
Lexical Analysis: Wrap Up 



DFA minimization (revisited) 

Important sentence in the book on how to 
perform split.  

Refers to a set  p in the partition P. 

 “…creating one consistent state and lumping 
the rest of p into another state will 
suffice.”  pg. 55, EaC 



DFA Minimization (the algorithm) 

P ← { DF, {D-DF}} 
while ( P is still changing) 
    T ← Ø 
    for each set p ∈ P 

 T ← T ∪ Split(p) 
     P ← T 



DFA Minimization (the algorithm) 
// S is a particular group in P 
Split(S) 
 for each α ∈ Σ	

   // two states transition to diff groups in P 
   if α splits S 
       s1 = a set w/ states internally consistent on α	

            s2 = S-s1 

         return {s1,s2} 
return S  

Internally consistent on α:   
qi and qj ∈ s   st δ(qi, α) = qx  and  δ(qj, α) = qy  
       qx and qy are in the same set  



Building Faster Scanners 
Hashing keywords versus encoding them directly 

•  Some (well-known) compilers recognize keywords as 
identifiers and check them in a hash table            

•  Encoding keywords in the DFA is a better idea 
→  O(1) cost per transition 
→  Avoids hash lookup on each identifier 

It is hard to beat a well-implemented DFA scanner;  While 
scanner generators can produce reasonably fast scanners, 

many compiler writers still hand-code scanners. 



Building Scanners 
The point 
•  All this technology lets us automate scanner construction 
•  Implementer writes down the regular expressions 
•  Scanner generator builds NFA, DFA, minimal DFA, and then 

writes out the (table-driven or direct-coded) code 
•  This reliably produces fast, robust scanners 

For most modern language features, this works 
•  You should think twice before introducing a feature that 

defeats a DFA-based scanner 
•  The ones we’ve seen (e.g., insignificant blanks, non-reserved 

keywords) have not proven particularly useful or long lasting 



What we expect of the Scanner 

•  Report errors for lexicographically malformed inputs  
→  reject illegal characters, or meaningless character sequences 
→  E.g., “lo#op” in COOL 

•  Return an abstract representation of the code 
→  character sequences (e.g., “if” or “loop”) turned into tokens. 

•  Resulting sequence of tokens will be used by the parser 
•  Makes the design of the parser a lot easier. 



How to specify a scanner 

•  A scanner specification (e.g., for JLex), is list of (typically 
short) regular expressions.  

•  Each regular expressions has an action associated with it. 
•  Typically, an action is to return a token. 



How to specify a scanner (cont’d) 

•  On a given input string, the scanner will: 
→  find the longest prefix of the input string, that matches 

one of the regular expressions.  
→  will execute the action associated with the matching 

regular expression highest in the list. 
•  Scanner repeats this procedure for the remaining input. 
•  If no match can be found at some point, an error is reported. 



Example of a Specification 

•  Consider the following scanner specification.  
1.  aaa   { return T1 }  
2.  a*b  { return T2 } 
3.  b   { return S } 

•  Given the following input string into the scanner 
aaabbaaa 



Example of a Specification 

• Consider the following scanner specification.
1. aaa  { return T1 } 
2. a*b  { return T2 } 
3. b  { return S } 

• Given the following input string into the scanner
aaab   b   aaa 
 T2      T2   T1 

• Note that the scanner will report an error for example on the
string ‘aa’.



What can be so hard? 
Poor language design can complicate scanning 
•  Reserved words are important 

if then then then = else; else else = then          (PL/I) 

•  Insignificant blanks                                    (Fortran & Algol68) 
do 10 i = 1,25    (this is a loop) 
do 10 i = 1.25    (this is an assignment to variable “do10i”) 

Note: This is handled by performing an initial pass to insert “significant” 
blanks. 



What can be so hard? (cont’d) 

•  String constants w/ special (“escape”) characters   (C, C++, Java, …) 
newline, tab, quote, comment delimiters, … 

•  Finite closures                                                     (Fortran 66 & Basic) 
→  Limited identifier length 
→  Adds states to count length 



Limits of Regular Languages 
Advantages of Regular Expressions 

•  Simple & powerful notation for specifying patterns 

•  Automatic construction of fast recognizers 

•  Many kinds of syntax can be specified with REs 

Example — an expression grammar 
Term →  [a-zA-Z] ([a-zA-z] | [0-9])* 

Op      →  + | - | * | / 
Expr   →  ( Term Op )* Term 

Of course, this would generate a DFA … 

If REs are so useful … 
Why not use them for everything? 



Limits of Regular Languages 

Not all languages are regular 
RL’s ⊂ CFL’s  ⊂ CSL’s 

You cannot construct DFA’s to recognize these 
languages 

•  L =  { pkqk }                                (parenthesis languages) 

•  L =  { w r | w ∈ Σ*}                        (finite closures) 

Neither of these is a regular language      (nor an RE) 



Limits of Regular Languages 

But, this is a little subtle.  You can construct DFA’s for 
•  Strings with alternating 0’s and 1’s                

( ε | 1 ) ( 01 )* ( ε | 0 )  

•  Strings with an even number of 0’s and 1’s 
      (00)*(11)*(00)* 
     0011 , 1100, 1111, 0000, 110000, 001111, … 


