
Introduction to Optimization,
Instruction Selection and Scheduling, and

Register Allocation

Code Improvement (or Optimization)
• Analyzes IR and rewrites (or transforms) IR
• Primary goal is to reduce running time of the compiled code

® May also improve space, power consumption, …
• Must preserve “meaning” of the code

® Measured by values of named variables
® A course (or two) unto itself

Traditional Three-pass Compiler

Errors

Source
Code

Middle
End

Front
End

Machine
code

Back
End

IR IR

The Optimizer (or Middle End)

Errors

Opt
1

Opt
3

Opt
2

Opt
n

...IR IR IR IR IR

Modern optimizers are structured as a series of passes

Errors

Source
Code

Middle
End

Front
End

Machine
code

Back
End

IR IR

The Optimizer (or Middle End)

Typical Transformations
• Discover & propagate some constant value
• Move a computation to a less frequently executed

place
• Specialize some computation based on context
• Discover a redundant computation & remove it
• Remove useless or unreachable code
• Encode an idiom in some particularly efficient

form

The Role of the Optimizer

• The compiler can implement a procedure in many ways
• The optimizer tries to find an implementation that is
“better”
® Speed, code size, data space, …

To accomplish this, it
• Analyze code to derive knowledge about run-time behavior

® General term is “static analysis”
• Uses that knowledge in an attempt to improve the code

® Literally hundreds of transformations have been proposed
® Large amount of overlap between them

Nothing “optimal” about optimization

Redundancy Elimination as an Example
An expression x+y is redundant iff
• along every path from the procedure’s

entry, it has been evaluated and its
constituent subexpressions (x & y) have
not been re-defined.

• Instruction Selection

• Register Allocation

• Instruction Scheduling

Traditional Three-pass Compiler

Errors

Source
Code

Middle
End

Front
End

Machine
code

Back
End

IR IR

Instruction Selection: The Problem
Writing a compiler is a lot of work
• Would like to reuse components whenever possible
• Would like to automate construction of components

Front End Back EndMiddle End

Infrastructure

Automating
Instruction
Selection

Definitions
Instruction selection
• Mapping IR into assembly code
• Assumes a fixed storage mapping & code shape
• Combining operations, using address modes

Instruction scheduling
• Reordering operations to hide latencies
• Assumes a fixed program (set of operations)
• Changes demand for registers

Register allocation
• Deciding which values will reside in registers
• Changes the storage mapping, may add false sharing
• Concerns about placement of data & memory operations

The Problem
Modern computers (still) have many ways to do anything

Consider register-to-register copy in ILOC

• Obvious operation is i2i ri Þ rj
• Many others exist

• Human would ignore all of these

• Algorithm must look at all of them & find low-cost encoding
® Take context into account

addI ri,0 Þ rj subI ri,0 Þ rj lshiftI ri,0 Þ rj
multI ri,1 Þ rj divI ri,1 Þ rj rshiftI ri,0 Þ rj
orI ri,0 Þ rj xorI ri,0 Þ rj … and others …

The Goal
Want to automate generation of instruction selectors

Machine description can also help with scheduling & allocation

Front End Back EndMiddle End

Infrastructure

Tables

Pattern
Matching
Engine

Back-end
Generator

Machine
description

Description-based
retargeting

The Big Picture
Need pattern matching techniques
• Must produce good code (some metric for good)
• Must run quickly

A treewalk code generator runs quickly
How good was the code?

x

IDENT
<a,ARP,4>

IDENT
<b,ARP,8>

loadI 4 Þ r5
loadAO rarp,r5 Þ r6
loadI 8 Þ r7
loadAO rarp,r7 Þ r8
mult r6,r8 Þ r9

loadAI rarp,4 Þ r5
loadAI rarp,8 Þ r6
mult r5,r6 Þ r7

Tree Treewalk Code Desired Code

The Big Picture
Need pattern matching techniques
• Must produce good code (some metric for good)
• Must run quickly

A treewalk code generator runs quickly
How good was the code?

x

IDENT
<a,ARP,4>

IDENT
<b,ARP,8>

loadI 4 Þ r5
loadAO rarp,r5 Þ r6
loadI 8 Þ r7
loadAO rarp,r7 Þ r8
mult r6,r8 Þ r9

loadAI rarp,4 Þ r5
loadAI rarp,8 Þ r6
mult r5,r6 Þ r7

Tree Treewalk Code Desired Code

The Big Picture
Need pattern matching techniques
• Must produce good code (some metric for good)
• Must run quickly

A treewalk code generator runs quickly
How good was the code?

x

IDENT
<a,ARP,4>

NUMBER
<2>

loadI 4 Þ r5
loadAO rarp,r5 Þ r6
loadI 2 Þ r7
mult r6,r7 Þ r8

loadAI rarp,4 Þ r5
multI r5,2 Þ r7

Tree Treewalk Code Desired Code

The Big Picture
Need pattern matching techniques
• Must produce good code (some metric for good)
• Must run quickly

A treewalk code generator runs quickly
How good was the code?

x

IDENT
<a,ARP,4>

NUMBER
<2>

loadI 4 Þ r5
loadAO rarp,r5 Þ r6
loadI 2 Þ r7
mult r6,r7 Þ r8

loadAI rarp,4 Þ r5
multI r5,2 Þ r7

Tree Treewalk Code Desired Code

Must combine these
This is a nonlocal problem

The Big Picture
Need pattern matching techniques
• Must produce good code (some metric for good)
• Must run quickly

A treewalk code generator runs quickly
How good was the code?

x

IDENT
<c,@G,4>

IDENT
<d,@H,4>

loadI @G Þ r5
loadI 4 Þ r6
loadAO r5,r6 Þ r7
loadI @H Þ r7
loadI 4 Þ r8
loadAO r8,r9 Þ r10
mult r7,r10Þ r11

loadI 4 Þ r5
loadAI r5,@G Þ r6
loadAI r5,@H Þ r7
mult r6,r7 Þ r8

Tree Treewalk Code Desired Code

The Big Picture
Need pattern matching techniques
• Must produce good code (some metric for good)
• Must run quickly

A treewalk code generator can meet the second criteria
How did it do on the first ?

x

IDENT
<c,@G,4>

IDENT
<d,@H,4>

loadI @G Þ r5
loadI 4 Þ r6
loadAO r5,r6 Þ r7
loadI @H Þ r7
loadI 4 Þ r8
loadAO r8,r9 Þ r10
mult r7,r10Þ r11

loadI 4 Þ r5
loadAI r5,@G Þ r6
loadAI r5,@H Þ r7
mult r6,r7 Þ r8

Tree Treewalk Code Desired Code

Common offset
Again, a nonlocal problem

How do we perform this kind of matching ?
Tree-oriented IR suggests pattern matching on trees
• Tree-patterns as input, matcher as output
• Each pattern maps to a target-machine instruction sequence
• Use dynamic programming or bottom-up rewrite systems

Linear IR suggests using some sort of string matching
• Strings as input, matcher as output
• Each string maps to a target-machine instruction sequence
• Use text matching or peephole matching

In practice, both work well; matchers are quite different

Definitions
Instruction selection
• Mapping IR into assembly code
• Assumes a fixed storage mapping & code shape
• Combining operations, using address modes

Instruction scheduling
• Reordering operations to hide latencies
• Assumes a fixed program (set of operations)
• Changes demand for registers

Register allocation
• Deciding which values will reside in registers
• Changes the storage mapping, may add false sharing
• Concerns about placement of data & memory operations

What Makes Code Run Fast?

• Many operations have non-zero latencies
• Modern machines can issue several operations per cycle

• Execution time is order-dependent

Assumed latencies (conservative)

Operation Cycles
load 3
store 3
loadI 1
add 1
mult 2
fadd 1
fmult 2
shift 1
branch 0 to 8

• Loads & stores may or may not block

> Non-blocking Þfill those issue slots
• Branch costs vary with path taken
• Scheduler should hide the latencies

Example

w ¬ w * 2 * x * y * z

1 loadAI r0,@w ⇒ r1
4 add r1,r1 ⇒ r1
5 loadAI r0,@x ⇒ r2
8 mult r1,r2 ⇒ r1
9 loadAI r0,@y ⇒ r2

12 mult r1,r2 ⇒ r1
13 loadAI r0,@z ⇒ r2
16 mult r1,r2 ⇒ r1

 18 storeAI r1 ⇒ r0,@w
21 r1 is free

1 loadAI r0,@w ⇒ r1
2 loadAI r0,@x ⇒ r2
3 loadAI r0,@y ⇒ r3
4 add r1,r1 ⇒ r1
5 mult r1,r2 ⇒ r1
6 loadAI r0,@z ⇒ r2
7 mult r1,r3 ⇒ r1
9 mult r1,r2 ⇒ r1

11 storeAI r1 ⇒ r0,@w
14 r1 is free

Cycles Simple schedule Cycles Schedule loads early

2 registers, 20 cycles 3 registers, 13 cycles

Reordering operations for speed is called
instruction scheduling

Instruction Scheduling (Engineer’s View)

The Problem
Given a code fragment for some target machine and the
latencies for each individual operation, reorder the operations
to minimize execution time

The Concept

Scheduler
slow

code

fast

code

Machine description

The task

• Produce correct code

• Minimize wasted cycles

• Avoid spilling registers

• Operate efficiently

Instruction Scheduling (The Abstract View)

To capture properties of the code, build a dependence graph G
• Nodes n Î G are operations with type(n) and delay(n)
• An edge e = (n1,n2) Î G if & only if n2 uses the result of n1

a: loadAI r0,@w ⇒ r1
b: add r1,r1 ⇒ r1
c: loadAI r0,@x ⇒ r2
d: mult r1,r2 ⇒ r1
e: loadAI r0,@y ⇒ r2
f: mult r1,r2 ⇒ r1
g: loadAI r0,@z ⇒ r2
h: mult r1,r2 ⇒ r1
i: storeAI r1 ⇒ r0,@w

The Code

a

b c

d e

f g

h

i

The Dependence Graph

Instruction Scheduling (Definitions)

A correct schedule S maps each nÎ N into a non-negative
integer representing its cycle number, and

1. S(n) ≥ 0, for all n Î N, obviously
2. If (n1,n2) Î E, S(n1) + delay(n1) ≤ S(n2)
3. For each type t, there are no more operations of type t in

any cycle than the target machine can issue

The length of a schedule S, denoted L(S), is
L(S) = maxn Î N (S(n) + delay(n))

The goal is to find the shortest possible correct schedule.
S is time-optimal if L(S) ≤ L(Sj), for all other schedules Sj

A schedule might also be optimal in terms of registers,
power, or space….

Instruction Scheduling (What’s so difficult?)

Critical Points
• All operands must be available

• Multiple operations can be ready
• Moving operations can lengthen register lifetimes
• Placing uses near definitions can shorten register lifetimes

• Operands can have multiple predecessors
Together, these issues make scheduling hard (NP-Complete)

Local scheduling is the simple case

• Restricted to straight-line code
• Consistent and predictable latencies

Instruction Scheduling

The big picture
1. Build a dependence graph, P
2. Compute a priority function over the nodes in P
3. Use list scheduling to construct a schedule, one cycle at a

time
a. Use a queue of operations that are ready
b. At each cycle

I. Choose a ready operation and schedule it
II. Update the ready queue

Local list scheduling

• The dominant algorithm for twenty years
• A greedy, heuristic, local technique

Local List Scheduling

Cycle ¬ 1
Ready ¬ roots of P
Active ¬ Ø

while (Ready È Active ¹ Ø)
if (Ready ¹ Ø) then

remove an op from Ready
S(op) ¬ Cycle
Active ¬ Active È op

Cycle ¬ Cycle + 1

for each op Î Active
if (S(op) + delay(op) ≤ Cycle) then

remove op from Active
for each successor s of op in P

if (s is ready) then
Ready ¬ Ready È s

Removal in priority order

op has completed execution

If successor’s operands are
ready, put it on Ready

Scheduling Example

1. Build the dependence graph

a: loadAI r0,@w ⇒ r1
b: add r1,r1 ⇒ r1
c: loadAI r0,@x ⇒ r2
d: mult r1,r2 ⇒ r1
e: loadAI r0,@y ⇒ r2
f: mult r1,r2 ⇒ r1
g: loadAI r0,@z ⇒ r2
h: mult r1,r2 ⇒ r1
i: storeAI r1 ⇒ r0,@w

The Code

a

b c

d e

f g

h

i

The Dependence Graph

Scheduling Example

1. Build the dependence graph
2. Determine priorities: longest latency-weighted path

a: loadAI r0,@w ⇒ r1
b: add r1,r1 ⇒ r1
c: loadAI r0,@x ⇒ r2
d: mult r1,r2 ⇒ r1
e: loadAI r0,@y ⇒ r2
f: mult r1,r2 ⇒ r1
g: loadAI r0,@z ⇒ r2
h: mult r1,r2 ⇒ r1
i: storeAI r1 ⇒ r0,@w

The Code

a

b c

d e

f g

h

i

The Dependence Graph

3

5

8

7

9

10

12

10

13

Scheduling Example

1. Build the dependence graph
2. Determine priorities: longest latency-weighted path

3. Perform list scheduling

loadAI r0,@w Þ r11) a:

add r1,r1 Þ r14) b:

loadAI r0,@x Þ r22) c:

mult r1,r2 Þ r15) d:

loadAI r0,@y Þ r33) e:

mult r1,r3 Þ r17) f:
loadAI r0,@z Þ r26) g:

mult r1,r2 Þ r19) h:
11) i: storeAI r1 Þ r0,@w

The Code

a

b c

d e

f g

h

i

The Dependence Graph

3

5

8

7

9

10

12

10

13

New register name
used

Register Allocation
Part of the compiler’s back end

Critical properties

• Produce correct code that uses k (or fewer) registers
• Minimize added loads and stores
• Minimize space used to hold spilled values
• Operate efficiently

O(n), O(n log2n), maybe O(n2), but not O(2n)

Errors

IR Register
Allocation

Instruction
Selection

Machine
code

Instruction
Scheduling

m register

IR

k register

IR

Register Allocation using Graph-Coloring
The big picture

At each point in the code

1 Determine which values will reside in registers
2 Select a register for each such value
The goal is an allocation that “minimizes” running time

Most modern, global allocators use a graph-coloring paradigm
• Build a “conflict graph” or “interference graph”
• Find a k-coloring for the graph, or change the code to a

nearby problem that it can k-color

Register
Allocator

m register
code

k register
code

Optimal global allocation
is NP-Complete, under
almost any assumptions.

Register Allocation using Graph Coloring

Graph coloring paradigm (Chaitin)
1 Build an interference graph GI for the procedure
2 (try to) construct a k-coloring

® Minimal coloring is NP-Complete
® Spill placement becomes a critical issue

3 Map colors onto physical registers

Graph Coloring (A Background Digression)
The problem

A graph G is said to be k-colorable iff the nodes can be labeled
with integers 1… k so that no edge in G connects two nodes with
the same label

Examples

Each color can be mapped to a distinct physical register
2-colorable 3-colorable

Building the Interference Graph
What is an “interference” ? (or conflict)
• Two values interfere if there exists an operation where both

are simultaneously live
• If x and y interfere, they cannot occupy the same register
To compute interferences, we must know where values are “live”

The interference graph, GI

• Nodes in GI represent values, or live ranges
• Edges in GI represent individual interferences

® For x, y Î GI, <x,y> Î iff x and y interfere
• A k-coloring of GI can be mapped into an allocation to k

registers

Observation on Coloring for Register Allocation

• Suppose you have k registers—look
for a k coloring
• Any vertex n that has fewer than k

neighbors in the interference graph
(n° < k) can always be colored!
®Pick any color not used by its neighbors

— there must be one

Observation on Coloring for Register Allocation

• Pick any vertex n such that n°< k and put it
on the stack

• Remove that vertex and all edges incident
from the interference graph
®This may make some new nodes have fewer than

k neighbors
• At the end, if some vertex n still has k or

more neighbors, then spill the live range
associated with n

• Otherwise successively pop vertices off
the stack and color them in the lowest
color not used by some neighbor

Graph Coloring in Practice

2

3

1 4 5

3 Registers

Stack

Graph Coloring in Practice

2

3

4 5

3 Registers

Stack

1

Graph Coloring in Practice

3

4 5

3 Registers

Stack

1

2

Graph Coloring in Practice

3

5

3 Registers

Stack

1

2
4

Graph Coloring in Practice

3 Registers

Stack

1

2
4
3

5

Colors:

1:

2:

3:

Graph Coloring in Practice

5

3 Registers

Stack

1

2
4
3

Colors:

1:

2:

3:

Graph Coloring in Practice

3

5

3 Registers

Stack

1

2
4

Colors:

1:

2:

3:

Graph Coloring in Practice

3

4 5

3 Registers

Stack

1

2

Colors:

1:

2:

3:

Graph Coloring in Practice

2

3

4 5

3 Registers

Stack

1

Colors:

1:

2:

3:

Graph Coloring in Practice

2

3

1 4 5

3 Registers

Stack

Colors:

1:

2:

3:

