Lexical Analysis:
Constructing a Scanner from Regular Expressions
Goal

• Show how to construct a DFA to recognize any RE
• Scanner simulates a DFA to generate tokens
• Last Lecture
 → Convert RE to an **nondeterministic finite automaton (NFA)**
 ▪ Use Thompson’s construction
• **This Lecture**
 → Convert an NFA to a **deterministic finite automaton (DFA)**
 ▪ Use Subset construction
Convert NFA to DFA

• NFA is a 5-tuple \((N, \Sigma, \delta_N, n_0, N_A)\)

• DFA is a 5-tuple \((D, \Sigma, \delta_D, d_0, D_A)\)

• Want to create a DFA that simulates the NFA

Non-trivial part is constructing \(D\) and \(\delta_D\)
NFA \rightarrow DFA: need to build a simulation of the NFA

Two key functions

• **$\Delta(q_i, a)$** set of states reachable from states in q_i by a
 \rightarrow Returns a set of states, for each $n \in q_i$ of $\delta_i(n, a)$

• **ε-closure(q_i)** set of states reachable from q_i by ε moves

Functions help create states of DFA by removing non-deterministic edges of the NFA.
Subset Construction Algorithm in English

The algorithm:

• Start state q_0 derived from n_0 of the NFA
• Add q_0 to the Worklist

Loop while Worklist not empty

• Remove a state q from worklist
• Compute t by $\text{Delta}(q, \alpha)$ for each $\alpha \in \Sigma$, and take its ε-closure
• If t not in set Q
 add it to Q and Worklist

Iterate until no more states are added

Sounds more complex than it is...
The Subset Construction Algorithm

\[
q_0 \leftarrow \varepsilon\text{-closure}(n_0)
\]

\[
Q \leftarrow \{q_0\}
\]

\[
\text{WorkList} \leftarrow \{q_0\}
\]

While (WorkList is not empty)

remove \(q \) from WorkList

for each \(\alpha \in \Sigma \)

\[
t \leftarrow \varepsilon\text{-closure}(\Delta(q, \alpha))
\]

\[
T[q, \alpha] \leftarrow t
\]

if (\(t \not\in Q \)) then

add \(t \) to \(Q \) and WorkList

Let’s think about why this works
NFA → DFA with Subset Construction

The algorithm:

\[q_0 \leftarrow \varepsilon\text{-closure}(n_0) \]
\[Q \leftarrow \{ q_0 \} \]
\[\text{WorkList} \leftarrow \{ q_0 \} \]

while (WorkList ≠ φ)

remove q from WorkList

for each \(\alpha \in \Sigma \)

\[t \leftarrow \varepsilon\text{-closure}(\text{Delta}(q, \alpha)) \]

\[T[q, \alpha] \leftarrow t \]

if (\(t \not\in Q \)) then

add \(t \) to \(Q \) and WorkList

Let’s think about why this works

The algorithm halts:

1. \(Q \) contains no duplicates (test before adding)

2. \(2^N \) is finite

3. while loop adds to \(Q \), but does not remove from \(Q \) (monotone)

⇒ the loop halts

\(Q \) contains all the reachable NFA states

It tries each character in each \(q \).

⇒ \(Q \) gives us \(D \) set of states of DFA

⇒ \(T \) gives us \(\delta_D \) set of transitions of DFA
NFA → DFA with Subset Construction

Example of a fixed-point computation

- Monotone construction of some finite set
- Halts when it stops adding to the set
- These computations arise in many contexts

We will see many more fixed-point computations
NFA \rightarrow DFA with Subset Construction

$a (b \mid c)^*$:

Applying the subset construction:

<table>
<thead>
<tr>
<th>NFA states</th>
<th>ε-closure(Delta(q, \ast))</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_0</td>
<td></td>
</tr>
</tbody>
</table>

The algorithm:

$q_0 \leftarrow \varepsilon$-closure($n_0$)

$Q \leftarrow \{q_0\}$

WorkList $\leftarrow \{q_0\}$

while (WorkList $\neq \emptyset$)

remove q from WorkList

for each $\alpha \in \Sigma$

$t \leftarrow \varepsilon$-closure(Delta(q, α))

$T[q, \alpha] \leftarrow t$

if (t $\notin Q$) then

add t to Q and WorkList
NFA → DFA with Subset Construction

\[a(b \mid c)^* : \]

Applying the subset construction:

<table>
<thead>
<tr>
<th>NFA states</th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s_0)</td>
<td>(q_0)</td>
<td>(q_1, q_2, q_3, q_4, q_6, q_9)</td>
<td>none</td>
</tr>
<tr>
<td>(s_1)</td>
<td>(q_1, q_2, q_3, q_4, q_6, q_9)</td>
<td>none</td>
<td>(q_5, q_8, q_9, q_3, q_4, q_6)</td>
</tr>
<tr>
<td>(s_2)</td>
<td>(q_5, q_8, q_9, q_3, q_4, q_6)</td>
<td>none</td>
<td>(s_2)</td>
</tr>
<tr>
<td>(s_3)</td>
<td>(q_7, q_8, q_9, q_3, q_4, q_6)</td>
<td>none</td>
<td>(s_2)</td>
</tr>
</tbody>
</table>

Final states
The DFA for $a \ (b \mid c)^*$

- Ends up smaller than the NFA
- All transitions are deterministic
- Use same code skeleton as before

<table>
<thead>
<tr>
<th>δ</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_0</td>
<td>s_1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>s_1</td>
<td>-</td>
<td>s_2</td>
<td>s_3</td>
</tr>
<tr>
<td>s_2</td>
<td>-</td>
<td>s_2</td>
<td>s_3</td>
</tr>
<tr>
<td>s_3</td>
<td>-</td>
<td>s_2</td>
<td>s_3</td>
</tr>
</tbody>
</table>
Where are we? Why are we doing this?

RE → NFA (Thompson’s construction) ✔
• Build an NFA for each term
• Combine them with ε-moves

NFA → DFA (subset construction) ✔
• Build the simulation

DFA → Minimal DFA
• Hopcroft’s algorithm

DFA → RE
• All pairs, all paths problem
• Union together paths from s_0 to a final state
Extra Slides
What we expect of the Scanner

- **Report errors** for lexicographically malformed inputs
 - reject illegal characters, or meaningless character sequences
 - E.g., ‘#' or “floop” in COOL
- **Return an abstract representation** of the code
 - character sequences (e.g., “if” or “loop”) turned into **tokens**.
- Resulting sequence of tokens will be used by the parser
- Makes the design of the parser a lot easier.
How to specify a scanner

- A scanner specification (e.g., for JLex), is list of (typically short) regular expressions.
- Each regular expressions has an action associated with it.
- Typically, an action is to return a token.
- On a given input string, the scanner will:
 - find the longest prefix of the input string, that matches one of the regular expressions.
 - will execute the action associated with the matching regular expression highest in the list.
- Scanner repeats this procedure for the remaining input.
- If no match can be found at some point, an error is reported.
Example of a Specification

- Consider the following scanner specification.
 1. aaa { return T1 }
 2. a*b { return T2 }
 3. b { return S }

- Given the following input string into the scanner:
 aaabbaaa
 the scanner as specified above would output
 T2 T2 T1

- Note that the scanner will report an error for example on the string 'aa'.
Special Return Tokens

- Sometimes one wants to extract information out of what prefix of the input was matched.
- Example:
  ```
  "[a-zA-Z0-9]*"    { return STRING(yytext()) }
  ```
 Above RE matches every string that
 - starts and ends with quotes, and
 - has any number of alpha-numerical chars between them.
- Associated action returns a string token, which is the exact string that the RE matched.
- Note that yytext() will also include the quotes.
- Furthermore, note that this regular expression does not handle escaped characters.