
Context-sensitive Analysis

Beyond Syntax
There is a level of correctness that is deeper than grammar

fie(a,b,c,d)
int a, b, c, d;

{ … }

fee() {
int f[3],g[0],h,i,j,k;
char *p;
fie(h,i,“ab”,j, k);
k = f * i + j;
h = g[17];
printf(“<%s,%s>.\n”,p,q);
p = 10;

}

What is wrong with this
program?

Beyond Syntax
There is a level of correctness that is deeper than grammar

To generate code, we need to
understand its meaning !

What is wrong with this
program?

• declared g[0], used g[17]

• wrong number of args to
fie()

• “ab” is not an int

• wrong dimension on use of f

• undeclared variable q

• 10 is not a character string

All of these are

“deeper than syntax”

fie(a,b,c,d)
int a, b, c, d;

{ … }

fee() {
int f[3],g[0],h,i,j,k;
char *p;
fie(h,i,“ab”,j, k);
k = f * i + j;
h = g[17];
printf(“<%s,%s>.\n”, p,q);
p = 10;

}

Beyond Syntax
To generate code, the compiler needs to answer many

questions
• Is “x” a scalar, an array, or a function? Is “x” declared?
• Are there names that are not declared? Declared but

not used?
• Which declaration of “x” does each use reference?
• Is “x” defined before it is used?
• Is the expression “x * y + z” type-consistent?

These are beyond a
Context Free Grammar

Beyond Syntax
To generate code, the compiler needs to answer many

questions
• In “a[i,j,k]”, does a have three dimensions?
• Where can “z” be stored? (register, local, global, heap, static)
• How many arguments does “fie()” take?
• Does “*p” reference the result of a “malloc()” ?
• Do “p” & “q” refer to the same memory location?

These are beyond a
Context Free Grammar

Beyond Syntax
These questions are part of context-sensitive analysis
• Questions & answers involve non-local information
• Answers may involve computation

How can we answer these questions?
• Use formal methods

® Attribute grammars?
§ Also known as attributed CFG or syntax-directed

definitions
• Use ad-hoc techniques

® Symbol tables
® Ad-hoc code (action routines)

In scanning & parsing, formalism won; different story here.

Example of an Abstract Syntax Tree

More Abstract Syntax Tree Examples

ASTs and Parsing

• AST can be built doing a bottom-up parse
• The construction procedure is rather simple
• Create appropriate tree nodes for each element

in the grammar
• for each node, carry sufficient essential

information of program fragments it represents

What type of trees they have built by using CUP?

Read the code of the skeleton to understand what they are
operating on

Inheritance Graph

