Build the dependence graph

a: loadAI r0,@w ⇒ r1
b: add r1,r1 ⇒ r1
c: loadAI r0,@x ⇒ r2
d: mult r1,r2 ⇒ r1
e: loadAI r0,@y ⇒ r2
f: mult r1,r2 ⇒ r1
g: loadAI r0,@z ⇒ r2
h: mult r1,r2 ⇒ r1
i: storeAI r1 ⇒ r0,@w

The Code

a

b c

d e

f g

h

i

The Dependence Graph



Scheduling Example

1. Build the dependence graph
2. Determine priorities: longest latency-weighted path

a: loadAI r0,@w ⇒ r1
b: add r1,r1 ⇒ r1
c: loadAI r0,@x ⇒ r2
d: mult r1,r2 ⇒ r1
e: loadAI r0,@y ⇒ r2
f: mult r1,r2 ⇒ r1
g: loadAI r0,@z ⇒ r2
h: mult r1,r2 ⇒ r1
i: storeAI r1 ⇒ r0,@w

The Code
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i

The Dependence Graph
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Scheduling Example

1. Build the dependence graph
2. Determine priorities: longest latency-weighted path

3. Perform list scheduling

loadAI r0,@w Þ r11)  a:

add r1,r1 Þ r14)  b:

loadAI r0,@x Þ r22)  c:

mult r1,r2 Þ r15)  d:

loadAI r0,@y Þ r33)  e:

mult r1,r3 Þ r17)  f:
loadAI r0,@z Þ r26)  g:

mult r1,r2 Þ r19)  h:
11) i: storeAI r1 Þ r0,@w

The Code

a
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d e

f g

h

i

The Dependence Graph
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Register Allocation
Part of the compiler’s back end

Critical properties

• Produce correct code that uses k (or fewer) registers
• Minimize added loads and stores
• Minimize space used to hold spilled values
• Operate efficiently 

O(n), O(n log2n), maybe O(n2), but not O(2n)

Errors

IR Register
Allocation

Instruction
Selection

Machine
code

Instruction
Scheduling

m register

IR

k register

IR



Register Allocation using Graph-Coloring
The big picture

At each point in the code

1 Determine which values will reside in registers
2 Select a register for each such value
The goal is an allocation that “minimizes” running time

Most modern, global allocators use a graph-coloring paradigm
• Build a “conflict graph” or “interference graph”
• Find a k-coloring for the graph, or change the code to a 

nearby problem that it can k-color

Register
Allocator

m register
code

k register
code

Optimal global allocation 
is NP-Complete, under 
almost any assumptions.



Register Allocation using Graph Coloring

Graph coloring paradigm                   (Chaitin )
1 Build an interference graph GI for the procedure
2 (try to) construct a k-coloring

® Minimal coloring is NP-Complete
® Spill placement becomes a critical issue

3 Map colors onto physical registers



Graph Coloring              (A Background Digression)
The problem

A graph G  is said to be k-colorable iff the nodes can be labeled 
with integers 1… k so that no edge in G connects two nodes with 
the same label

Examples

Each color can be mapped to a distinct physical register
2-colorable 3-colorable



Building the Interference Graph
What is an “interference” ? (or conflict)
• Two values interfere if there exists an operation where both 

are simultaneously live
• If x and y interfere, they cannot occupy the same register
To compute interferences, we must know where values are “live”

The interference graph, GI

• Nodes in GI represent values, or live ranges
• Edges in GI represent individual interferences

® For x, y Î GI, <x,y> Î iff  x and y interfere
• A k-coloring of GI can be mapped into an allocation to k

registers



Observation on Coloring for Register Allocation

• Suppose you have k registers—look 
for a k coloring
• Any vertex n that has fewer than k

neighbors in the interference graph 
(n° < k) can always be colored!
®Pick any color not used by its neighbors 

— there must be one



Observation on Coloring for Register Allocation

• Pick any vertex n such that n°< k and put it 
on the stack

• Remove that vertex and all edges incident 
from the interference graph
®This may make some new nodes have fewer than 

k neighbors
• At the end, if some vertex n still has k or 

more neighbors, then spill the live range 
associated with n

• Otherwise successively pop vertices off 
the stack and color them in the lowest 
color not used by some neighbor 



Graph Coloring in Practice
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